Interactive Visual Analysis of Flow Data

Helwig Hauser
(Univ. of Bergen)

et al.
Flows

- **Something moving**, usually some matter (a liquid or gas), but also dynamical systems, *etc*.

- **Usefully understood as differential wrt. time**
 \[
 \mathbf{v} = \frac{d \mathbf{p}}{dt} \quad \mathbf{p} \in \Omega \subseteq \mathbb{R}^n, \quad \mathbf{v} \in \mathbb{R}^n, \quad t \in \mathcal{R}
 \]

- Often represented as a **vector field**, *i.e.*, as set of vector samples \(\mathbf{v}(\mathbf{p}_i) \) over a certain grid \(\{\mathbf{p}_i\} \)

- Special challenge: unsteady flows \(\mathbf{v}(\mathbf{x},t) : \mathbb{R}^n \times \mathbb{R} \rightarrow \mathbb{R}^n \)

- **Flow data** origin in
 - **measurements**, *e.g.*, with PIV (particle image velocimetry)
 - **simulation**, *e.g.*, from CFD (computational fluid dynamics)
 - **modeling**, *e.g.*, as ODEs (ordinary differential equations)

Flow Visualization Methods

- From Post *et al.*:
 - Direct flow visualization
 - Texture-based flow visualization
 - Integration-based flow visualization
 - Feature-based / topological FlowViz
Direct Flow Visualization (1)

- One-to-one mapping of \(\mathbf{v} \) into vis. space

- Classical approaches:
 - arrows (hedgehog plot)
 - color coding

Texture-based FlowVis (2)

- Space-filling vis. of instantaneous flow \(\mathbf{v} \)

- Classical approaches:
 - line integral convolution (LIC) & spot noise
 - texture advection
Integration-based FlowVis (3)

- Utilization of integration paths
 \[\mathbf{p}(s) = \mathbf{p}_0 + \int_{\tau=0}^{s} \mathbf{v}(\mathbf{p}(\tau), t_0+\tau) \, d\tau \]
- Classical approaches:
 - streamlines
 - streamsurfaces

Feature-based / Topological FlowVis (4)

- Computational analysis, then vis.
- Approaches:
 - topology-based FlowVis
 - utilization of vortex extraction for FlowVis
Interactive Visual Analysis of Flow Data

- **Base-level IVA** *(solves many problems, already!)*
 - bring up at **least two different views** on the data
 - allow to **mark up interesting data parts** *(brushing)*
 - utilize **focus+context visualization** to highlight the user selection **consistently(!)** in all views *(linking)*

- Example (interactively?)...

- With base-level IVA, you can already do
 - **feature localization** – *brush high temperatures in a histogram, for ex., and see where they are in spacetime*
 - **local investigation** – *for ex., select from spacetime and see how attributes are there (compared to all the domain)*
 - **multivariate analysis** – *brushing vorticity values and studying related pressure values (selection compared to all)*

Base-level IVA of Flow Data

At least one **spatial view** & at least one **attribute view**
→ **studying different aspects of flow data**

[Hauser, 2006]
Getting more out of IVA (advanced IVA)

- Starting from base-level IVA,
 - we enable the **identification of complex features**, for ex., by exploiting a **feature definition language**
 - we realize **advanced brushing schemes**, e.g., by realizing a **similarity brush**
 - we facilitate **interactive attribute derivation**, e.g., by means of a **formula editor**
 - we **integrate statistics/ML on demand**, e.g., by linking to R

- With advanced IVA,
 - we **drill deeper** (data→selections→features→…)
 - we **read between the lines** (semantic relations)
 - we **answer complex questions** about the data

Low-level IVA of Flow Sim. Data

Multiple selections in parallel coordinates plus a time-histogram and linked volume rendering (colors according to the selections) [Akiba & Ma, 2007]
Flow Simulation Data and IVA

Data from computational simulation, e.g., CFD, is
- usually given on (large & interesting) spatial grids
 (often also time-dependent)
- often multivariate in terms of the simulated values
- based on a continuous model

Considering such data in the \(d(x) \) form
- with \(d \) being the dependent variables (the simulated variates), for ex., velocities, pressure, temperature, ...
- and \(x \) representing the independent variables, i.e., the domain of the data (usually space and time)

With IVA,
- we relate \(x \) and \(d \) (feature localization, local investigation) as well as \(d_i \) and \(d_j \) (multivariate analysis)
- we consider \(\delta(d) \), i.e., derived “views” on the data
 - either explicitly (by attribute derivation)
 - or implicitly (by advanced interaction mechanisms)
Derived “Views” (higher-level IVA) – local

- **Local** [vs. non-local (semi-local, global)] derivations
 - considering **derivatives**, e.g., wrt. space/time, incl.
 - **temporal derivatives** d_i (dd_i/dt) // Eularian view
 - **spatial derivatives** ∇d_i (dd_i/dx), in particular also the spatial velocity gradient $J=\nabla v$ (dv/dx)
 - **vector calculus** based on —", inc.
 - **divergence** $\text{div} \ v$ $(\nabla \cdot v)$
 - **rate of strain** $S = (J + J^T)/2$
 - **curl (vorticity)** ω $(\nabla \times v)$
 - **rate of rotation** $\Omega = (J - J^T)/2$
 - **local feature detectors**, e.g., based on —" [Bürger et al., 2007]
 - **vorticity magnitude** $|\omega|$ [Strawn et al., 1998]
 - **normalized helicity** [Levy et al., 1990] $H_n = \frac{\text{v} \cdot \omega}{|\text{v}| \cdot |\omega|}$
 - **Hunt’s Q** [Hunt et al., 1988] $Q = ||\Omega||^2 - ||S||^2$
 - **kinematic vorticity number** [Truesdell, '54] $N_k = ||\Omega|| / ||S||$
 - **λ_2** according to Jeong & Hussain (1995) $\lambda_2(\Omega^2 + S^2)$

Derived “Views” (higher-level IVA) – non-local

- **Non-local** (semi-local, global) derivations
 - **local neighborhoods** $P_r(x) = \{ y | |x-y|<r \}$
 - **local neighborhood statistics** [Angelelli et al., 2011], like also moving averages, for ex.
 - **stream-/streak-/pathlet statistics** (e.g., averages)
 - **local normalization**
 - **etc.**
 - **global methods**
 - **reconstructions from scale-space representation**, e.g., POD-based reconstruction [Pobitzer et al., 2011]
 - **topology-based approaches**, e.g., uncertain vector field topology [Otto et al., 2010 & 2011]
 - **integration-based approaches**, e.g., FTLE computation
Analyzing the Change over Time

To access unsteady aspects of flows, we look at **temporal changes** \(\frac{d^2 d_i}{dt^2} \), for ex., approximated by central differences, possibly computed after some temporal smoothing.

- We derive **time-step-relative normalization** (\(d_i \) normalized to \([0,1]\) per time-step, also zero-preserving).
- We allow the **interpolation of selections over time** (like in keyframe animation).
- We provide a **measure of how stationary a \(d_i \) is** (for how long it stays within an \(\varepsilon \)-neighborhood).
- We provide a **measure to capture local extrema** (both maxima of \(d_i \) as well as minima of \(d_i \)).

Unsteady Vortex Extraction with IVA

- **Going unsteady in vortex extraction:**
 - Based on the approach by Sujudi & Haimes (1995), *i.e.*, to search where \(\varepsilon \| \nabla v \) (eigenvector corresponding to the only real eigenvalue of \(\nabla v \)),
 - and a **re-formulation** [Peikert & Roth, 1999] as \(a_E \| v \) (with \(a_E = (\nabla v) \), only for \(\nabla v \) with only one real eigenvalue),
 - we can now search for all places with \(a_L \| v \) (with \(a_L = \frac{Dv}{dt} \), *i.e.*, the particle acceleration \((\nabla v)v + \frac{dv}{dt} \))
 - higher-order [Roth & Peikert, 1998] \(b_E \| v \Rightarrow b_L \| v \) \((b_L = D^2 u/dt^2) \)
Pathline Attributes and IVA

- Getting insight into flow via pathlines and their attributes
 - we compute pathlines and various pathline attributes describing their local and global behavior
 - we use IVA to explore the attribute space
 - many parameters computed – scalar and time dep.
 - multi-step analysis introduced – start with coarse pathlines, refine where necessary
 - projections of pathlines to 2D planes used for interaction

Factor Analysis of Pathline Attributes IVA

- Main problem with parameters – parameter selection
 - statistical analysis in order to select relevant parameters
 - find an universal starting set of parameters
 - six data sets analyzed (5 simulated, 1 analytical)
 - six attributes identified (1 related to shape, 1 to vortices, 4 to motion) which for a common expressive set for analysis of all data sets
Conclusions

- IVA helps to integrate the user’s and the computer’s strengths to enable exploration and analysis
- IVA is interactive and iterative
- An approach to realize semantic abstraction from data (to features, insight)
- Enables the joint analysis based on multiple perspectives, e.g., several feature detectors
- Helps with questions of different character (physical, geometric, statistical, …)
- Non-trivial integration of Eulerian and Lagrangian data for IVA

Acknowledgements

- You – thank you for your attention!
 Question?

- St. Oeltze, P. Angelelli, R. Laramee, et al.
- AVL, SimVis
- SemSeg project (funded in the context of the FET-Open scheme of FP7, #226042)