Visual Medicine: Data Acquisition and Preprocessing

Visual Computing for Medicine (VCM) University of Tübingen

bartz@gris.uni-tuebingen.de

Outline

Introduction

Basics of Medical Imaging

- Medical Imaging Techniques
- Data Pre-Processing
- Visualization and Navigation Techniques
- Visual Programming ...

Afternoon:

Advanced Topics in Visual Medicine

Discussion

New book on that topic

(check Morgan-Kaufmann booth at Vis)

Bernhard Preim/Dirk Bartz:

Visualization in Medicine

IEEE Visualization 2006

Visual Medicine: Techniques, Applications and Software

Data Acquisition using medical imaging techniques

Pre-Processing

segmentation, classification, etc.

Exploration

using visualization and navigation techniques

IEEE Visualization 2006

Visual Medicine: Techniques, Applications and Software

Medical Imaging Techniques (1)

© Siemens Medical Solutions

X-Ray

2D projection images based on absorption and scattering

- Very high resolution
- Bone/tissue contrast by selecting hard/soft radiation
- Only 2D

Medical Imaging Techniques (1)

X-Ray

2D projection images based on absorption and scattering

- Very high resolution
- Bone/tissue contrast by selecting hard/soft radiation
- Only 2D

Hand of wife of C. Röntgen

IEEE Visualization 2006

Visual Medicine: Techniques, Applications and Software

Medical Imaging Techniques (2)

© Siemens Medical Solutions

Rotational Angiography

3D volume is reconstructed from **series of X-ray** scans

- Very high resolution
- Isotropic spacing (reduces artifacts)

Medical Imaging Techniques (3)

Rotational Angiography / 3D X-Ray:

- Slice of rotational angiography dataset
- Rotation over approx.
 160°

IEEE Visualization 2006

Visual Medicine: Techniques, Applications and Software

Medical Imaging Techniques (4)

Rotational Angiography / 3D X-Ray:

• 3D Rendering

IEEE Visualization 2006

visual M Datasets at: http://www.volvis.org

© Siemens Medical Solutions

Computed Tomography (CT/CAT)

3D volume is reconstructed from X-ray projections (Spiral CT, Multi-Slice CT 4/16)

- Fast image acquisition
- High resolution
- Different reconstruction approaches

IEEE Visualization 2006

Visual Medicine: Techniques, Applications and Software

Medical Imaging Techniques (6)

Computer Tomography (CT):

- Radon-Transformation reconstructs images from projection data/-profiles
- Based on Fourier-Transformation

Medical Imaging Techniques (7)

Computer Tomography (CT):

- Spiral- und Multi-Slice CT (4,16,...)
- Cone-beam reconstruction
- Flat panel detector: 256 slices
- Pros:
 - Better radiation usage
 - Faster
 - Higher resolution
- But more expensive

© Philips Medical Systems

IEEE Visualization 2006

Visual Medicine: Techniques, Applications and Software

Medical Imaging Techniques (8)

Computer Tomography (CT):

First images from Hounsfield

Abdomen CT

Medical Imaging Techniques (9)

© Siemens Medical Solutions

Magnetic Resonance Imaging (MRI)

3D volume is reconstructed from measured proton (H_2 -nuclei) spin (1.5T, 3T, ...)

- Relatively slow image acquisition
- No ionizing radiation
- Resolution depends on magnetic field strength
- Different protocols for a variety of tissue properties

IEEE Visualization 2006

Visual Medicine: Techniques, Applications and Software

Medical Imaging Techniques (10)

Principles of MRI

- H₂ nuclei have charge (+) and "spin"
 ⇒ magnetic dipole moment
- Fixed external magnetic (B) field (1.5T, 3T, ...) causes dipole alignment and precession (like little tops)
- External radio-frequency (**RF**) pulse **resonates** with dipole precession
- Resulting rotating transverse
 magnetization received by coils
- Magnetic gradients vary Larmor frequency to encode position
- Slice images reconstructed via Fourier Transform

Magnetic Resonance Imaging/Tomography

 T2-weighted MRI-Image (3D-CISS)
 T1-weighted MRI-Image (MR-Flash)

 IEEE Visualization 2006
 Visualization 2006

Medical Imaging Techniques (12)

Functional MRI (fMRI)

- Blood flow increases to active regions of the brain saturates it with oxygen.
- Deoxyhemoglobin is paramagnetic (no O₂) and can be imaged with fMRI.
- While in scanner, subject exercises mental functions.
- This is useful in neurosurgical planning.

Functional MRI (fMRI)

- Reconstructed scanning dataset includes volumes of
 - Anatomy of brain
 - Vasculature (blood vessels)
 - Each volume for an activation area

IEEE Visualization 2006

Visual Medicine: Techniques, Applications and Software

Medical Imaging Techniques (14)

Many other imaging techniques:

- DTI Diffusion Tensor Imaging (this afternoon)
- MRS MR Spectroscopy
- MEG MagnetoEncephaloGraphy
- (3D) Ultrasound
- Positron Emission Tomography (PET)
- SPECT

• .

Volume data / stack of images:

Images are composed of image elements
 pixel (picture element)

Medical Imaging Techniques (16)

 Volumes are composed of a stack of images (image stack).

Volume elements are called voxels.

Trilinear volume interpolation:

Medical Imaging Techniques (18)

Keywords in this context:

- Volume cell or simply cell
- Voxel distance or voxel spacing
 - Pixel distance (x/y) -Distances within a slice
 - Slice distance (z) Distance between slices

Limitations of volume data

- Aliasing problems

Most image/volume artifacts can be traced back to

- violating the sampling theorem, or
- partial volume effects
- interpolation artifacts

IEEE Visualization 2006 Visual Medicine: Techniques, Applications and Software

Medical Imaging Techniques (20)

Sampling Theorem (Nyquist, Shannon):

The proper reconstruction of a signal requires a sampling of at least two times as fast (frequency) as the signal (Nyquist - Rate)

Medical Imaging Techniques (21)

Sampling Theorem:

- Sampling rate at least twice as high
- Better three times higher

IEEE Visualization 2006

Visual Medicine: Techniques, Applications and Software

Medical Imaging Techniques (22)

Partial Volume Effects:

- Basically also due to undersampling (at volume reconstruction)
- Large **intensity difference** between neighboring materials
- Sampling does not reflect high frequencies
 - Material interface artifacts (ie., holes, false connections) due to inherent

Stair case artifacts

• Normal (\vec{n}) problem in anisotropic datasets

isotropic

anisotropic

IEEE Visualization 2006

Visual Medicine: Techniques, Applications and Software

Foundations

Data Acquisition

using medical imaging techniques

Pre-Processing

segmentation, classification, etc.

Exploration

using visualization and navigation techniques

Several pre-processing operations:

- Filtering/smoothing of data
- Segmentation of structures of interest (ie., organs)
- Classification rendering parameters
- Registration of dataset with environment
- Fusion of multiple datasets of different origins (multi-modal representations)

```
IEEE Visualization 2006
```

Visual Medicine: Techniques, Applications and Software

Filtering (1)

- Volume data can be noisy
 - ➡ low-pass filter to remove/reduce noise
- Data looses accuracy
- Small features which disappear might be below Nyquist rate
- Careful filter design

Filtering (2)

IEEE Visualization 2006

Visual Medicine: Techniques, Applications and Software

Windowing (1)

3D Scanner data are usually **12-16 bits**, while volume datasets / display provide often only **8 bits**

requires windowing:

- select sub range of data
- down sample data

• inappropriate window can ruin contrast

Windowing (2)

 Different window ranges

 IEEE Visualization 2006
 Visual Medicine: Techniques, Applications and Software

Windowing (3)

Enhancing of inadequate Data (High Dynamic Range Operator)

8bit MRT CISS

8bit MRT CISS/PTR

Windowing (4)

Windowing (5)

Relative Difference

Segmentation (1)

Problem: Structures easily detected by the human eye are **difficult to specify** for a computer

- Many different segmentation approaches and variations available
- **Specific image acquisition** protocols can ease segmentation difficulties

Segmentation (2)

- Automatic segmentation frequently segments too much, or not all structures
- Manual segmentation is usually too expensive for daily practice (ie., visible human datasets)
- Semi-automatic segmentation with little interaction only: can consist of several steps

Check out: http://www.itk.org

IEEE Visualization 2006

Visual Medicine: Techniques, Applications and Software

Segmentation (3)

- Typical (and possibly most used) semiautomatic segmentation is 3D Region growing:
- specify **seed point** inside structure of interest
- specify threshold interval which describes material interfaces
- successively selects neighboring voxels until threshold interval is violated

Potential problems of 3D region growing:

- Inappropriate threshold interval
- False/missing connections due to partial volume effect or signal attenuation
- Resolution too low
- Contrast too low; good contrast: feature intensity high, surrounding intensity low

IEEE Visualization 2006

Visual Medicine: Techniques, Applications and Software

Segmentation (5)

Binary segmentation can result in bumpy appearance due to interpolation artifacts (similar to staircasing)

Add boundary to segmentation

Segmentation (6)

Which is the correct threshold interval?

IEEE Visualization 2006

Visual Medicine: Techniques, Applications and Software

Segmentation (7)

Examples of good contrast:

IEEE Visualization 2006

Examples of insufficient contrast:

MRI Flash/T1

Differentiation Differentiation ventricles / empty space corpus callosum / brain tissue

IEEE Visualization 2006

Visual Medicine: Techniques, Applications and Software

Segmentation (9)

CT Angiography:

- good bone contrast
- good angio contrast
- poor contrast of ventricles (noisy surfaces)

Segmentation (9)

CT Angiography:

- good bone contrast
- good angio contrast
- poor contrast of ventricles (noisy surfaces)

Hastreiter et al., Univ. Erlangen-Nürnberg

IEEE Visualization 2006

Visual Medicine: Techniques, Applications and Software

Segmentation (10)

LifeWire (Intelligent Scissors): [Mortensens, Barret, SIGGRAPH 1995]

- Edge/contour oriented
- Interactive approach
- Minimizes cost function
- Interprets segmentation as graph problem

LiveWire:

- Extraction of object contours
- Dijkstra's Minimal-Path-Algorithm
- Pixels \rightarrow graph nodes
- Edges are costs
- Seed point

IEEE Visualization 2006 Visual Medicine: Techniques, Applications and Software

Segmentation (12)

- Local cost function I(p,q) l(p,q)
- Total cost function of a path g(s,q)

p

a

LiveWire – Cost Function:

- •Paths of minimal costs \rightarrow object contours
- •Edge detecting methods:
 - Zero-crossing of Laplace filtered image $\rightarrow f_Z$
 - Magnitude of gradient $\rightarrow f_G$
 - Direction of gradient $\rightarrow f_D$

$$l(p,q) = \omega_z \cdot f_z(q) + \omega_G \cdot f_G(q) + \omega_D \cdot f_D(p,q)$$

zB.
$$\omega_z$$
=0.43, ω_G = 0.43, ω_D = 0.14

IEEE Visualization 2006

Visual Medicine: Techniques, Applications and Software

Segmentation (15)

LiveWire – Cost Function:

- Zero-crossing of Laplace filtered image (2. derivative) – detects contours (edges)
- Magnitude of gradient (1. derivative) contour strength
- Direction of gradient (1. derivative) –
 Smooth countours (little changes of directions)

LiveWire – Path Search

Segmentation (17)

LiveWire for Image Sequences:

- Interpolation of LiveWire contours
- Propagation of seed points

Segmentation (18)

LiveWire for Image Sequences: Interpolation

Segmentation (19)

LiveWire for Image Sequences: Interpolation

Optimization

- Projection of seed points
- Computation of LiveWire contour

Segmentation (20)

LiveWire for Image Sequences: Propagation

- Propagation of seed points
- Automatic computation of LiveWire contour

Segmentation (21)

LiveWire for Image Sequences: Propagierung

Propagation of seed points

LiveWire for Image Sequences: Propagierung

Separation lines

Segmentation (23)

Other popular segmentation approaches:

- Watershed transformation (very popular as well)
- Model-based approaches
 - Statistical shape models
 - Level-Sets
 - Physically-based models

Classification (1)

- Classification specify how data is rendered (for direct volume rendering)
- Often confused with segmentation
- Are expressed by **transfer functions**
- Are usually based on histogram: every possible scalar value is assigned to a tuple of color and opacity
- Focuses on material interfaces
- May introduce high frequencies

```
IEEE Visualization 2006
```

Visual Medicine: Techniques, Applications and Software

- Peaks indicate material interiors
- Valleys: material interfaces
- Transfer functions often emphasize interfaces more than interiors

Visible Human (foot) Female Fresh CT

Classification (2)

Classification (2)

IEEE Visualization 2006

Visual Medicine: Techniques, Applications and Software

Classification (4)

2D (joint) histograms: data value vs. gradient magnitude

[G. Kindlmann et al., 1998]

Registration (1)

- Datasets are put in context with environment
- Also referred to as matching
- Provides a **reference frame** for tools, ie., scalpels, endoscopes, etc.
- Intra-operative navigation systems register dataset with OR coordinate system

IEEE Visualization 2006

Visual Medicine: Techniques, Applications and Software

Registration (2)

- Usually an optimization problem
- Optimized are
 - Mutual information (entropy) or
 - Landmark matching
- The more data points, the higher the accuracy

- Rigid registration: linear transformations (translations, scaling, rotations, ...) of data volume/images (2D or 3D)
 - Rigid: Translation, Rotation
 - Affine: Translation, Rotation, Scaling, ...
- Non-rigid registration: non-linear deformations of data volume; usually only 3D
- Check: http://www.image-registration.com and http://www.itk.org

```
IEEE Visualization 2006
```

Visual Medicine: Techniques, Applications and Software

Registration (4)

Registration of aerial photography

Translation and rotation

Registration (5)

• The more sample points, the better the accuracy

image source: http://??? IEEE Visualization 2006 Visual Medicine: Techn

Registration (6)

Registration can be very simple:

Visual Medicine: Technique

Registration can be very simple:

- Only vertical translation and scaling
- Patient movement negligible

IEEE Visualization 2006

Visual Medicine: Techniques, Applications and Software

Registration (8)

Most clinically used registration approaches (all rigid):

- Landmark-based matching
- Point cloud matching (Iterative Closest Point ICP)

Data Fusion (1)

- Combined representation of different datasets
- Usually requires registration
- Datasets can be from different modalities (ie., CT, MRI, rotational angiography, ...)
- Can be from different sources: Fully segmented/annotated medical atlas and patient datasets

IEEE Visualization 2006 Visual Medicine: Techniques, Applications and Software

Data Fusion (2)

Consider rendering parameters how to incorporate data from different sources:

- (Relatively) simple for surfaces
- Difficult for accumulative volume rendering