

Advanced Visual Medicine: Techniques, Applications and Software

Visual Analysis of Perfusion Data

Steffen Oeltze

Visualization Research Group, University of Magdeburg, Germany stoeltze@isg.cs.uni-magdeburg.de

Outline

Introduction

- Intraoperative Navigation and Medical Mixed Reality
- Integration of Simulation and Visualization for Surgical Planning
- Diffusion Tensor Imaging Visualization Techniques and Applications
- Visual Analysis of Perfusion Data
- Surface-based Vessel Visualization
- Fast Tagged Multi-resolution Volume Rendering

Questions and Answers

Motivation of Perfusion Imaging

Data Acquisition and Pre-processing

Visual Analysis of Perfusion Data

- Basic Techniques
- Advanced Techniques

Case Study: Coronary Artery Disease

Literature

IEEE Visualization 2007

Visual Analysis of Perfusion Data

3/46

Motivation of Perfusion Imaging

Examination of blood flow in vasculature below the common spatial resolution of static image data

Selected diagnostic application areas:

- Ischemic Stroke Diagnosis
 - Fast localization of "tissue at risk"
- Breast Tumor Diagnosis
 - Evaluation of the dignity (malignant or benign) of breast tumors and radiation therapy monitoring
- Coronary Artery Disease (CAD) Diagnosis
 - Localization of less-perfused myocardial regions for functional analysis and correlation with supplying coronaries to support stenosis evaluation

Magnetic resonance (MR) perfusion diagnosis

Application of a contrast agent (CA)

- · Very fast injection to form a bolus
- Repeated acquisition of subsequent images
- CA wash-in provides signal changes → tracer of blood

Typical dataset characteristics:

- Ischemic stroke diagnosis (T2, 128 x 128 x 20 x 40, 40sec)
- Breast tumor diagnosis (T1, 512 x 512 x 80 x 6, 10min)
- Diagnosis of Coronary Artery Disease (T1, 128 x 128 x 4 x 40, 20-40sec)

IEEE Visualization 2007

Visual Analysis of Perfusion Data

5/46

Pre-Processing

Low signal-to-noise (S/N)-ratio requires smoothing

• Tissue boundaries must be maintained

Analysis requires inter-pixel correspondence over time

- Crucial in breast tumor and CAD diagnosis due to respiration, muscle relaxation, (and heart motion)
- →Motion correction, e.g., by combining rigid and elastic registration based on mutual information and a gradient descent method for optimization [Rueckert, 1999]

© Kohle, 2002

Basic Visual Analysis Techniques – Cine-Movies

Cine-movies, which step through all points in time for a selected slice Prevailing method in tight schedule of clinical routine

Problems:

- user-dependent,
- no quantitative results,
- small perfusion defects remain undetected

IEEE Visualization 2007

Visual Analysis of Perfusion Data

7/46

Basic Visual Analysis Techniques – Subtraction Images

Subtraction images, which depict the intensity difference between two selected points in time

Differences are color-coded, gray-scale reference image serves as context information

Basic Visual Analysis Techniques – ROI-Selection

ROI-selection, Analysis of time-intensity curves (*TIC*) Semi-quantitative analysis based on perfusion parameters

Basic Visual Analysis Techniques – Color-Coded Parameter Maps

Color-coded parameter maps for a selected slice

Diagnosis often requires examination of several parameters Tiled visualization requires mental integration

→ Strategy for designing multiparameter visualizations:

- Utilizing other visualization attributes besides color
- Adaptation and parameterization of the visualization
- Integration of exploration facilities

Advanced Visual Analysis Techniques – Multiparameter Vis [Oeltze, 2005/06]

IEEE Visualization 2007

Visual Analysis of Perfusion Data

11/46

Advanced Visual Analysis Techniques – Probing and Annotating

Profile Flags [Mlejnek, 2005]:

- 3D glyph for probing and annotating volumetric data
- Adaptation to breast cancer diagnosis [Mlejnek, 2006]
- Automatic positioning of flags according to tissue classification
- Banner shows corresponding time-intensity curve
- Flags may be dragged to inspect the neighborhood

© Mlejnek, 2006

IEEE Visualization 2007

Advanced Visual Analysis Techniques – Direct Volume Rendering

Suitable for data with high spatial resolution, e.g. from breast tumor or ischemic stroke diagnosis

Performance issues due to large amount of data (4d!) → Exploitation of temporal coherence [Liao, 2003]

Tracking of important features, e.g. a tumor, over time → Temporal transfer functions [Akiba, 2006]

IEEE Visualization 2007

Visual Analysis of Perfusion Data

13/46

Advanced Visual Analysis Techniques – Extending Subtraction Images

Subtraction volumes:

- Depict intensity difference between two selected points in time
- · Rendered by means of direct volume rendering
- Transfer functions code the magnitude of difference
- Gray-scale reference volume serves as context information

Maximum Intensity and Closest Vessel Projection [Kohle, 2002]:

- · Gray-scale MIP of subtraction volume serves as context
- CVP with color mapping depending on the dynamical behavior of the voxels time-intensity curve
- Color is only assigned if projected intensity exceeds a threshold

© Kohle, 2002

IEEE Visualization 2007

Visual Analysis of Perfusion Data

15/46

Advanced Visual Analysis Techniques – Combining InfoVis and MedVis

MammoExplorer [Coto, 2005]:

- Support of breast cancer diagnosis combing InfoVis and MedVis
- Integration of scatterplots, brushing and linking, Two-level and Importance-driven volume rendering

Visual Analysis Techniques – Conclusion

- Perfusion data are semi-quantitatively analyzed (no standardized intensity values exist)
- Normalization, e.g. comparison between healthy and suspicious region is required.
- Basic visualization techniques allow to detect suspicious regions
- Multiparameter techniques (colored heightfields, flexible lenses, glyphs,...), facilitate a more comprehensive analysis and may speed up the diagnosis
- Profile flags for annotating perfusion data, e.g. to communicate diagnosis
- Volume rendering is applied to explore data with high spatial resolution

IEEE Visualization 2007

Visual Analysis of Perfusion Data

17/46

Combination of statistical analysis (correlation analysis, PCA, ...) with visualization and exploration techniques (brushing&linking, ...)

Will be presented here at IEEE Vis07: "Interactive Visual Analysis of Perfusion Data" [S.Oeltze, H.Doleisch, H.Hauser, P.Muigg, B.Preim]

Future Work

Evaluation of visual analysis techniques in clinical settings to examine:

- Speed (compared to commercial systems)
- Diagnostic accuracy
- Which parameter combinations are suitable?
- How many parameter should be integrated?
- Which parameter is best mapped to which visual attribute?

Case Study: Coronary Artery Disease – Medical Background

Definition: severe stenosis of one or more coronary arteries

Early stage CAD characterized by perfusion defect of the myocardium (heart muscle)

Angina pectoris, cardiac arrhythmia and heart attack may result

IEEE Visualization 2007

Visual Analysis of Perfusion Data

19/46

Case Study: Coronary Artery Disease – Tasks and Data Acquisition

- → Localization and quantification of the perfusion defect
- Exploiting anatomical knowledge about supplying coronary arteries to support stenosis detection and evaluation
- ECG-triggered data acquisition during breath-hold at rest (and under stress) in 3-4 cardiac short axis planes

IEEE Visualization 2007

Visual Analysis of Perfusion Data

Case Study: Coronary Artery Disease – 17 Segment Model and Bull's Eye Plot

Plotting of perfusion parameters in Bull's Eye Plot (BEP) by means of polar coordinates

American Heart Association (AHA) – 17 segment model specifies relation between myocardial regions and supplying coronaries [Cerqueira, 2002]

IEEE Visualization 2007

Visual Analysis of Perfusion Data

21/46

Case Study: Coronary Artery Disease – Uptake Movie and Perfusogram

Uptake Movie [Breeuwer, 2002]:

- (Repeated) display of the perfusion images series as a movie
- · Intensity values of points or segments are color-coded

Perfusogram [Breeuwer, 2002]:

· Color-coded intensity values as a function of time and place

segment in the myocardium

Case Study: Coronary Artery Disease – Bivariate Bull's Eye Plot

Refined Bull's Eye Plot (BiBEP) [Oeltze, 2006]:

- Integrated visualization of two different parameters
- Rest/Stress-comparison of one parameter
- Identification of areas where perfusion defects first appear or become worse with stress

Case Study: Coronary Artery Disease – Segment-Based vs. Pixel-Wise

Segment-based analysis compensates artifacts due to low S/N-ratio, heart motion and respiration

Problem: Segments with ischemic and non-ischemic tissue

➔ Advances in image acquisition and motion correction algorithms allow pixel-wise analysis by means of parameter-maps [Panting, 2001]

→Integrated visualization of several parameters [Oeltze, 2006]

Integrated visualization of several parameters [Oeltze, 2006]

IEEE Visualization 2007

Visual Analysis of Perfusion Data

25/46

Case Study: Coronary Artery Disease – Integrating Perfusion & Morphology

Perfusion defect has been localized

→ Correlating affected regions and supplying coronaries to detect stenosis

Fusion of single photon emission computed tomography (SPECT) and X-ray coronary angiography [Schindler, 1999]

Fusion of SPECT and CT data [Nakajo, 2005]

Integrated visualization of MR-perfusion and CT-morphologic data (coronary arteries, aorta ascendens, left ventricle) [Oeltze, 2006]

Segmentation of coronaries/aorta by advanced 3D region growing algorithm [Hennemuth, 2005],

Manual labeling of coronary branches (LCX, LAD, RCA)

IEEE Visualization 2007

Visual Analysis of Perfusion Data

27/46

Case Study: Coronary Artery Disease – Linked Views

Fusion of MR-perfusion and CT-data by establishing bidirectional link between BEP and 3D view

Focusing of supplying branch after picking segments in BEP

Case Study: Coronary Artery Disease – Identifying Supplying Branch (Video)

IEEE Visualization 2007

Visual Analysis of Perfusion Data

29/46

Case Study: Coronary Artery Disease – Identifying Supplied Segments

Accentuation of supplied segments after picking an artery in the 3d-view User is guided through scene by animations [Mühler, 2006]

Semi-automatic definition of appropriate viewpoint for each artery

Case Study: Coronary Artery Disease – Integrating Function, Perfusion & Viability

MR scanning protocol involves in addition to perfusion, the measurement of functional parameters and viability

Integration for diagnosis of cardiac ischemia and infarction

- → Differentiation of ischemic and healthy tissue
- ➔ Differentiation of scarred tissue and temporarily inactive but viable myocardium (stunned vs. hibernating)

Function

Perfusion

Viability (Late Enhancement)

IEEE Visualization 2007

Visual Analysis of Perfusion Data

31/46

Case Study: Coronary Artery Disease – Glyph Placement (1/2)

Glyph placement based on slice location of perfusion data and surface visualization of left ventricle (from LE-data)

IEEE Visualization 2007

Combination of functional and perfusion parameters (different number of slices)

Visual Analysis of Perfusion Data

33/46

Case Study: Coronary Artery Disease – Glyph Placement (2/2)

Segment-based glyph placement

- AHA-conform division (17 segments)
- User-defined division allows more subtle evaluation (x segments per slice)

Voxel-wise glyph placement

• 250-500 glyphs per slice

Case Study: Coronary Artery Disease – Examples (1/8)

IEEE Visualization 2007

Visual Analysis of Perfusion Data

35/46

Case Study: Coronary Artery Disease – Examples (2/8)

 Image: Constrained and the second a

Case Study: Coronary Artery Disease – Examples (3/8)

 Rubes to code perfusion

 and Up-Slope (size)

 AtA-conform division

 to segment-borders

 and voxel positions)

IEEE Visualization 2007

Visual Analysis of Perfusion Data

37/46

Case Study: Coronary Artery Disease – Examples (4/8)

Case Study: Coronary Artery Disease – Examples (5/8)

IEEE Visualization 2007

Visual Analysis of Perfusion Data

39/46

Case Study: Coronary Artery Disease – Examples (6/8)

<complex-block>

 Repertence
 Repertence

 Repertence
 Repertence

 Repertence
 Repertence

Case Study: Coronary Artery Disease – Examples (7/8)

IEEE Visualization 2007

Visual Analysis of Perfusion Data

41/46

Case Study: Coronary Artery Disease – Examples (8/8)

Cubes to code perfusion (Up-Slope \rightarrow color) and function (systolic wall thickness \rightarrow size).

Ventricle color-coded acc. to transmurality.

Case Study: Coronary Artery Disease – Conclusion and Future Work

- Myocardial perfusion analysis to detect early stage Coronary Artery Disease
- Multiparameter techniques provide alternative to segment-based analysis
- Refined BEP allows rest/stress comparison of one parameter
- Correlation of BEP and vasculature facilitates synchronized examination
- 3D-Glyph based visualizations are applied for an integrated analysis of myocardial function, perfusion and viability

Future Work:

Thorough evaluation of the diagnostic benefit in a clinical study

Integrated visualization of MR coronary angiographic data and MR cardiac functional, perfusion and late enhancement data

IEEE Visualization 2007

Visual Analysis of Perfusion Data

43/46

Acknowledgements

A. Hennemuth, C. Kühnel, S. Behrens, S. Bock, T. Boskamp, S. Kraß

We thank the clinical partners:

- F. Grothues (Dept. of Cardiology, University of Magdeburg)
- A. Fessel (Dept. of Radiology, University of Magdeburg)
- J. Wiener, Radiology, Boca Raton Community Hospital, Florida
- M. Fenchel, S. Miller and A. Seeger, Max Planck MR-center, University Tübingen
- S. Achenbach, Department of Radiology, University of Erlangen-Nürnberg,
- Siemens Medical Solutions

The presented work is based on the diploma theses of Christian Bendicks, Anja Kuß, and Lydia Paasche.

Literature (1/2)

Akiba [2006]:"Simultaneous Classification of Time-Varying Volume Data Based on the Time Histogram". In: Proc. of EuroVis.

Breeuwer [2002]: "Comprehensive visualization of first-pass myocardial perfusion: The uptake movie and the perfusogram". In: Proc. of ISMRM.

Cerqueira [2002]: "Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart". Circulation, 105(4).

Coto [2005]: "MammoExplorer: An Advanced CAD Application for Breast DCE-MRI". In: Proc. of Vision, Modelling, and Visualization (VMV).

Hennemuth [2005]: "One-click coronary tree segmentation in CT angiographic images". In: Proc. of Computer Assisted Radiology and Surgery (CARS).

König [2000]: "Cerebral perfusion CT: theoretical aspects, methodical implementation and clinical experience in the diagnosis of ischemic cerebral infarction". Röfo, 172(3).

Kohle [2002]: "Exploration of time-varying data for medical diagnosis". In: Proc. of Vision, Modeling, and Visualization (VMV).

Kuß [2006]: *Techniken zur Exploration myokardialer Perfusionsdaten*. Master's thesis, University of Magdeburg.

Liao [2003]: "A differential volume rendering method with second order differences for timevarying volume data". J Vis Lang and Comp, 14(3).

Mlejnek [2005]: "Profile Flags: a Novel Metaphor for Probing of T2 Maps". In: Proc. of IEEE Visualization.

IEEE Visualization 2007

Visual Analysis of Perfusion Data

45/46

Literature (2/2)

Mlejnek [2006]: "Application-Oriented Extensions of Profile Flags". In: Proc. of EuroVis.

Mühler [2006]: "Adaptive script based animations for medical education and intervention planning". Technical Report. University of Magdeburg.

Nakajo [2005]: "Three-dimensional registration of myocardial perfusion SPECT and CT coronary angiography". Ann Nucl Med, 19(3).

Oeltze [2005]: "Multiparametervisualisierung zur Exploration dynamischer Bilddaten". In: Proc. of Bildverarbeitung für die Medizin (BVM).

Oeltze [2006]: "Integrated Visualization of Morphologic and Perfusion Data for the Analysis of Coronary Artery Disease". In: Proc. of EuroVis.

Paasche [2007]: "Integrierte Visualisierung kardialer MR-Daten zur Beurteilung von Funktion, Perfusion und Vitalität des Myokards". In: Proc. of Bildverarbeitung für die Medizin (BVM).

- Panting [2001]: "Echo-planar magnetic resonance myocardial perfusion imaging: parametric map analysis and comparison with thallium SPECT". J Magn Reson Imaging, 13(2).
- Preim [2003]: "Mehrdimensionale Visualisierung dynamischer Bilddaten am Beispiel der Durchblutungsquantifizierung". In: Proc. of Simulation & Visualisierung (SimVis)
- Rueckert [1999]: "Nonrigid registration using free-form deformations: application to breast MR images". IEEE Trans Med Imaging, 18(8).
- Schindler [1999]: "Fusion imaging: combined visualization of 3D reconstructed coronary artery tree and 3D myocardial scintigraphic image in coronary artery disease". Int J Card Imaging, 15(5).