

Advanced Visual Medicine: Techniques for Visual Exploration & Analysis

Illustrative Visualization Techniques for Pre-Operative Planning

Christian Tietjen

Visualization Research Group, University of Magdeburg, Germany tietjen@isg.cs.uni-magdeburg.de

Outline

Motivation

Prerequisite: Segmentation

User Study: Liver Surgery

- · Combination of Rendering Methods
- Evaluation

Case Study: Neck Dissection

- Silhouette Rendering
- Opacity Mapping
- Cutaways and Ghostviews
- Quantitative Visualization

Concluding Remarks

Motivation

IEEE Visualization 2008

Motivation

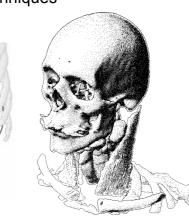
Computer assisted preoperative planning is only accomplished in cases with complex anatomy

"Conventional" medical 3D-visualizations are not sufficient

Illustrative techniques are employed to generate comprehensible renderings

Illustrative Visualization Techniques for Pre-Operative Planning

Traditional illustrations make extensive use of these techniques



Limited degrees of freedom to emphasize structures

Context visualization hampers interpretation

- · Context structures cannot be discriminated or
- Context structures hide the focus objects

Roland Pfisterer, Diploma Thesis, 2008

3/27

4/27

User studies indicate that:

 Hatching lines along curvature directions improve shape perception compared to surface shading

S. Kim, H. Hagh-Shenas, V. Interrante (2004). "Conveying Shape with Texture: Experimental Investigations of Texture's Effects on Shape Categorization Judgments", IEEE TVCG

V. L. Interrante (1997). "Illustrating Surface Shape in Volume Data via Principal Direction-Driven 3D Line Integral Convolution"

• Silhouettes improve the ability to discriminate objects C. Ware, Information Visualization, Morgan Kaufman, 2001

IEEE Visualization 2008

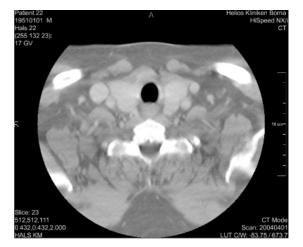
Illustrative Visualization Techniques for Pre-Operative Planning

5/27

INFOVIS . VAST

Segmentation

Many different structures


Primarily soft tissue

- · Similar intensity values
- Little gradient information

Hard to render using direct volume rendering

Automatization required

Simple methods if possible

Segmentation

Manual Segmentation

Tumors

Threshold

Air-filled structures

Region growing

• Bones, vessels (with contrast agent)

Live-Wire

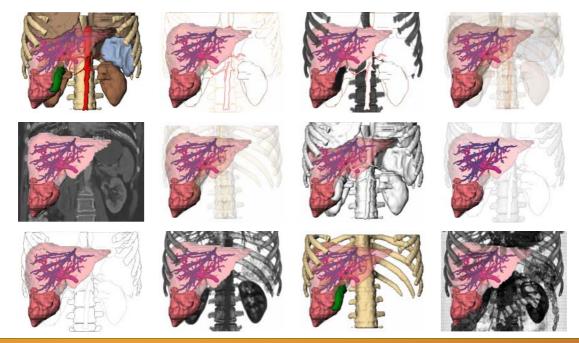
• Soft tissue (muscles, vessels, glands, lymph nodes)

Spring-mass-models

• Larynx, (lymph nodes)

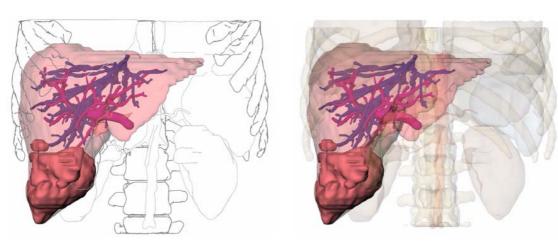
Expenditure of time for a neck dataset: 30 - 90 min

IEEE Visualization 2008


Illustrative Visualization Techniques for Pre-Operative Planning

7/27

Combination of Rendering Methods


Visualization examples

IEEE Visualization 2008

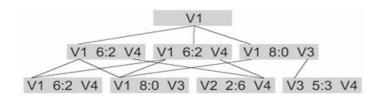
Illustrative Visualization Techniques for Pre-Operative Planning

Evaluation

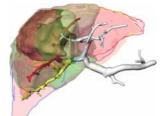
Which rendering suits more at first glance?Some critical questions to both renderingsWhich rendering would be more appropriate for surgical planning?

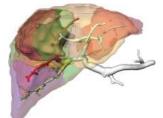
IEEE Visualization 2008 Illustrative Visualization Techniques for Pre-Operative Planning

9/27

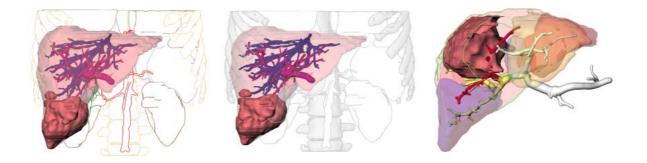

Evaluations

Is the application of illustrative techniques suitable for medical visualization?


- Informal user study (11 surgeons)
- Context visualization
- Simplifying complex visualizations


Analysis by decision tree

- Reference image was compared with all other images
- Number of votes was counted



Evaluations

Interpretation

- In general less context information is preferred
- · Basic information about all objects is necessary
- · b/w-silhouettes are not sufficient for displaying context
- Emphasize affected vascular territories using silhouettes regarded as appropriate by six of eight surgeons

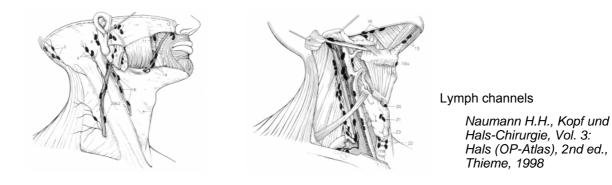
IEEE Visualization 2008

Illustrative Visualization Techniques for Pre-Operative Planning

11/27

Case Study: Neck Dissection Planning

Outline:


- Medical Background
- Questions and goals of surgeons
- Visualization (conventional and illustrative techniques)
- **Quantitative Visualization**

Background for Neck Dissections

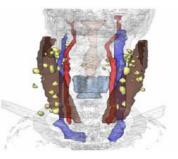
Indication: Patients with malignant tumors in the neck region

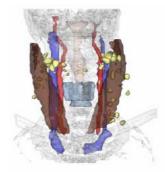
- Lymph nodes will be precautionary resected
- Operation strategy respectively radicalism depend on number, position and size of lymph nodes
- Computer assisted preoperative planning can help to choose a gentle operation strategy

IEEE Visualization 2008

Illustrative Visualization Techniques for Pre-Operative Planning

<u>13/27</u>

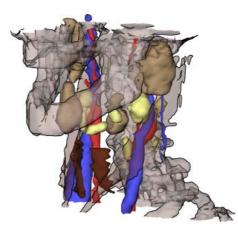

Neck Dissections: Visualization


High density of anatomic structures

- Muscles, vessels, glands, bones, nerves, respiratory tract, tumor etc.
- Up to 60 lymph nodes
- Spatial assignment and correct depth
 perception are difficult

Questions and goals of surgeons:

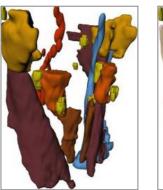
- Existence and location of enlarged lymph nodes?
- What are the distances to structures at risk?

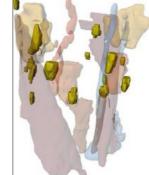


Neck Dissections: Visualization

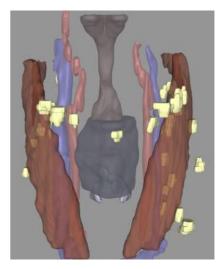
Silhouettes for edge enhancement

- Silhouettes for context objects (skeletal structures, large muscles, ...)
- Cubic interpolation between the original slices for smoother surfaces




IEEE Visualization 2008

Illustrative Visualization Techniques for Pre-Operative Planning

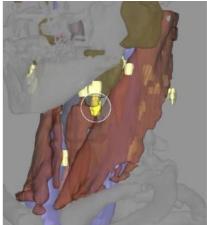

15/27

Neck Dissections: Color and Material

Correlation between transparency and spatial understanding

Opacity mapping applied to muscles Context structures: slightly saturated colors Shininess applied to vessels

Neck Dissections: Color and Material


Opacity Mapping:

IEEE Visualization 2008 Illustrative Visualization Techniques for Pre-Operative Planning 17/27

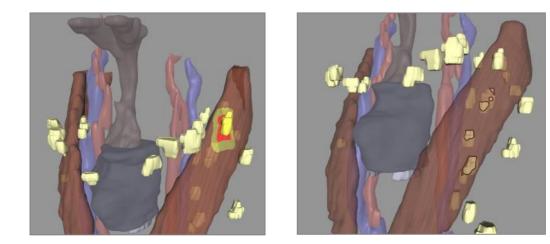
Neck Dissections: Lymph Nodes

- Ghostviews for the sequential emphasis of lymph nodes
- Cylindrical cutting volume, color saturation, transparency and silhouettes

Neck Dissections: Ghost Views and Silhouettes

Geometry reduction for interactive cutaways and ghostviews:

- lymph node model *L* circa 10K to 100K vertices
- Convex hull CH(L) in 3d → ~200 vertices (viewpoint independent)
- Project CH(L) to the viewplane
- CH(P(CH(L))) in 2d \rightarrow ~20 vertices
- Minimal enclosing circle + margin to define a cylindrical cutregion
- Draw silhouettes on edges


VIS . INFOVIS . VAST

IEEE Visualization 2008

Illustrative Visualization Techniques for Pre-Operative Planning

19/27

Neck Dissections: Quantitative Visualization

- Left: Color coded distance between muscle and lymph node, calculated on volume data (Euclidean DTF)
- Right: Possible infiltration of the muscle by the lymph nodes, drawing of silhouette lines on intersections

Visualization Techniques: LiftChart

nt sli-

- Providing a faster overview
- · Giving hints for critical points
- · Where are interesting slices and where not?

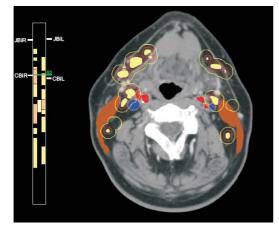
LiftChart:

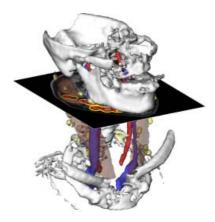
- A narrow frame next to the cross sectional image
- The frame represents the overall extent of the dataset
- Each segmented structure is displayed as a bar
- The vertical extent of the bar represents the extent of the structure

IEEE Visualization 2008

Illustrative Visualization Techniques for Pre-Operative Planning

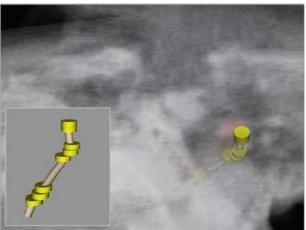
zmin


21/27


Visualization for Neck Dissections

Intervention planning:

- LiftChart for providing the overview
- · Only lymph nodes and tumor are shown
- · Lymph nodes are aggregated by side and colored by size
- · Safety margins are showing possible infiltrations


Neck Dissections: Approximative Visualization

- Small structures can only be partially segmented due to the partial volume effect.
- Approximative visualizations are helpful provided that the uncertainty is encoded.

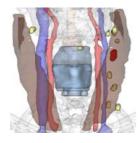
Example:

Nerves are detected in a few slices. Corresponding positions are marked with disks and connected with straight lines.

Surgeons interpret these images using anatomic knowledge.

IEEE Visualization 2008

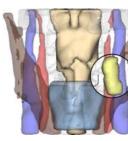
Illustrative Visualization Techniques for Pre-Operative Planning


23/27

INFOVIS . VAST

VIS . INFOVIS . VAST

Evaluations


- · Perception speed is enhanced by illustrative techniques?
- Simple response time tests
- 3D-renderings of 14 different neck datasets (600 images)
- · Only one enlarged lymph node
- Task: identify the side containing the enlarged lymph node as fast as possible

Red

Stippling

Cutaway

Normal

Evaluations

- Interactive 3D-visualization in ENT-surgery is reasonable? (Fischer et al. 2008)
- Results after presentation of the 3D-reconstruction
- Change of strategy: 2/7
- Change of Assessment of fatal risk structures: 4/7
 - 2x infiltration of MSCM,
 - 1x infiltration of thyroid cartilage,
 - 1x no infiltration of thyroid cartilage and glottic area
- Level-of-Trust:
 - 3D-Visualization beneficial 7/7
 - Average LOT 68
- TNM-classification:
 - 7/7 same classification by NSP compared with pTNM

IEEE Visualization 2008 Illustrative Visualization Techniques for Pre-Operative Planning 25/27

Concluding Remarks

/:=08

VIS . INFOVIS . VAST

Illustrative techniques cannot replace but enhance conventional rendering techniques

Visualization for surgery planning:

- Standardized visualizations for surgical planning (time savings, reproducibility)
- Include quantitative information in visualizations
- Adjust material properties and silhouettes for focus control and enhanced spatial recognition
- Sequential emphasis of pathologic structures (lymph nodes, lung nodules, ...) using ghostviews

User studies are required to compare visualization options with respect to task-specific problems (e.g. exploration of vasculature around a tumor).

Investigate usefulness:

- Does your (new) visualization technique provides additional insight?
- Influence surgical strategies?

IEEE Visualization 2008

Illustrative Visualization Techniques for Pre-Operative Planning

27/27

Thank you for your Attention!

Christian Tietjen tietjen@isg.cs.uni-magdeburg.de

Department of Simulation and Graphics Faculty of Computer Science, University of Magdeburg, Germany Visualization Group http://wwwisg.cs.uni-magdeburg.de/cv/

MeVis Research Center for Medical Image Computing Bremen, Germany http://www.mevis.de

ENT Department University Hospital of Leipzig, Germany Innovation Center for Computer Assisted Surgery http://www.iccas.de

This work was carried out in the framework of a project supported by the Deutsche Forschungsgemeinschaft (DFG) (Priority Programme 1124, PR 660/3)