

Intra-operative Navigation and Medical Mixed Reality

Dirk Bartz

Visual Computing (ICCAS), University of Leipzig

dirk.bartz@iccas.de

Outline

PEEP VISUALIZATION

Advanced Visual Medicine

- Introduction
- Intra-operative Navigation and Medical Mixed Reality
- Integration of Simulation and Visualization for Surgical Planning
- Diffusion Tensor Imaging Visualization Techniques and Applications
- Visual Analysis of Perfusion Data
- Surface-based Vessel Visualization
- Fast Tagged Multi-Res Volume Rendering

Image-guided Surgery (1)

- Image-guided Surgery (IGS)
- Tracks instruments during intervention
- Representation of instruments in patient dataset
- Requires tracking technique
 - Magnetic tracking
 - Interference with metallic objects
 - Small magnetic field
 - Complex setup
 - + Does not require line-of-sight
 - + Can track (invisible) tip of instrument

[Image: NDI Aurora]

IEEE Visualization 2007

Advanced Visual Medicine

Image-guided Surgery (1)

- Tracks instruments during intervention
- Representation of instruments in patient dataset
- Requires tracking technique
 - Magnetic tracking
 - Optical (infrared) tracking
 - Tracks only end of instrument
 - Requires line-of-sight
 - + High accuracy
 - + No (little) interference

Image-guided Surgery (1)

- Tracks instruments during intervention
- Representation of instruments in patient dataset
- Requires tracking technique
 - Magnetic tracking
 - Optical (infrared) tracking
 - Video tracking
 - Low accuracy
 - Requires line-of-sight
 - + Simple setup

IEEE Visualization 2007

IEEE Visualization 2007

Advanced Visual Medicine

Image-guided Surgery (1)

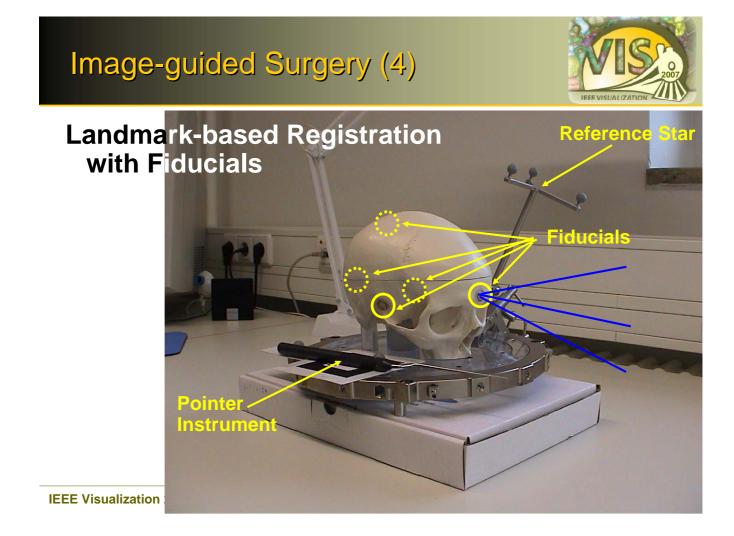
- Tracks instruments during intervention
- Representation of instruments in patient dataset
- Requires tracking technique
 - Magnetic tracking
 - Optical (infrared) tracking
 - Video-tracking
- Requires registration of patient to dataset

Registration:

- Computes relationship between patient (OR coordinate system) and image dataset
- Usually rigid transformation: Rotation, Translation
- Landmark-based (fiducial markers)
- Pointset-based (laser pointer, ICP)

IEEE Visualization 2007

Advanced Visual Medicine


Image-guided Surgery (3)

Landmark-based Registration with Fiducials

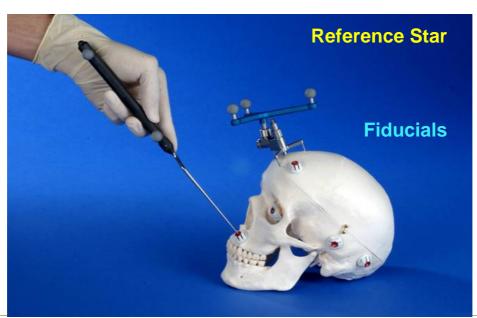
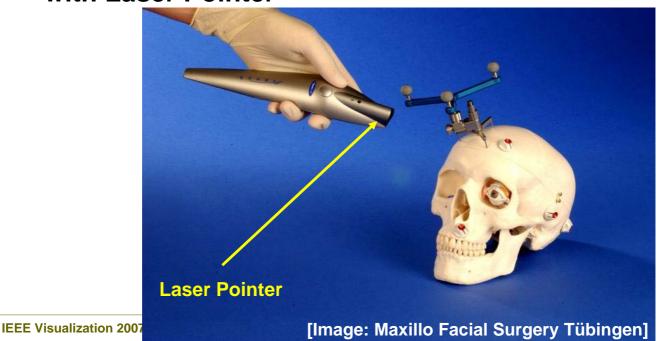

In maxillo-facial surgery, 2.4 screws, placed in asymmetrical positions, are used as fiducials

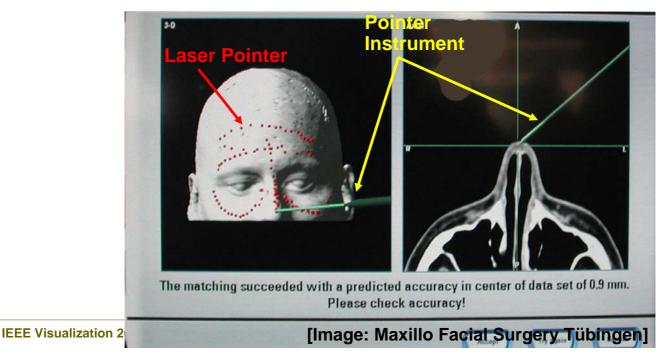
Image-guided Surgery (5)


Landmark-based Registration with Fiducials

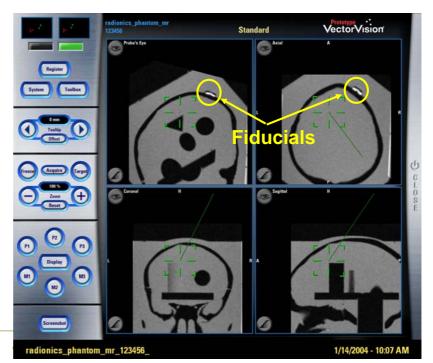
Advance [Image: Maxillo Facial Surgery Tübingen]

Pointset-based Registration with Laser Pointer

Image-guided Surgery (7)


Pointset-based Registration with Laser Pointer

- Laser point is seen by infrared cameras
- Pointsets are measured
- Registration by ICP


Pointset-based Registration with Laser Pointer

<section-header><section-header><section-header><section-header><image>

Typical Image-based Navigation/Surgery (IGS)

IEEE Visualization 2007

Image-guided Surgery (11)

Issues

- Accuracy: The better the registration, the better the accuracy is
- Occlusion of markers: tracking not possible
- Visibility: Only visible end of instruments is tracked (ie., minimally-invasive surgery)
- Adaptiveness: Marker clamp needs to be fixed to instrument

Issues, cont'd

Tissue deformation

- IGS typically depends on preoperative data acquisition
- Depending on target area, significant deformations may take place (ie., Brainshift)
- Deformations occur not uniformly (may be small in target area)
- Data is not up-to-date, or intra-operative imaging is required

IEEE Visualization 2007

Advanced Visual Medicine

Image-guided Surgery (13)

Example for Brainshift Orilled hole in skull: significant deformations Ventricular system: negligible deformations After ventriculostomy: (still minor) deformations

Advanced Visual Medicine

Tissue Deformation

- Head: Can be potentially controlled (setup)
- Abdomen: Very difficult to control (permanent non-uniform deformations)
- Heart/Lungs: Might be controllable by heart/breathing monitor (periodic movement)

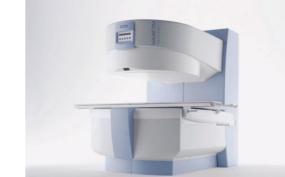
IEEE Visualization 2007

Advanced Visual Medicine

Intra-operative Imaging (1)

Possible with

- MRI (OpenMR, intra-operative fullfield MR)
- X-rays (C-arm, intra-operative CT)
- Ultrasound
- Endoscopic scanners


Images need to be **registered** with patient and preoperative acquired dataset (ie., marker clamp is **fixed to ultrasound probe**)

Intra-operative Imaging (2)

OpenMR

- Allows direct, but limited access to patient
- Low field scanner (ie.,0.2T-0.5T): limited image quality
- Requires MR-suitable instruments and OR

[Image: Siemens Medical Solutions]

IEEE Visualization 2007

Advanced Visuamage: Brigham & Womens Hospital

Intra-operative Imaging (3)

Intra-operative full-field MR (1.5T)

- Patient is moved on OR-table in and out of MR scanner
- Requires MR-suitable instruments and OR
- Expensive and complex system (requires shielded cabin)

Intra-operative full-field MR (1.5T)

Intra-operative Imaging (5)

C-Arm / intra-operative CT

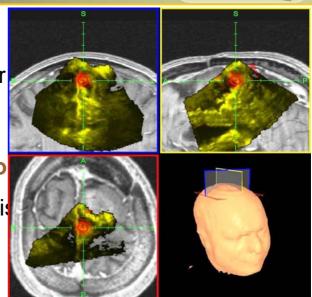
- X-ray images
- 2D (C-Arm)
- Lower quality as extra-operative scanning
- Radiation

[Image: Philips Medical Systems]

Intra-operative Imaging (6)

Ultrasound

- Emits soundwaves and records echo
- Truly interactive scanning
- Very noisy, difficult to interpret
- Various modes
- Often used for abdomen, brain, heart


Advanc

Intra-operative Imaging (7)

Ultrasound

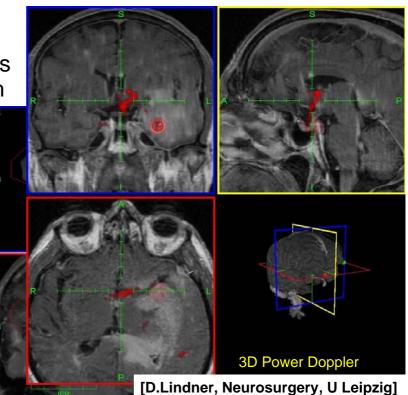
IEEE Visualization 2007

- Used to adapt to brainshift or other tissue deformations (resection control)
- Lacks good spatial orientatio
- What additional instrument is used?

[Images: Siemens Medical Solutions]

Coronary Artery Bypass Graft

Tumor remnant at red area


• 5% difference between 3D US and post MRI

Intra-operative Imaging (8)

Ultrasound

- Use typically requires the registration with pre-operative datasets (neurosurgery: often MRI)
- Addional US functionality:
 Doppler for blood flow

IEEE Visualization 2007

Intra-operative Imaging (9)

Endoscopic Scanners

- Introduced through endoscope to target area
- Laser scanner for geometric measurements
- Holographic scanners for volumetric measurements (depends on optical properties though)
- No (little) available devices, mostly research

IEEE Visualization 2007

Advanced Visual I

[Images: Fraunhofer IPA]

Combines virtual and real world in a mixed reality (augmented reality)

- Tracking method
- Display method
 - Head-Mounted-Displays (HMDs):
 - Too cumbersome/bulky for surgery
 - Too limited perception and motion
 - Video see-through devices
 - Standard display (monitor) plus video camera

IEEE Visualization 2007

Advanced Visual Medicine

Medical Mixed Reality (2)

Combines virtual and real world in a mixed reality (augmented reality)

- Tracking method
- Display method
 - Head-Mounted-Displays
 - Video see-through devices
 - Standard display (monitor) plus video camera

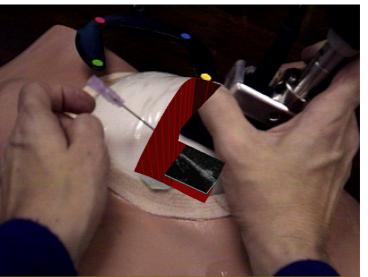
[Image: MEDARPA]

- Real world viewing device needs to be tracked
- Fusion of real and virtual videostreams
- How to handle virtual objects behind the real objects (occlusion handling)

IEEE Visualization 2007

Advanced Visual Medicine

Medical Mixed Reality (4)



Various Medical Mixed Reality Projects

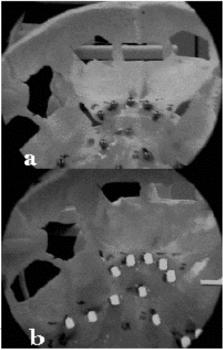
Needle biopsies with Ultrasound and HMD

[Bajura et al., State et al., SIGGRAPH 1992/1996]

 Supporting visualization of organs, risk structures etc.

Medical Mixed Reality (5)

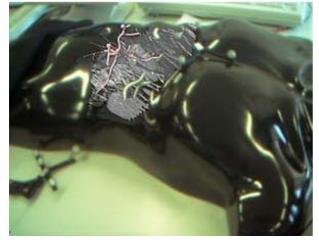
Various Medical Mixed Reality Projects

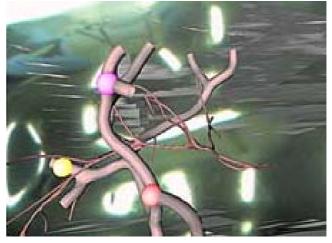

VarioscopeAR – Augmented Microscope

[Birkfellner et al., ISAR 2001]

IEEE Visualization 2007

Advanced Visual Medicine

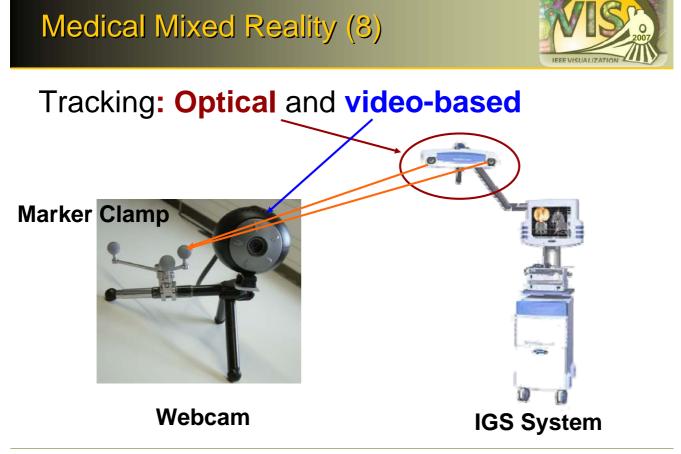



Medical Mixed Reality (6)

Various Medical Mixed Reality Projects

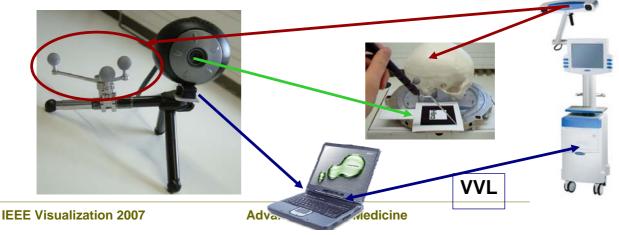
 Liver Surgery [Bornik et al. BVM 2003]: Supporting visualization of organs, risk structures etc.

Various Medical Mixed Reality Projects


- Mixed Endoscopic Reality [Dey et al., MICCAI 2000]
- Ultrasound and HMDs [Sauer et al., ISAR 2001]
- Minimally-invasive liver surgery [Scheuering et al., Medical Imaging 2001]
- MEDARPA [Schwald et al., ISMAR 2002]
- ARSys-Tricorder [Goebbels, CURAC 2003]

IEEE Visualization 2007

Advanced Visual Medicine


[Image: MEDARPA]

Medical Mixed Reality (9)

- Infrared cameras see patient (skull) and video marker
- Infrared cameras see marker clamp on webcam
- Webcam sees video marker (ARToolkit)
- System computes transformation between webcam and infrared cameras

Medical Mixed Reality (10)

Camera is moving

Medical Augmented Reality based on Image Guided Surgery

Overlay of manually placed tumor model

Object is moving

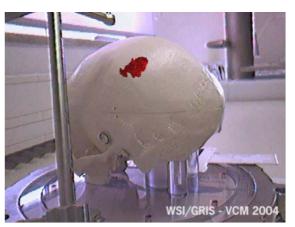
Advanced Visual Medicine

Issue

- High position accuracy, but lower orientation accuracy
 - visual vibrations due to small errors in
 - orientation
- Occlusion

IEEE Visualization 2007

Medical Mixed Reality (12)



Standard MMR

- Virtual objects are painted over video stream
- **Does not allow** correct depth perception

Advanced V

- Objects behind should be
 - not painted at all
 - painted differently (semi-transparent, etc.)

Occlusion Issue

- Video stream is 2D, hence it does not contain depth information
- Virtual objects are 3D and maintain depth information
- Medical mixed reality requires correct depth sorting for depth perception

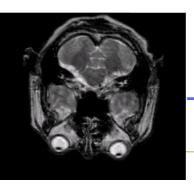
→ We need to recover depth information

IEEE Visualization 2007

Advanced Visual Medicine

Medical Mixed Reality (14)

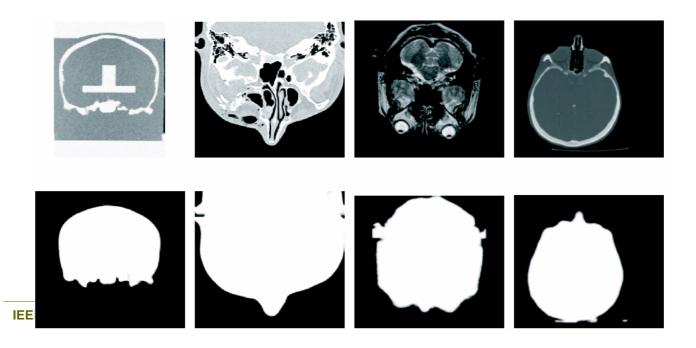
Recovery of 3D Depth Information


- Have preoperative acquired patient dataset
- Extract phantom geometry of patient
- Render phantom into depth buffer for depth sorting only
- But: Phantom is usually too complex for mandatory interactivity

Simplify phantom

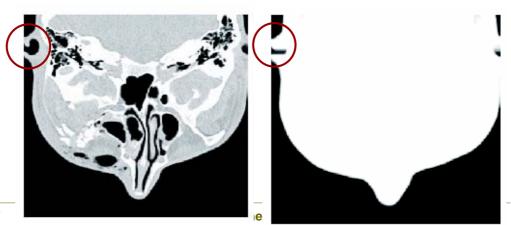
Simplify Phantom

- Clean dataset (Gauss, opening/closing)
- Compute **visual hull** (cull interior details): First-hit ray casting
- Smooth result (Median, Gauss)
- Extract isosurface



IEEE Visualization 2007

Medical Mixed Reality (16)


Examples

Small Imperfections

- Ray-casting does not catch all details, in particular details in non-convex areas
- But accuracy sufficient for virtually all cases

IEEE Visualization 2007

Medical Mixed Reality (18)

Correct Occlusion Handling

• Details at cheek bone are also handled correctly

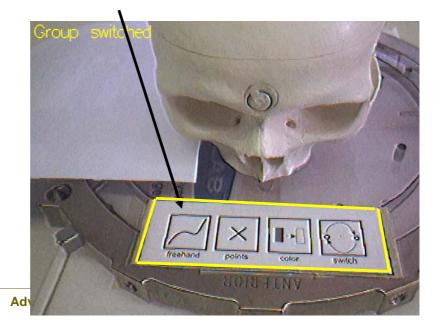
IEEE Visualization 2007

Advanced Visual Medicine

Interaction in the OR

- Assisting personnel
- Pedal-button (hard to find the right one)
- Tracked instruments

IEEE Visualization 2007


Advanced Visual Medicine

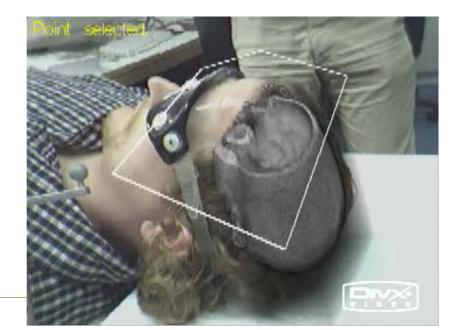
Medical Mixed Reality (20)

Interaction in the OR

- Calibrated, sterilizable stickers
- Once calibrated, interaction can be measured by tracking system
- Flexible functionality (ie., screen shots, mapping of volume, etc.)

Interaction in the OR

- Calibrated, sterilizable stickers
- Once calibrated, interaction can be measured by tracking system
- Flexible functionality (ie., screen shots, mapping of volume, etc.)


IEEE Visualization 2007

Medical Mixed Reality (22)

Interaction in the OR

•Spezification of target points

- Image-guided surgery uses tracking and registration to match patient dataset to patient on OR table
- Occlusion issue needs to be solved
- Tissue deformation may be a significant problem for image-guided surgery
- May require intra-operative imaging
- Simulation of tissue deformation is still too far off

IEEE Visualization 2007

Advanced Visual Medicine

Acknowledgements

University of Tübingen

- Jan Fischer, Angel del Río, VCM
- Jürgen Hoffmann, Maxillo-Facial Surgery
- Marcos Tatagiba, Neurosurgery

University of Leipzig

• Dirk Lindner, Christos Trantakis, Jürgen Meixensberger, Neurosurgery

BrainLAB

• Markus Neff, Robert Schmidt, Rainer Birkenbach