Introduction to Visua Medicine: Techniques, Applications and Software

Data Acquisition and Preprocessing

Dirk Bartz

Visual Computing (ICCAS), University of Leipzig dirk.bartz@iccas.de

Outline

Introduction

Medical Imaging Techniques

Data Pre-Processing

Visualization and Navigation Techniques

Visual Programming

Medical Visualization in Radiology

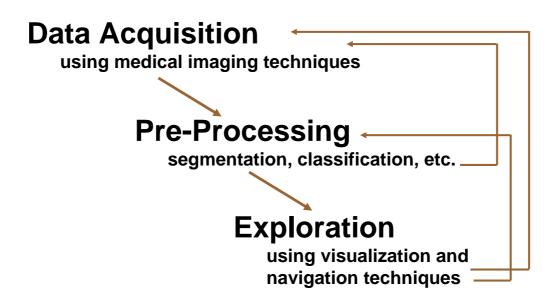
Visualization in Clinical Practice - A Vendor's Perspective

Afternoon: Advanced Visual Medicine

New book on that topic

(check Morgan-Kaufmann booth in the exhibition)

Bernhard Preim/Dirk Bartz:


Visualization in Medicine

IEEE Visualization 2007

Introduction to Visual Medicine

Basics

Data Acquisition

using medical imaging techniques

Pre-Processing

segmentation, classification, etc.

Exploration

using visualization and navigation techniques

IEEE Visualization 2007

Introduction to Visual Medicine

Medical Imaging Techniques (1)

© Siemens Medical Solutions

X-Ray

2D projection images based on absorption and scattering

- Very high resolution
- Bone/tissue contrast by selecting hard/soft radiation
- Only 2D

Medical Imaging Techniques (1)

X-Ray

2D projection images based on absorption and scattering

- Very high resolution
- Bone/tissue contrast by selecting hard/soft radiation
- Only 2D

Hand of wife of C. Röntgen

IEEE Visualization 2007

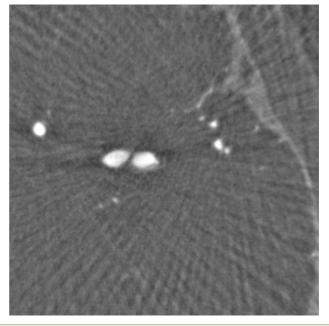
Introduction to Visual Medicine

Medical Imaging Techniques (2)

© Siemens Medical Solutions

Rotational Angiography

3D volume is reconstructed from series of X-ray scans


- Very high resolution
- Isotropic spacing (reduces artifacts)

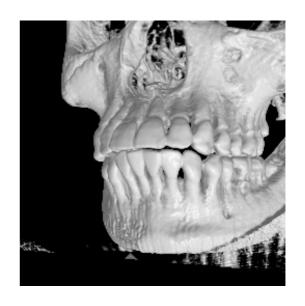
Medical Imaging Techniques (3)

Rotational Angiography / 3D X-Ray:

- Slice of rotational angiography dataset
- Rotation over approx.
 160°

IEEE Visualization 2007

Introduction to Visual Medicine


Medical Imaging Techniques (4)

Rotational Angiography / 3D X-Ray:

• 3D Rendering

Datasets at: http://www.volvis.org

Medical Imaging Techniques (5)

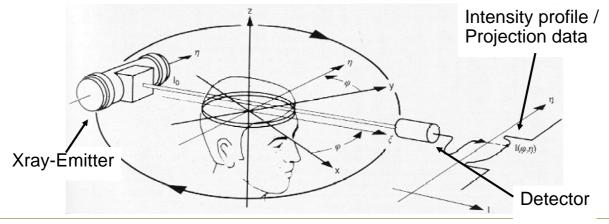
© Siemens Medical Solutions

Computed Tomography (CT/CAT)

3D volume is reconstructed from X-ray projections (Spiral CT, Multi-Slice CT 4/16, 64, FlatPanel)

- Fast image acquisition
- High resolution
- Different reconstruction approaches

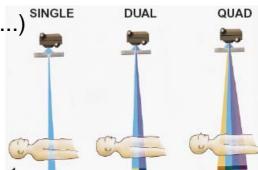
IEEE Visualization 2007


Introduction to Visual Medicine

Medical Imaging Techniques (6)

Computer Tomography (CT):

- Radon-Transformation reconstructs images from projection data/-profiles
- Based on Fourier-Transformation

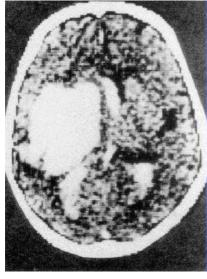


Medical Imaging Techniques (7)

Computer Tomography (CT):

- Spiral- und Multi-Slice CT (4,16,...) SING
- Cone-beam reconstruction
- Flat panel detector: 256 slices
- Pros:
 - Better radiation usage
 - Faster
 - Higher resolution
- But more expensive

© Philips Medical Systems


IEEE Visualization 2007

Introduction to Visual Medicine

Medical Imaging Techniques (8)

Computer Tomography (CT):



First images from Hounsfield

Abdomen CT

Medical Imaging Techniques (9)

© Siemens Medical Solutions

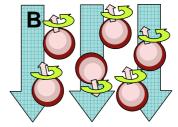
Magnetic Resonance Imaging (MRI)

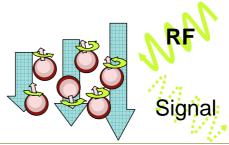
3D volume is reconstructed from measured proton (H₂-nuclei) spin (1.5T, 3T, ...)

- Relatively slow image acquisition
- No ionizing radiation
- Resolution depends on magnetic field strength
- Different protocols for a variety of tissue properties

IEEE Visualization 2007

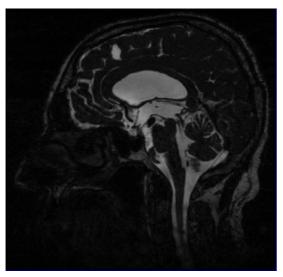
Introduction to Visual Medicine


Medical Imaging Techniques (10)


VISC. 2007 JEEE VISUALIZATION

Principles of MRI

- H₂ nuclei have charge (+) and "spin"
 ⇒ magnetic dipole moment
- Fixed external magnetic (B) field (1.5T, 3T, ...) causes dipole alignment and precession (like little tops)
- External radio-frequency (RF) pulse resonates with dipole precession
- Resulting rotating transverse magnetization received by coils
- Magnetic gradients vary Larmor frequency to encode position
- Slice images reconstructed via Fourier Transform



Medical Imaging Techniques (11)



Magnetic Resonance Imaging/Tomography

T2-weighted MRI-Image (3D-CISS)

Sagittal Orientation

T1-weighted MRI-Image (MR-Flash)

IEEE Visualization 2007

Introduction to Visual Medicine

Medical Imaging Techniques (12)

Functional MRI (fMRI)

- Blood flow increases to active regions of the brain saturates it with oxygen.
- Deoxyhemoglobin is paramagnetic (no O₂) and can be imaged with fMRI.
- While in scanner, subject exercises mental functions.
- This is useful in neurosurgical planning.

Medical Imaging Techniques (13)

Functional MRI (fMRI)

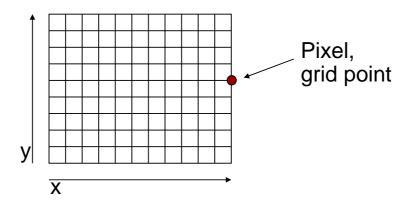
- Reconstructed scanning dataset includes volumes of
 - Anatomy of brain
 - Vasculature (blood vessels)
 - Each volume for an activation area

IEEE Visualization 2007

Introduction to Visual Medicine

Medical Imaging Techniques (14)

Many other imaging techniques:

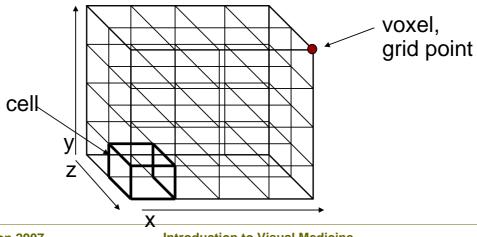

- DTI Diffusion Tensor Imaging (this afternoon)
- MRS MR Spectroscopy
- MEG MagnetoEncephaloGraphy
- (3D) Ultrasound
- Positron Emission Tomography (PET)
- SPECT
- ...

Medical Imaging Techniques (15)

Volume data / stack of images:

•Images are composed of image elements pixel (picture element)

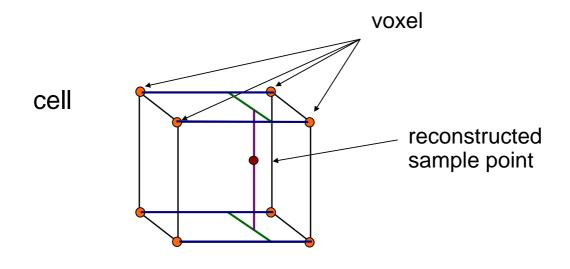
IEEE Visualization 2007


Introduction to Visual Medicine

Medical Imaging Techniques (16)

 Volumes are composed of a stack of images (image stack).

Volume elements are called voxels.


IEEE Visualization 2007

Introduction to Visual Medicine

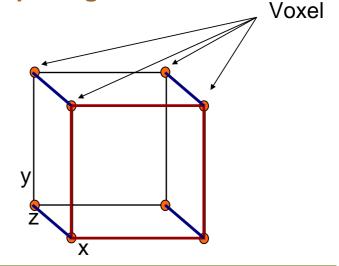
Medical Imaging Techniques (17)

Trilinear volume interpolation:

IEEE Visualization 2007

Introduction to Visual Medicine

Medical Imaging Techniques (18)



Keywords in this context:

- Volume cell or simply cell
- Voxel distance or voxel spacing

Pixel distance (x/y) - Distances within a slice

Slice distance (z) – Distance between slices

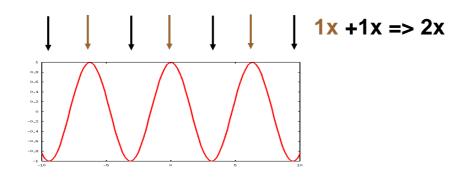
Medical Imaging Techniques (19)

Limitations of volume data - Aliasing problems

Most image/volume artifacts can be traced back to

- violating the sampling theorem, or
- partial volume effects
- interpolation artifacts

IEEE Visualization 2007


Introduction to Visual Medicine

Medical Imaging Techniques (20)

Sampling Theorem (Nyquist, Shannon):

The proper reconstruction of a signal requires a sampling of at least two times as fast (frequency) as the signal (Nyquist - Rate)

Medical Imaging Techniques (21)

Sampling Theorem:

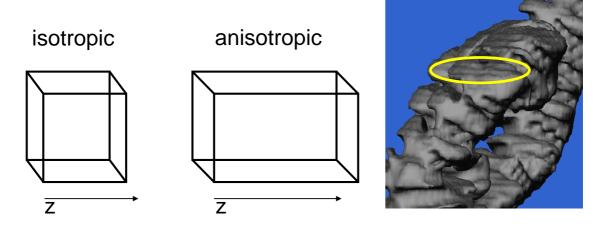
- Sampling rate at least twice as high
- Better three times higher

IEEE Visualization 2007

Introduction to Visual Medicine

Medical Imaging Techniques (22)

Partial Volume Effects:


- Basically also due to undersampling (at volume reconstruction)
- Large intensity difference between neighboring materials
- Sampling does not reflect high frequencies
 - → Material interface artifacts (ie., holes, false connections) due to inherent smoothing

Medical Imaging Techniques (23)

Stair case artifacts

Normal (n
) problem in anisotropic datasets

IEEE Visualization 2007

Introduction to Visual Medicine

Foundations

Data Acquisition

using medical imaging techniques

Pre-Processing

segmentation, classification, etc.

Exploration

using visualization and navigation techniques

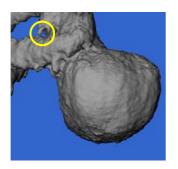
Data Pre-Processing

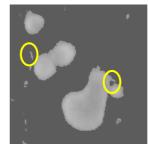
Several pre-processing operations:

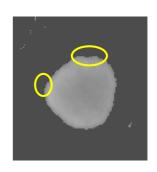
- Filtering/smoothing of data
- Segmentation of structures of interest (ie., organs)
- Classification rendering parameters
- Registration of dataset with environment
- Fusion of multiple datasets of different origins (multi-modal representations)

IEEE Visualization 2007

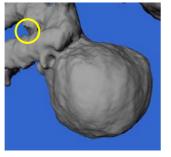
Introduction to Visual Medicine

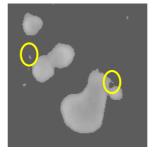

Filtering (1)

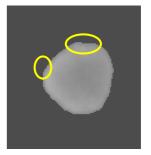


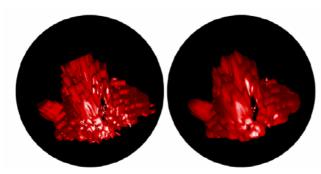

- Volume data can be noisy
 - → low-pass filter to remove/reduce noise
- Data looses accuracy
- Small features which disappear might be below Nyquist rate
- Careful filter design
- Alternatives: Umbrella Operators

Filtering (2)








IEEE Visualization 2007

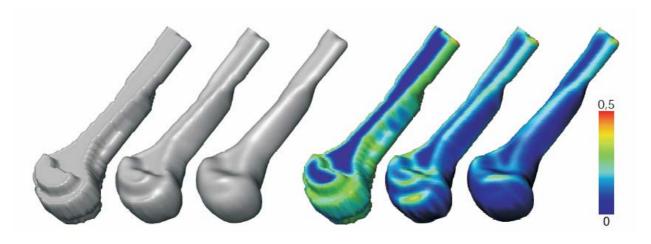
Introduction to Visual Medicine

Filtering (3)

Smoothing

A. Neubauer, IEEE Vis 2004

MR Data 3D Vis R. Bade, Univ., Magdeburg

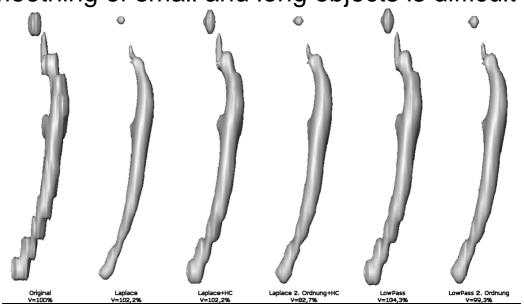


Image

Filtering (4)

Smoothing and Curvature Plot (Original, local low-pass, extended low-pass)

R. Bade, Univ., Magdeburg


IEEE Visualization 2007

Introduction to Visual Medicine

Filtering (5)

Smoothing of small and long objects is difficult

R. Bade, Univ., Magdeburg

Windowing (1)

3D Scanner data are usually **12-16 bits**, while volume datasets / display provide often only **8 bits**

- requires windowing:
- select sub range of data
- \rightarrow

down sample data

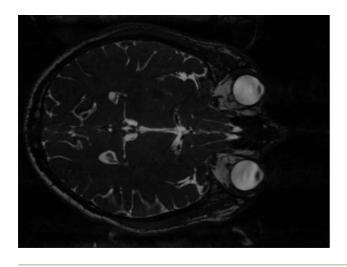
inappropriate window can ruin contrast

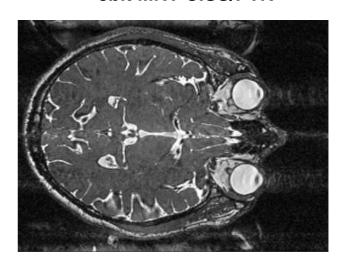
IEEE Visualization 2007

Introduction to Visual Medicine

Windowing (2)

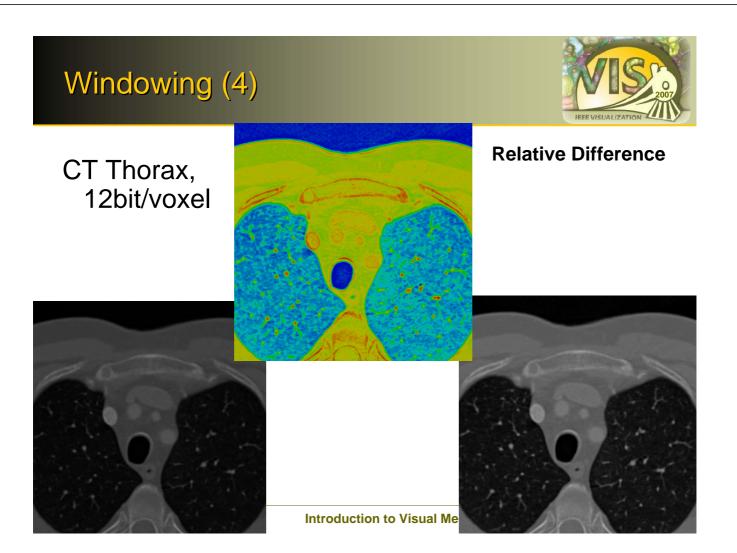
Different window ranges

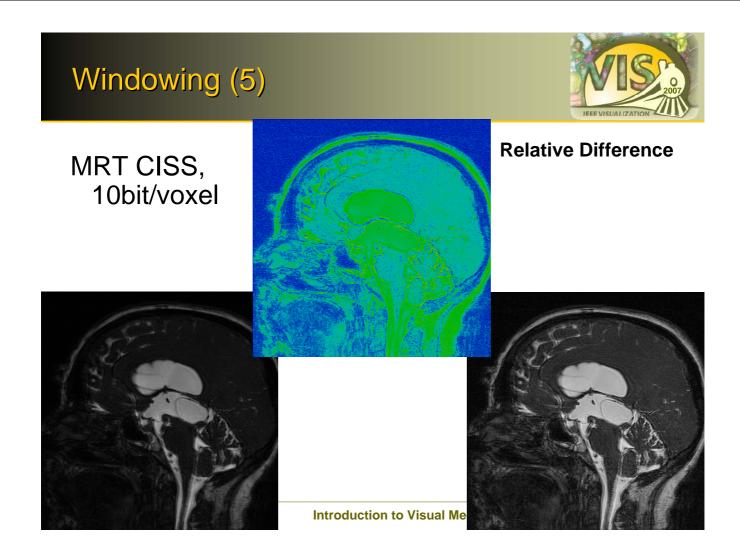

Windowing (3)

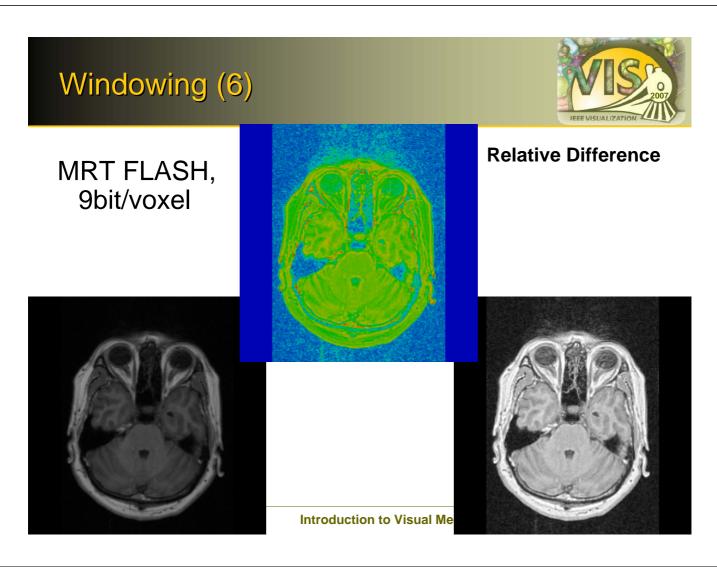


Enhancing of inadequate Data (High Dynamic Range Operator)

8bit MRT CISS


8bit MRT CISS/PTR





IEEE Visualization 2007

Introduction to Visual Medicine

Segmentation (1)

Problem: Structures easily detected by the human eye are difficult to specify for a computer

- Many different segmentation approaches and variations available
- Specific image acquisition protocols can ease segmentation difficulties

IEEE Visualization 2007

Introduction to Visual Medicine

Segmentation (2)

- Automatic segmentation frequently segments too much, or not all structures
- Manual segmentation is usually too expensive for daily practice (ie., visible human datasets)
- Semi-automatic segmentation with little interaction only: can consist of several steps

Check out: http://www.itk.org

Segmentation (3)

Typical (and possibly most used) semiautomatic segmentation is 3D Region growing

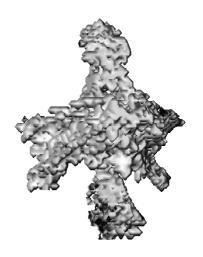
- specify seed point inside structure of interest
- specify threshold interval which describes material interfaces
- successively selects neighboring voxels until threshold interval is violated

IEEE Visualization 2007

Introduction to Visual Medicine

Segmentation (4)

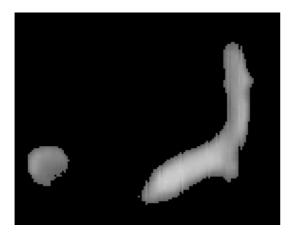
Potential problems of 3D region growing:


- Inappropriate threshold interval
- False/missing connections due to partial volume effect or signal attenuation
- Resolution too low
- Contrast too low; good contrast: feature intensity high, surrounding intensity low

Segmentation (5)

Binary segmentation can result in bumpy appearance due to interpolation artifacts (similar to staircasing)

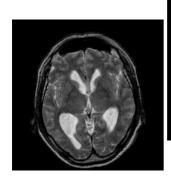
 Add boundary to segmentation
 See also filtering.

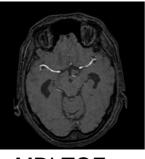

IEEE Visualization 2007

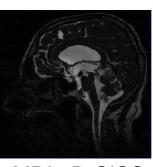
Introduction to Visual Medicine

Segmentation (6)

Which is the correct threshold interval?




Segmentation (7)


Examples of good contrast:

MRI TSE: Fluid filled cavities

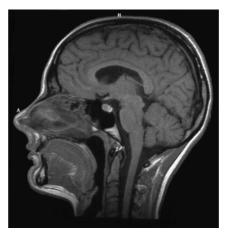
MRI TOF: blood vessels

MRI 3D CISS: Fluid filled cavities

Rot. Angiography contrast agent enhanced cavities

IEEE Visualization 2007

Introduction to Visual Medicine


Segmentation (8)

Examples of insufficient contrast:

Differentiation

Differentiation ventricles / empty space corpus callosum / brain tissue


MRI Flash/T1

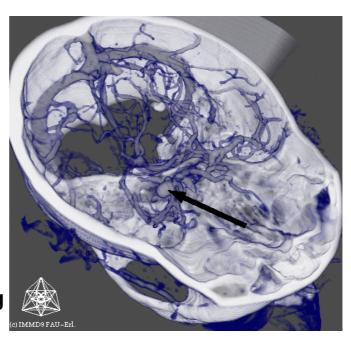
Segmentation (9)

CT Angiography:

- good bone contrast
- good angio contrast-
- poor contrast of ventricles (noisy surfaces)

IEEE Visualization 2007

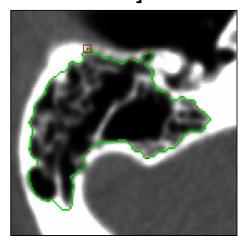
Introduction to Visual Medicine


Segmentation (9)

CT Angiography:

- good bone contrast
- good angio contrast
- poor contrast of ventricles (noisy surfaces)

Hastreiter et al., Univ. Erlangen-Nürnberg

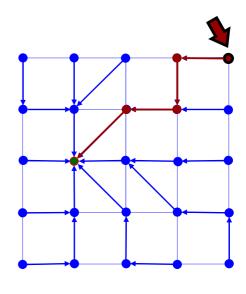


Segmentation (10)

LifeWire (Intelligent Scissors) [Mortensens, Barret, SIGGRAPH 1995]

- Edge/contour oriented
- Interactive approach
- Minimizes cost function
- Interprets segmentation as graph problem

IEEE Visualization 2007

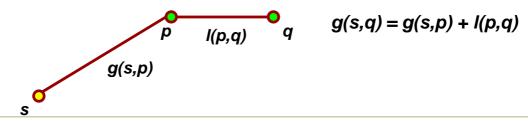

Introduction to Visual Medicine

Segmentation (11)

LiveWire

- Extraction of object contours
- Dijkstra's Minimal-Path-Algorithm
- Pixels → graph nodes
- Edges are costs
- Seed point

Segmentation (12)



LiveWire – Cost Function

Local cost function I(p,q)

Total cost function of a path g(s,q)

IEEE Visualization 2007

Introduction to Visual Medicine

Segmentation (13)

LiveWire - Cost Function

- Paths of minimal costs → object contours
- Edge detecting methods:
 - Zero-crossing of Laplace filtered image $\rightarrow f_{7}$
 - Magnitude of gradient $\rightarrow f_G$
 - Direction of gradient $\rightarrow f_D$

$$l(p,q) = \omega_{z} \cdot f_{z}(q) + \omega_{G} \cdot f_{G}(q) + \omega_{D} \cdot f_{D}(p,q)$$

zB.
$$\omega_z$$
=0.43, ω_G = 0.43, ω_D = 0.14

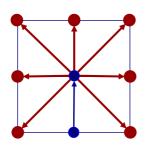
Segmentation (15)

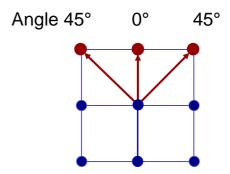
LiveWire – Cost Function

- Zero-crossing of Laplace filtered image
 (2. derivative) detects contours (edges)
- Magnitude of gradient (1. derivative) contour strength
- Direction of gradient (1. derivative) –
 Smooth countours (little changes of directions)

IEEE Visualization 2007

Introduction to Visual Medicine


Segmentation (16)



LiveWire - Path Search

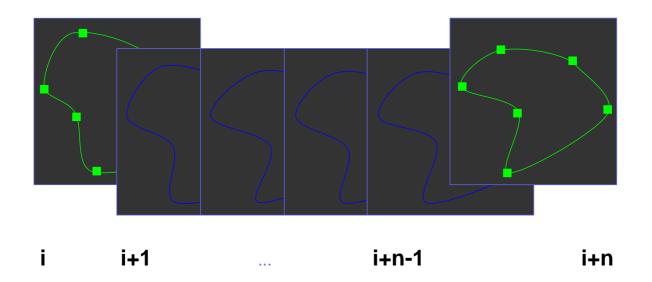
Full Path Search

Limited Path Search

Segmentation (17)

LiveWire for Image Sequences

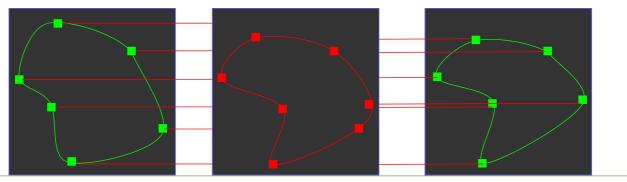
- Interpolation of LiveWire contours
- Propagation of seed points


IEEE Visualization 2007

Introduction to Visual Medicine

Segmentation (18)

LiveWire for Image Sequences: Interpolation

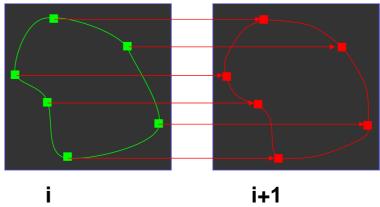

Segmentation (19)

LiveWire for Image Sequences: Interpolation

Optimization

- Projection of seed points
- Computation of LiveWire contour

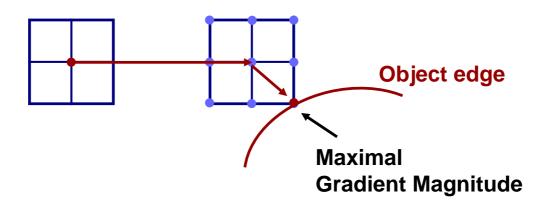
IEEE Visualization 2007


Introduction to Visual Medicine

Segmentation (20)

LiveWire for Image Sequences: Propagation

- Propagation of seed points
- Automatic computation of LiveWire contour

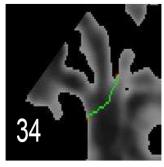


Segmentation (21)

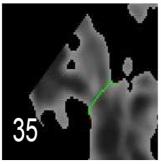
LiveWire for Image Sequences: Propagierung

Propagation of seed points

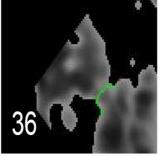
IEEE Visualization 2007


Introduction to Visual Medicine

Segmentation (22)



LiveWire for Image Sequences: Propagierung


Separation lines

1st Separation line is generated interactively (using live-wire)

Control points are propagated to the next slices to generate new separation lines

37

Unlike interpolation, propagation is applicable to open contours

Segmentation (23)

Other popular segmentation approaches

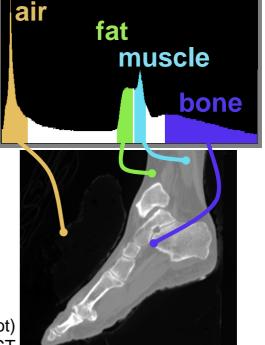
- Watershed transformation (very popular as well)
- Model-based approaches
 - Statistical shape models
 - Level-Sets
 - Physically-based models

IEEE Visualization 2007

Introduction to Visual Medicine

Classification (1)

- Classification specify how data is rendered (for direct volume rendering)
- Often confused with segmentation
- Are expressed by transfer functions
- Are usually based on histogram: every possible scalar value is assigned to a tuple of color and opacity
- Focuses on material interfaces
- May introduce high frequencies

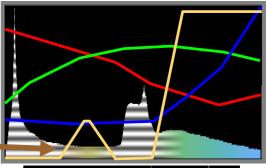

Classification (2)

Example of transfer function

- Histogram:
- Peaks indicate material interiors
- Valleys: material interfaces
- Transfer functions often emphasize interfaces more than interiors

Visible Human (foot) Female Fresh CT

IEEE Visualization 2007


Introduction to Visual Medicine

Classification (2)

Example of transfer function

- Histogram
- Opacity

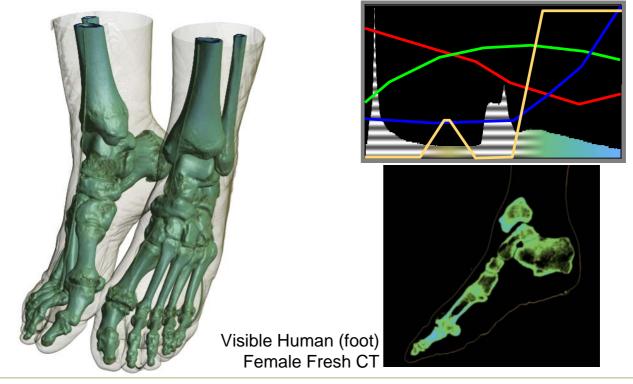
Visible Human (foot) Female Fresh CT

Classification (2)

Example of transfer function

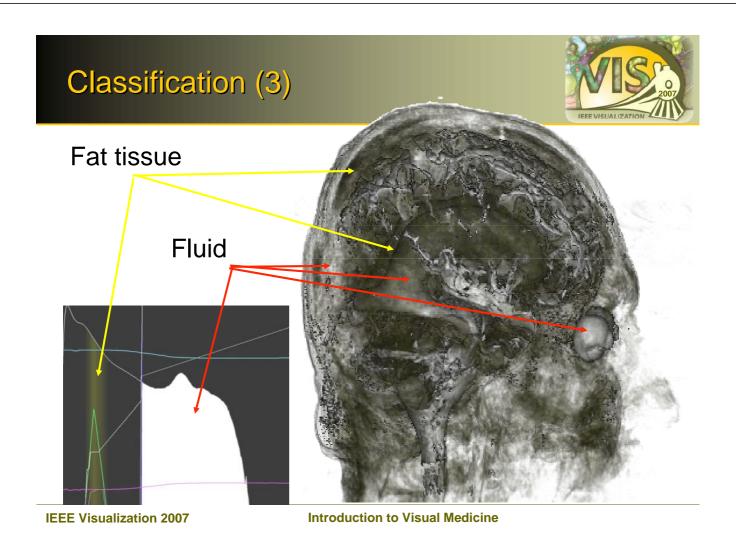
- Histogram
- Opacity
- RGB channels

Visible Human (foot) Female Fresh CT


IEEE Visualization 2007

Introduction to Visual Medicine

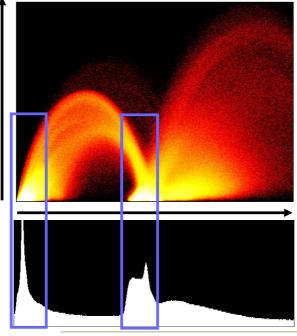
Classification (2) Example of transfer function • Histogram • Opacity • RGB channels • Resulting Color Visible Human (foot) Female Fresh CT


Classification (2)

IEEE Visualization 2007

Introduction to Visual Medicine

Classification (4)



2D (joint) histograms: data value vs. gradient magnitude

gradient magnitude

2D domain may better distinguish between materials and interfaces

data (CT) value

(more details this afternoon)

[G. Kindlmann et al., 1998]

Introduction to Visual Medicine

Registration (1)

- Datasets are put in context with environment
- Also referred to as matching
- Provides a reference frame for tools, ie., scalpels, endoscopes, etc.
- Intra-operative navigation systems register dataset with OR coordinate system

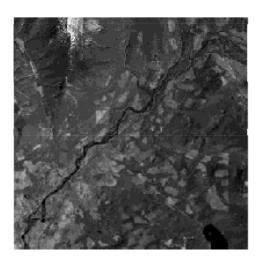
Registration (2)

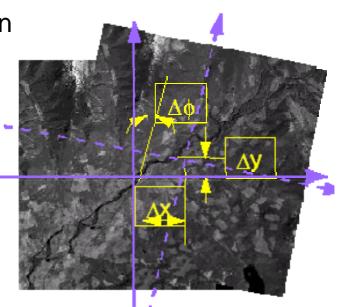
- Usually an optimization problem
- Optimized are
 - Mutual information (entropy) or
 - Landmark matching
- The more data points, the higher the accuracy

IEEE Visualization 2007

Introduction to Visual Medicine

Registration (3)


- Rigid registration: linear transformations (translations, scaling, rotations, ...)
 of data volume/images (2D or 3D)
 - Rigid: Translation, Rotation
 - Affine: Translation, Rotation, Scaling, ...
- Non-rigid registration: non-linear deformations of data volume; usually only 3D
- Check: http://www.image-registration.com and http://www.itk.org


Registration (4)

Registration of aerial photography

Translation and rotation

IEEE Visualization 2007

Introducimages source: in http://lis1.iis.sinica.edu.tw

Registration (5)

VIS 2007
JEEE VISUALIZATION

The more sample points, the better the accuracy

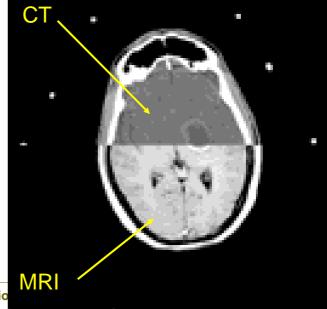
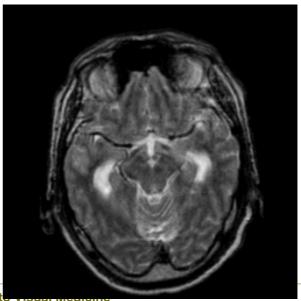
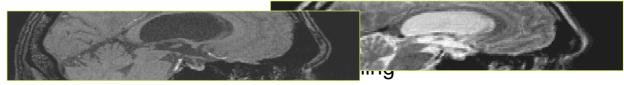


image source: http://???
IEEE Visualization 2007


Introduction

Registration (6)

Registration can be very simple:



Registration (7)

Registration can be very simple:

Patient movement negligible

Registration (8)

Most clinically used registration approaches (all rigid):

- Landmark-based matching
- Point cloud matching (Iterative Closest Point ICP)

IEEE Visualization 2007

Introduction to Visual Medicine

Data Fusion (1)

- Combined representation of different datasets
- Usually requires registration
- Datasets can be from different modalities (ie., CT, MRI, rotational angiography, ...)
- Can be from different sources:
 Fully segmented/annotated medical atlas and patient datasets

Data Fusion (2)

Consider rendering parameters how to incorporate data from different sources:

- (Relatively) simple for surfaces
- Difficult for accumulative volume rendering

IEEE Visualization 2007

Introduction to Visual Medicine