Here you can find an overview of our current research topics. There is also a list of awards of the visualization group available: go to awards page.
The genesis and progression of cardiovascular diseases (CVDs) depend on various factors. A better comprehension of patient-specific blood flow hemodynamics has great potential to increase their diagnosis, support treatment decision-making and provide a realistic forecast of such pathologies, facilitating a better implementation of preventative measures. Four-dimensional phase-contrast magnetic resonance imaging (4D PC-MRI) gained increasing importance and clinical attention in recent years. It is a non-invasive imaging modality that allows for time-resolved, three-dimensional measurement of blood flow information. The resulting 4D grid data, which contain vectors that represent the blood flow direction and velocity, are of limited spatio-temporal resolution and suffer from multiple artifacts, making complex image processing methods a prerequisite. Qualitative data analysis aims to depict the course of the blood flow with emphasis on specific flow patterns, such as vortex flow, which can be an indicator for different cardiovascular diseases. For this purpose, flow visualization techniques can be adapted to the cardiac context. Quantitative data analysis facilitates assessment of, e.g., the cardiac function by evaluating stroke volumes, heart valve performances by evaluating percentaged back flows, and fluid-vessel wall interactions by evaluating wall shear stress.
The “Virtual Anatomy” project develops and tests innovative concepts to modernize anatomy education. For example, the body donors that are used by medical students for preparation training are scanned in high resolution such that the preparation can also be simulated virtually. While the body donors can only be used for a limited time, the virtual models are basically always available. One of the practical research questions is how to directly integrate the viewing and analysis of 3D models into the curriculum of the anatomy education.
The cost pressure on rehabilitation hospitals results in stroke patients being released from hospital after 3-4 weeks and having further therapy with occupational therapists and neuropsychologists in private practice. However, under current conditions, the treatment intensity that is necessary for an efficient follow-up therapy is not further ensured after rehabilitation hospital discharge. To achieve therapeutic effects, the initiated therapy must be continued by intensive and preferably daily training.
This research project aims at the development of a system for the therapy of cognitive disorders for patients after stroke in home training. For this purpose, user interfaces with new interaction and visualization techniques shall be developed. Furthermore, studies shall validate whether reward and motivation techniques from computer games can be transferred to the new therapy software. For example, one element of the motivation and reward strategy is the suitable illustration of patient’s performance data.
Cerebral aneurysms show a high prevalence in the western population, while their annual risk of rupture is below 1%. The bleeding caused by a rupture of such an aneurysms can have fatal consequences, but the treatment procedure itself is risky and can lead to severe complications.
Therefore, assessing the risk of rupture is vital to devise an optimal, patient-specific treatment plan – especially for patients with multiple aneurysms that may require multiple treatment sessions. The goal of this project is to develop and evaluate visualization techniques that support physicians with treatment decisions in such cases.
In traditional illustrations, many well established techniques exist to communicate information. Their advantages consist in enhancing important information while unimportant information are suppressed. The aim of this project is to develop and evaluate such illustrative rendering techniques (like stippling, hatching, smart visibility). Our investigations are focused on applying these techniques in a medical context.
Many illustrative techniques for visualizing medical volume data and derived segmentation information have been developed and refined. However, it is difficult to decide which techniques should be used for particular applications, how they should be combined, which parameter adjustment achieve the best information transfer or how 2D and 3D displays influence the visualization perception and guide the users attention. This project investigates experimental studies to analyze illustrative visualization techniques used in 3D medical visualizations. We focus on the study design and try to adapt psychological theories and study concepts to complex 3D medical visualizations and techniques to analyze their benefit.
In Toponomics, the function protein pattern in cells or tissue (the toponome) is imaged and analyzed for applications in toxicology, drug development and patient-drug-interaction. The most advanced imaging technique is robot-driven multi-parameter fluorescence microscopy. This technique is capable of co-mapping hundreds of proteins and their distribution and assembly in protein clusters across a cell or tissue sample. The imaging results in complex multi-parameter data composed of one slice or a 3D volume per protein affinity reagent. The goal of this project is to develop an interactive visual analysis framework
which supports the biologist in evaluating the data.
The research project for the visualization of vessels covers different research areas, e.g., the visualization of intravascular image data and model-based vessel visualization techniques. The intravascular imaging includes optical coherence tomography and intravascular ultrasound. The obtained medical image data provide valueable information about the vessel wall and its morphology which play an important role for diagnosis and evaluation of cardiovascular diseases like atherosclerotic plaque. Furthermore, special techniques to enable blood flow simulations and new projection-based techniques, that improve the conventional CPR views, were developed. Previous projects cover direct volume rendering techniques and transfer function adaptions as well as the vessel visualization with implicit surfaces.
In this project we develop facilities to create medical animations for intervention planning as well as for educational purposes. We also discuss the enhancement of interactive explorations with animations generated on the fly.