Visual Programming for Prototyping of Medical Imaging Applications

Felix Ritter, MeVis Research Bremen, Germany

Overview

- Introduction to MeVisLab
- Visual Programming
- Image Processing / VIsualization Examples
- VTK / ITK Integration
- MeVisLab SDK Features
- GUI Scripting

Prototyping in Medical Imaging Research

Innovation in clinical medical imaging requires close communication between...

Clinical users

Prototyping serves as a common language!

IEEE Visualization 2007

Visual Programming of Medical Imaging Applications

3

MeVisLab Prototyping Platform

MeVisLab is:

- Medical Image Processing and Visualization Platform
- Research and Development Tool
- Rapid Application Prototyping Environment
- Cross-platform (Windows, Mac OS X, Linux)
- Free for non-commercial usage

Related Visualization Platforms

- Amira
- Analyze
- AVS Express
- ▶ IBM Data Explorer/OpenDX
- Khoros/VisQuest
- LONI
- **▶** SCIRun

) ...

IEEE Visualization 2007

Visual Programming of Medical Imaging Applications

5

MeVisLab Development Platform

Research and development in MeVisLab ...

... on the module level

- · Powerful toolbox libraries
- Efficient Interfaces

- Flexibility and modularity
- Module toolbox

... on the application level

 Interactive, efficient application framework

Different application development interfaces at different levels:

IEEE Visualization 2007

Visual Programming of Medical Imaging Applications

7

Different application development interfaces at different levels:

Individual image processing modules are combined to powerful networks using a graphical user interface

Different application development interfaces at different levels:

Each image processing module can be controlled using its own parameter panel

IEEE Visualization 2007

Visual Programming of Medical Imaging Applications

SimpleView2D

9

Different application development interfaces at different levels:

An application prototype is designed using a powerful scripting language

Available Modules

- 450 Image Processing Modules
- ▶ 300 Open Inventor Modules
- ▶ 400 Macro Modules
- ▶ 300 ITK Modules
- ▶ 1000 VTK Modules

IEEE Visualization 2007

Visual Programming of Medical Imaging Applications

11

Image Processing

- MeVis Image Processing Library (ML)
- Page oriented and request driven
- Priority controlled caching
- General image concept:
 - Various data types (int, float, complex, tensors)
 - x/y/z/color/time/user dimensions
- Medical image properties:
 - DICOM coordinate system and tags
- C++ Interface and Wizard available for integration of new algorithms

Image Processing

- Filters
 - Diffusion filters
 - Morphology filters
 - Kernel filters
- Segmentation
 - Region growing
 - Live wire
 - Fuzzy connectedness
 - Threshold
 - Manual contours
- Transformations
 - Affine transformations
 - Distance transformations

- Radon transform
- Manual registration
- Statistics
 - Histograms
 - Global image statistics
 - Box counting dimension
- Other
 - Unary/binary arithmetic
 - Resampling/reformatting
 - Oblique and curved MPR
 - Dynamic data analysis
 - Noise/test pattern generators

IEEE Visualization 2007

Visual Programming of Medical Imaging Applications

13

Open Inventor (OIV)

- Direct Open Inventor node support
- Open Inventor:
 - Scene graph paradigm
 - Object, rendering, transformation, property, ... nodes
 - Based on OpenGL
 - Well documented
- Extensions to support 2D image viewing/manipulation
- Mixed ML/Open Inventor modules
- www.mevislab.de/inventor

Open Inventor Scene Graph

- Scene objects are represented by nodes
- Size and position is defined by transformation nodes
- A rendering node represents the root of the scene graph

IEEE Visualization 2007

Visual Programming of Medical Imaging Applications

15

2D Viewers

- Modular 2D Viewer Library (SoView2D)
- Hardware accelerated using textures and shaders
- Supports interactive LUT even on large images
- Extension mechanism supports:
 - Overlays
 - Markers
 - ROIs
 - Contours
 - User extensions can add drawing and event handling

Volume Rendering

- Advanced Volume Rendering modules
 - MIP, DVR, Shaded DVR
 - Tone Shading, Silhouette and Boundary Enhancement
 - Tagged/Labeled Objects
 - Per Object Shading
 - Large data visualization via multi-resolution data octree

IEEE Visualization 2007

Visual Programming of Medical Imaging Applications

17

Volume Rendering Examples

Prototyping GLSL Shaders

- Support for OpenGL Shading Language
- Enables prototyping of advanced visualization / image processing algorithms
- Textures are loaded using ML image pipeline
- Support for OpenGL framebuffer objects
- Textures may be loaded from the graphics card and directed into the ML image pipeline

IEEE Visualization 2007

Visual Programming of Medical Imaging Applications

19

Prototyping GLSL Shaders

Simple volume ray casting using GLSL shader framework

Winged Edge Mesh Library (WEM)

- Data structure proposed by Baumgart, 1975
- Mesh consists of Nodes, Edges and Faces
- Dense pointer structure of incident primitives
- Fast access to neighboring structures

Pointer links in a neighborhood:

IEEE Visualization 2007

Visual Programming of Medical Imaging Applications

21

WEM Modules Overview

- Generation:
 - WEMIsoSurface
- Processing:
 - WEMCollapseEdges
 - WEMSmooth
 - WEMPurge
 - WEMClip
 - ...

- Rendering:
 - SoWEMRenderer
 - Different Render Modes
 - Optional Coloring by LUT Values

... and many more, type in 'WEM' in the search field.

WEM Screenshots

Network with iso surface generation and polygon reduction

A liver surface colored by a LUT in bone context

IEEE Visualization 2007

Visual Programming of Medical Imaging Applications

23

Contour Segmentation Objects (cso)

- CSO library provides data structures and modules for interactive or automatic generation of contours in voxel images
- Contours can be analyzed, maintained, grouped and converted back into a voxel image
- Contours may "communicate" with each other
- Contours can be displayed in 2D and 3D
- CSOs are 3D objects (world coordinates)
- CSOGroups group contours which share a set of attributes

Contour Segmentation Objects

 CSO consists of a number of seed points and a number of path point lists

IEEE Visualization 2007

Visual Programming of Medical Imaging Applications

25

CSO Modules Overview

- Generation (without interaction):
 - CSOIsoGenerator
- Processing (with interaction):
 - CSOFreehandProcessor
 - CSOLiveWireProcessor
 - CSOIsoProcessor
 - CSOBulgeProcessor
 - ...
- Rendering
 - SoView2DCSOEditor
 - SoCSO3DVis

- Misc
 - CSOConvertToImage
 - CSOConvertTo3DMask
 - CSOFilter
 - CSOManager
 - CSOLoad / CSOSave
 - ..

... and many more, type in 'CSO' in the search field.

CSO Screenshot

Visualizing a contour in 2D slices and within a 3D volume rendering

IEEE Visualization 2007

Visual Programming of Medical Imaging Applications

27

DICOM Support

- Import of 2D/3D/4D DICOM datasets
- MeVisLab DICOM Service runs as Windows Service or UNIX Daemon and receives data from PACS even when user is logged out
- Export of DICOM slices to disk
- DICOM-Store allows to send data to PACS

ITK Wrapper

- ITK Insight Toolkit (www.itk.org)
- Open Source Library for Medical Image Processing and Registration
- about 200 Modules for Standard Image Processing such as
 - Image Arithmetics
 - · Kernel-based and Diffusion Filtering
 - Levelset and Segmentation Filtering
 - Warping, Resampling Filters
- about 90 Modules Registration-Related Algorithms
 - Interpolators
 - Metrics
 - Optimizers
 - Transformations
- A few hundred other classes such as functions etc.

IEEE Visualization 2007

Visual Programming of Medical Imaging Applications

20

ITK Book Examples

ITK Book Example

www.itk.org/ltkSoftwareGuide.pdf www.mevislab.de/index.php?id=35

Corresponding Website (screenshots generated with MeVisLab)

MeVisLab Network

Visual Programming of Medical Imaging Applications

ITK Example

Smooth integration with ML image processing

⇒ ITK modules behave like normal ML modules

Each filter has additional controls for:

- Clamping of image values
- Min / Max setting
- Update / Apply handling

IEEE Visualization 2007

Visual Programming of Medical Imaging Applications

31

VTK Wrapper

- VTK Visualization Toolkit (www.vtk.org)
- Visualization, Image Processing and Filtering Library for images, meshes, grids, data sets etc.
- about 1000 Modules for
 - 2D/3D Image Processing
 - Grid, Mesh, Surface, and Data Filtering
 - Pickers
 - Properties and Actors
 - Mappers
 - Renderers, Widgets, Viewers
 - · Sources, Readers and Writers
 - Transformations

VTK Example 1: Contour Filter

IEEE Visualization 2007

Visual Programming of Medical Imaging Applications

33

VTK Example 2: VTK / OIV mix

SoVTK module allows VTK rendering as part of an Open Inventor scene graph

Automatic wrapper generation

- The ITK and VTK libraries are integrated into MeVisLab using a generic wrapping approach
- This approach facilitates updates to new library versions and makes almost all algorithms of ITK/ VTK instantly available
- Other platforms do this wrapping manually and offer a less extensive ITK/VTK integration

IEEE Visualization 2007

Visual Programming of Medical Imaging Applications

35

MeVisLab SDK

- Allows to extend MeVisLab with
 - ML Modules
 - Open Inventor Modules
 - Macro Modules
 - ITK and VTK Modules
- Efficient user interface development
- JavaScript / Python scripting languages

Scripting (MDL)

- User interfaces are created with the "Module Definition Language" (MDL)
- Abstract hierarchical GUI language
- Interpreted at run-time, allows rapid prototyping
- www.mevislab.de/fileadmin/docs/html/mdl/

IEEE Visualization 2007

Visual Programming of Medical Imaging Applications

GUI Scripting Example

Graphical User Interface

Schematic Representation

MDL Script

IEEE Visualization 2007

Visual Programming of Medical Imaging Applications

Application Prototyping

- Hide network complexity
- Design user interfaces
- Scripting for dynamic components

IEEE Visualization 2007

Visual Programming of Medical Imaging Applications

39

JavaScript / Python Integration

- Scripting can be used to program dynamic behaviour both on network and user interface level
 - Adding modules at run-time
 - Parameter computations and synchronization
 - Dynamic user interfaces
 - External processes
- JavaScript / Python bindings are available
- www.mevislab.de/fileadmin/docs/html/script/

Summary

- MeVisLab allows to learn about Medical Imaging and Visualization without C++ knowledge
- Visual Programming allows easy exploration of algorithms
- Open Inventor, ITK and VTK integrations offer a vast amount of available modules

IEEE Visualization 2007

Visual Programming of Medical Imaging Applications

41

Getting MeVisLab

- Get your free copy of MeVisLab at: www.mevislab.de
- The examples from this presentation are available at: www.mevislab.de/vis2007/

Licensing

- MeVisLab is free for non-commercial usage
- Many algorithms presented in this tutorial can be explored with the free edition of MeVisLab
- Full MeVisLab SDK is available at academic and commercial rates
 - Evaluation version available

IEEE Visualization 2007

Visual Programming of Medical Imaging Applications

43

Acknowledgments

I would like to thanks my colleagues at MeVis Research for their contributions to this presentation:

T. Boskamp, O. Konrad, F. Link, J. Rexilius and W. Spindler