

Advanced Visual Medicine: Techniques for Visual Exploration & Analysis

Visual Analysis of Perfusion Data

Steffen Oeltze

Visualization Research Group, University of Magdeburg, Germany stoeltze@isg.cs.uni-magdeburg.de

Structure

Motivation of Perfusion Imaging

Data Acquisition and Pre-processing

Visual Analysis of Perfusion Data

- Basic Techniques
- Advanced Techniques
- Interactive Visual Analysis

Case Study: Coronary Heart Disease

- Medical Background
- Visual Exploration Techniques
- Glyph-Based Visualization of Perfusion, Contractility and Viability
- Integration of Perfusion and Morphologic Data

Examination of blood flow in vasculature below the common spatial resolution of static image data

Selected diagnostic application areas:

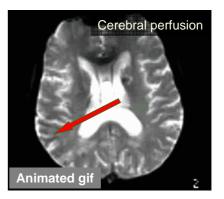
- Ischemic Stroke Diagnosis
 - Fast localization of "tissue at risk"
- Breast Tumor Diagnosis
 - Evaluation of the dignity (malignant or benign) of breast tumors and radiation therapy monitoring
- Coronary Heart Disease (CHD) Diagnosis
 - Localization of less-perfused myocardial regions for functional analysis and correlation with supplying coronaries to support stenosis evaluation

IEEE Visualization 2008

Visual Analysis of Perfusion Data

3/60

Data Acquisition

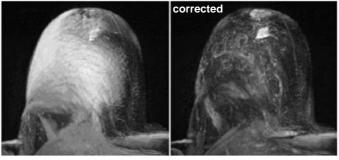

Focus Magnetic Resonance (MR) perfusion diagnosis

Application of a contrast agent (CA)

- · Very fast injection to form a bolus
- Repeated acquisition of subsequent images
- CA wash-in provides signal changes → tracer of blood

Typical dataset characteristics in MRI:

- Ischemic stroke diagnosis (T2, 128 x 128 x 20 x 40, 40sec)
- Breast tumor diagnosis (T1, 512 x 512 x 80 x 6, 10min)
- Diagnosis of Coronary Heart Disease (T1, 128 x 128 x 4 x 40, 20-40sec)



Low signal-to-noise (S/N)-ratio requires smoothing

Tissue boundaries must be maintained

Analysis requires inter-pixel correspondence over time

- Crucial in breast tumor and CAD diagnosis due to respiration, muscle relaxation, (and heart motion)
- Motion correction, e.g., by combining rigid and elastic registration based on mutual information and a gradient descent method for optimization [Rueckert, 1999]

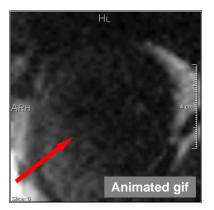
© Kohle, 2002

IEEE Visualization 2008

Visual Analysis of Perfusion Data

5/60

Basic Visual Analysis Techniques *Cine Movies*

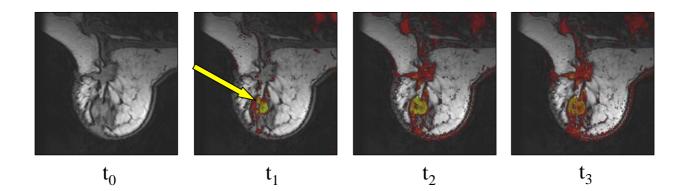

Comprehensive overviews on analysis and visualization of perfusion data can be found in [Preim and Bartz 2007] and [Preim, 2008/09]

Cine-movies, which step through all points in time for a selected slice

Prevailing method in tight schedule of clinical routine

Problems:

- user-dependent,
- no quantitative results,
- small perfusion defects remain undetected



Basic Visual Analysis Techniques Subtraction Images

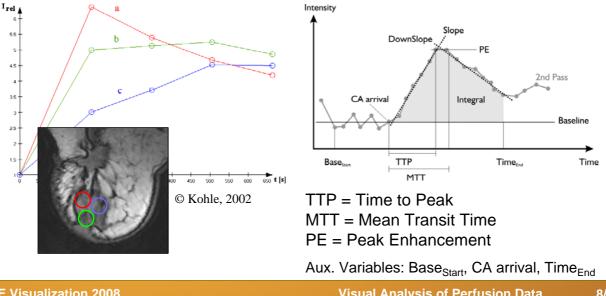
Subtraction images, which depict the intensity difference between two selected points in time

Differences are color-coded, gray-scale reference image serves as context information

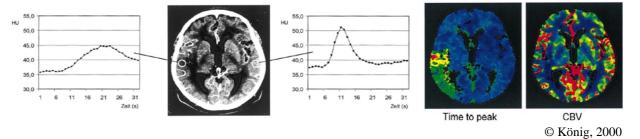
IEEE Visualization 2008

Visual Analysis of Perfusion Data

7/60


-- Insertion --**Perfusion Parameters**

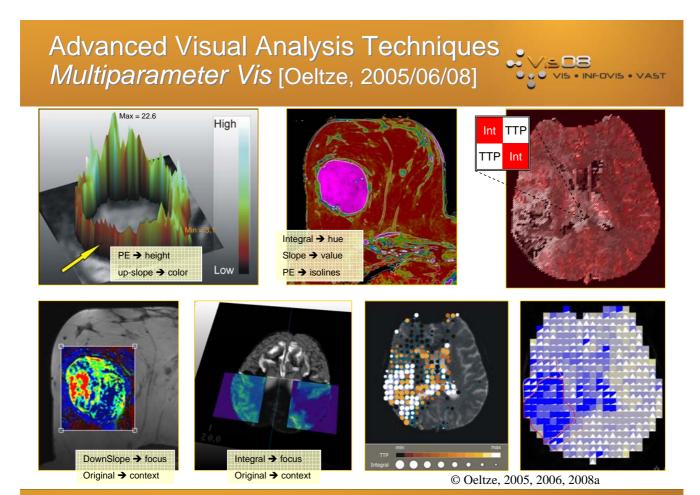
ROI-selection, Analysis of time-intensity curves (TIC)


Physicians are trained to infer tissue characteristics from TIC shape

Semi-quantitative analysis based on perfusion parameters

Color-coded parameter maps for a selected slice

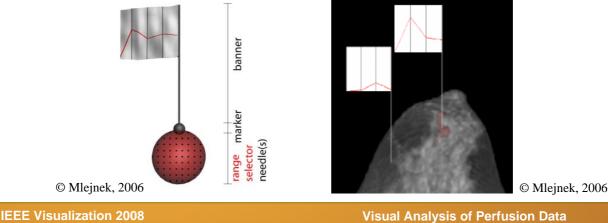
Diagnosis often requires examination of several parameters Tiled visualization requires mental integration


→ Strategy for designing multiparameter visualizations:

- Utilizing other visualization attributes besides color
- Adaptation and parameterization of the visualization
- Integration of exploration facilities

IEEE Visualization 2008

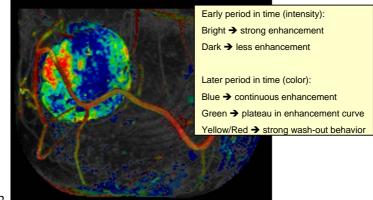
Visual Analysis of Perfusion Data


9/60

Advanced Visual Analysis Techniques Probing and Annotating

Profile Flags [Mlejnek, 2005]:

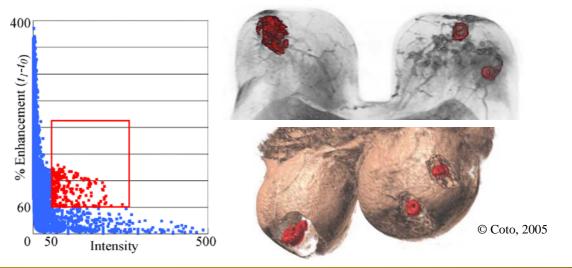
- 3D glyph for probing and annotating volumetric data
- Adaptation to breast cancer diagnosis [Mlejnek, 2006]
- Automatic positioning of flags according to tissue classification
- Banner shows corresponding time-intensity curve
- Flags may be dragged to inspect the neighborhood


VIS . INFOVIS . VAST

11/60

Advanced Visual Analysis Techniques **Projection Methods** VIS . INFOVIS . VAST

Maximum Intensity and Closest Vessel Projection [Kohle, 2002]:


- Gray-scale MIP of subtraction volume serves as context
- CVP with color mapping depending on the dynamical behavior of the voxels time-intensity curve
- Color is only assigned if projected intensity exceeds a threshold

© Kohle, 2002

MammoExplorer [Coto, 2005]:

- Support of breast cancer diagnosis combing InfoVis and MedVis
- Integration of scatterplots, brushing and linking, Two-level and Importance-driven volume rendering

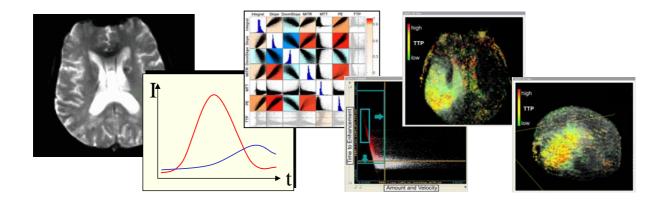
IEEE Visualization 2008

13/60

Visual Analysis of Perfusion Data

VIS . INFOVIS . VAST

Interactive Visual Analysis of Perfusion Data

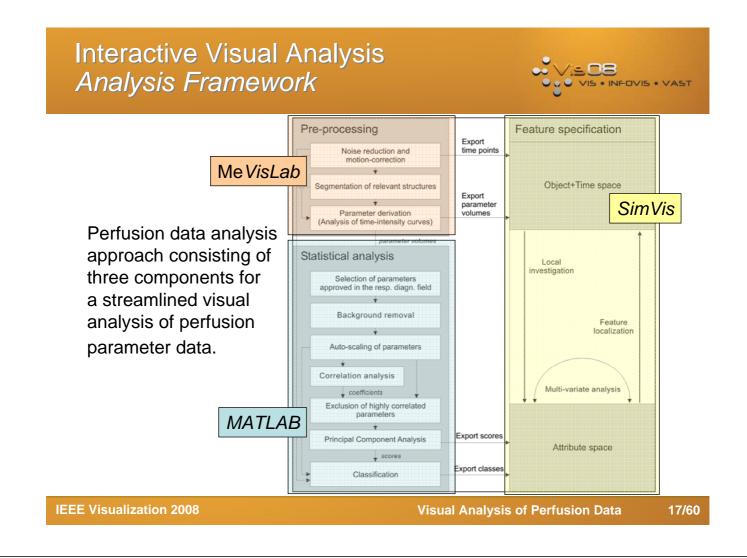

Interactive Visual Analysis

Presented at last years IEEE Vis [Oeltze, 2007]

Combination of statistical analysis (correlation analysis, PCA, ...) with visualization and exploration techniques (brushing&linking, ...)

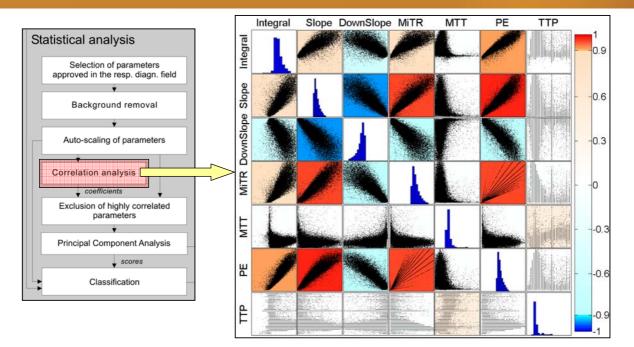
Support of researchers in the field of perfusion imaging, in particular, in perfusion sequence and contrast agent design

IEEE Visualization 2008

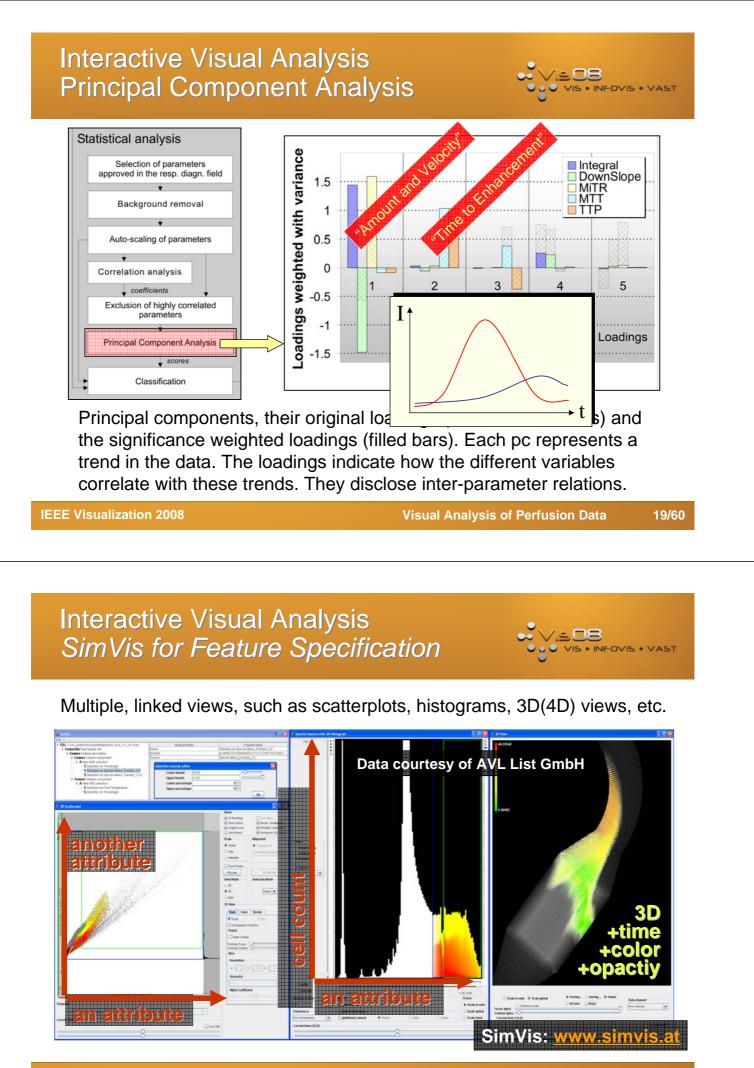

Visual Analysis of Perfusion Data

```
15/60
```

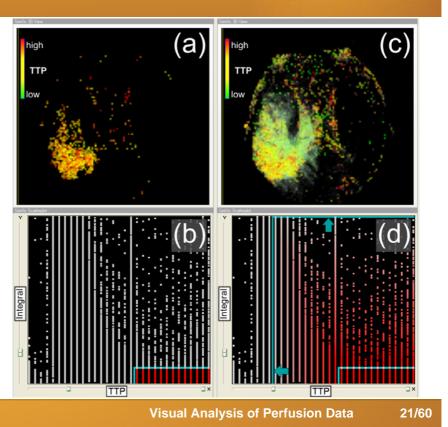
Interactive Visual Analysis *Clinical Research Questions*



- How do the perfusion parameters depend on each other?
- How many parameters are relevant for a particular application?
- What is the relationship between imaging details (CA amount, acquisition timing, temporal resolution) and the expressiveness and correlation of the perfusion parameters?
- How strong do the answers to (1),(2),(3) differ from patient to patient?
- → Correlation analysis explains inter-parameter relations
- Principal Component Analysis (PCA) allows a dimension reduction of the parameter space and the detection of trends in the data
- ➔ Visual Analysis concludes the visualization of analysis results and the interactive exploration considering these results

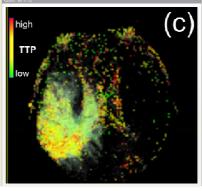


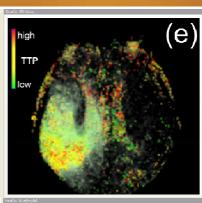
Interactive Visual Analysis Correlation Analysis


Scatterplot-matrix of perfusion parameters. Strong positive and negative correlation coefficients are emphasized.

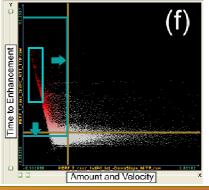
Interactive Visual Analysis Case Study: Ischemic Stroke

Brushing for interactive feature localization in (b) reveals the infarction core (a)

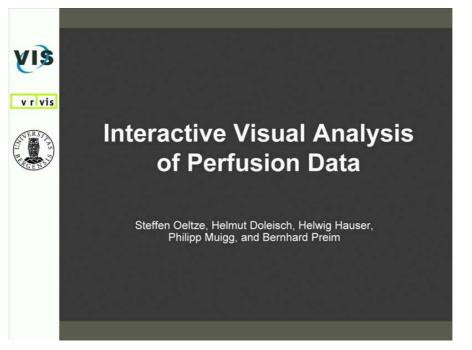

Smooth brushing **a** (d) indicates "tissue at risk" surrounding the core (c)


IEEE Visualization 2008

Interactive Visual Analysis Case Study: Ischemic Stroke


Smooth brushing of pc1 (Amount and Velocity) and pc2 (Time to Enhancement) in (f) yields a very similar result (e) compared to the selection in (c)

 Trends representing typical enhancement patterns may be applied for the detection of suspicious structures



INFOVIS .

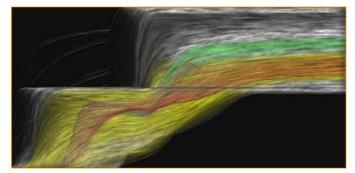
Interactive Visual Analysis Video: Breast Tumor Diagnosis

Supplemental website: http://wwwisg.cs.uni-magdeburg.de/cv/VAoPD/

IEEE Visualization 2008

Visual Analysis of Perfusion Data 23/60

Interactive Visual Analysis Function Graph Visualization


Based on recent work published at EuroVis 2008 [Muigg, 2008]

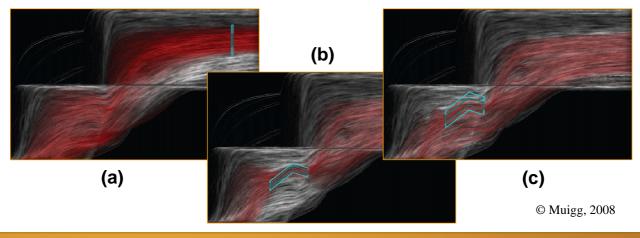
Remember: Physicians are trained to infer tissue characteristics from TIC shape. "They know which shapes they are looking for."

→ Exploitation of this knowledge for feature specification

Function Graph Visualization

- Large number of graphs (time-intensity curves)
- Overdrawing/cluttering
- Provide insight into unprocessed perfusion data

© Muigg, 2008



Time step brushing (a)

• Interval selection based on single time step

Similarity brushing based on

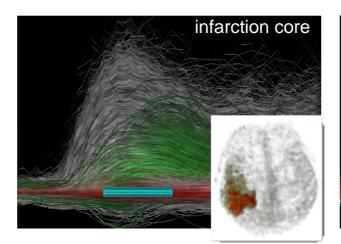
- average distance between data and selection poly-line or on (b)
- derived graphs/selection poly-line (invariant to vert. translation) (c)

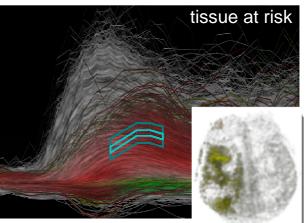
IEEE Visualization 2008

Visual Analysis of Perfusion Data

25/60

Interactive Visual Analysis Case Study: Ischemic Stroke

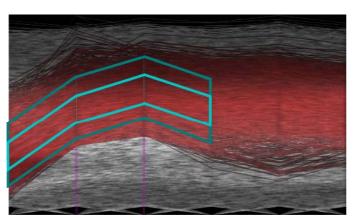

Similarity brushing used to select

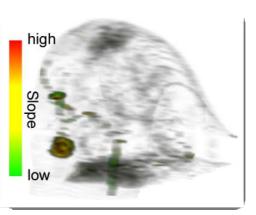

- regions with barely any enhancement
- regions with late enhancement

3D view used to locate selected features

40 time steps ~200,000 function graphs

© Muigg, 2008




Similarity brushing used to select suspicious regions

3D view shows

- · selected features
- context visualization of the breast

6 time steps ~1,000K function graphs

© Muigg, 2008

IEEE Visualization 2008

Visual Analysis of Perfusion Data

27/60

Interactive Visual Analysis *Conclusion*

Integration of pre-processing techniques, statistical methods, and interactive feature specification

Assessment of the reliability of specific perfusion parameters and of inter-parameter correlations

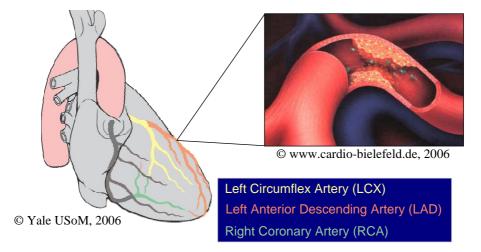
Detection of trends, representing two types of enhancement patterns:

- Typical → applied for detecting suspicious structures
- Atypical → may indicate pre-processing failures

Similarity brushing in function graph representations exploits knowledge of physicians about expected time-intensity curve shape

Compared to pure visual exploration, interactive visual analysis enables a more reproducible evaluation supported by statistical results

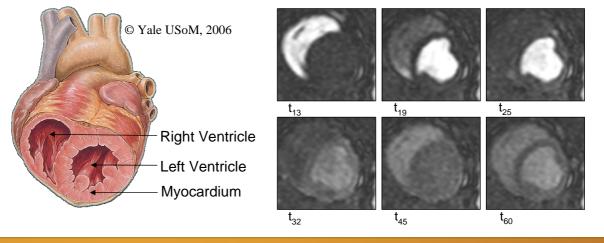
Case Study: Diagnosis of Coronary Heart Disease



<u>Definition:</u> severe stenosis of one or more coronary arteries

Early stage CHD characterized by perfusion defect of the myocardium (heart muscle)

Angina pectoris, cardiac arrhythmia and heart attack may result

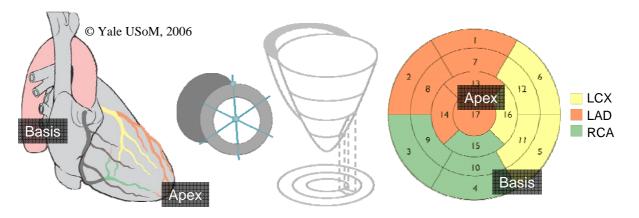


Coronary Heart Disease Data Acquisition

- → Localization and quantification of the perfusion defect
- Exploiting anatomical knowledge about supplying coronary arteries to detect stenosis

ECG-triggered data acquisition during breath-hold at rest (and under stress) in 3-4 cardiac short axis planes

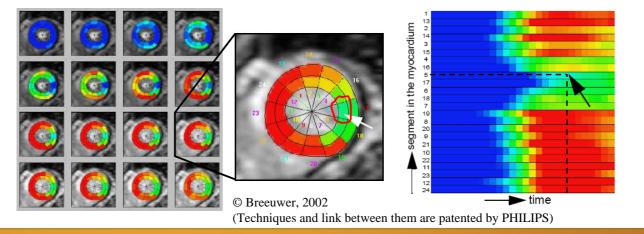
IEEE Visualization 2008


Coronary Heart Disease Segment-wise Analysis

31/60

Visual Analysis of Perfusion Data

- Plotting of perfusion parameters in Bull's Eye Plot (BEP) by means of polar coordinates
- American Heart Association (AHA) 17 segment model specifies relation between myocardial regions and supplying coronary arteries [Cerqueira, 2002]



Uptake Movie [Breeuwer, 2002]:

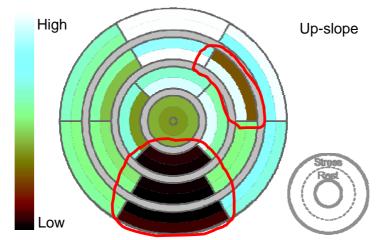
- (Repeated) display of the perfusion images series as a movie
- Intensity values of points or segments are color-coded

Perfusogram [Breeuwer, 2002]:

• Color-coded intensity values as a function of time and place

IEEE Visualization 2008

Coronary Heart Disease Bivariate Bull's Eye Plot


33/60

34/60

Visual Analysis of Perfusion Data

Refined Bull's Eye Plot (BiBEP) [Oeltze, 2006]:

- Integrated visualization of two different parameters
- Rest/Stress-comparison of one parameter
- Identification of areas where perfusion defects first appear or become worse with stress

Coronary Heart Disease Segment-wise vs. Voxel-wise

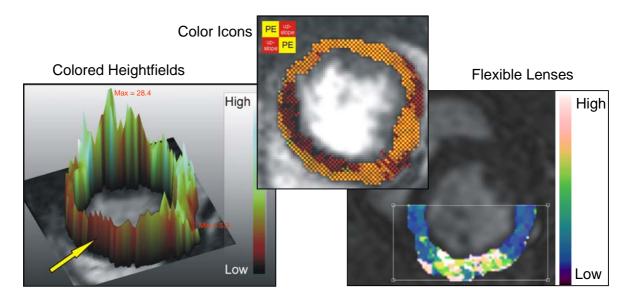
Segment-based analysis compensates artifacts due to low S/N-ratio, heart motion and respiration

Problem: Segments with ischemic and non-ischemic tissue

Advances in image acquisition and motion correction algorithms allow pixel-wise analysis by means of parameter-maps [Panting, 2001]

Integrated visualization of several parameters [Oeltze, 2006]

IEEE Visualization 2008


Visual Analysis of Perfusion Data

35/60

Coronary Heart Disease *Multiparameter Visualizations*

Integrated visualization of several parameters [Oeltze, 2006]

Glyph-Based Visualization of Myocardial Perfusion Data and Enhancement with Contractility and Viability Information

Coronary Heart Disease Glyph-based Visualization

Based on [Paasche, 2007] and [Oeltze, 2008b]

Glyph definition: graphic primitive whose visual attributes (shape, orientation, size, color, ...) encode dimensions of a given datapoint or set of datapoints

Glyph-placement and design are non-trivial tasks [Ropinski, 2008]

- Voxel-wise vs. segment wise placement
- 2D vs. 3D positioning
- · Simple vs. advanced primitives
- Which attribute should reflect which data dimension?
- How many attributes should be used at all?
- ...

Coronary Heart Disease Glyph Placement

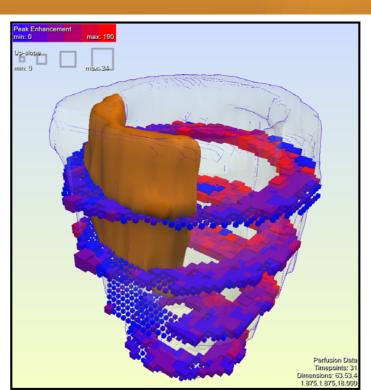
Segment-wise

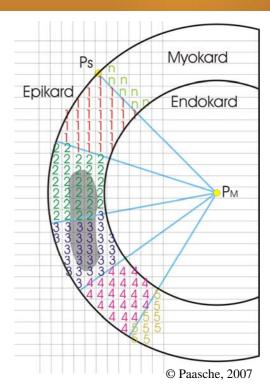
- AHA-conform division of the myocardium (17 segments)
- User-defined division allows more subtle evaluation (x segments per slice)

Voxel-wise

IEEE Visualization 2008

• 250-500 glyphs per slice

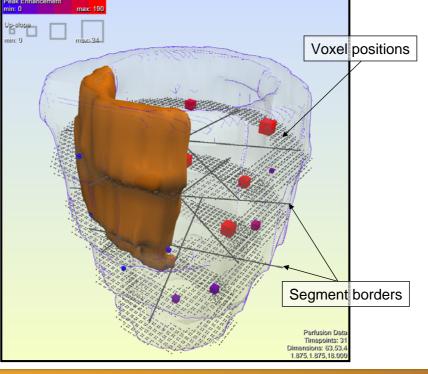

Visual Analysis of Perfusion Data


39/60

INFOVIS . VAST

Coronary Heart Disease Voxel-wise Glyph Placement

Cubes coding perfusion parameters PE (color) and Up-Slope (size)

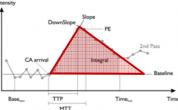


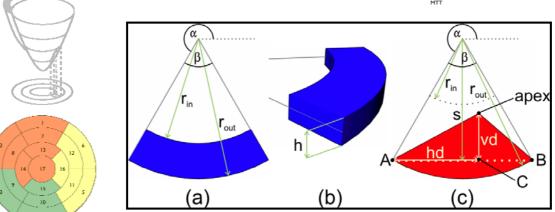
Coronary Heart Disease Segment-wise AHA Glyph Placement

Cubes coding perfusion parameters PE (color) and Up-Slope (size)

IEEE Visualization 2008

Visual Analysis of Perfusion Data

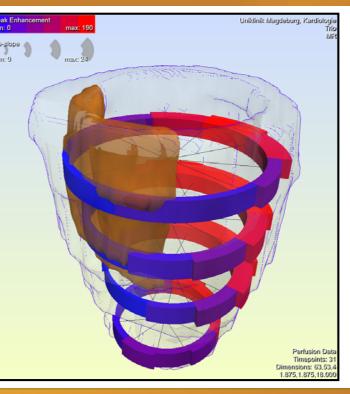

41/60


INFOVIS . VAST

Coronary Heart Disease *Glyph Design*

Advanced Glyph Shapes:

- 3D Bull's Eye Plot Segments (a-b)
- 3D Time-intensity Curves (c)



Coronary Heart Disease 3D Bull's Eye Plot Segments

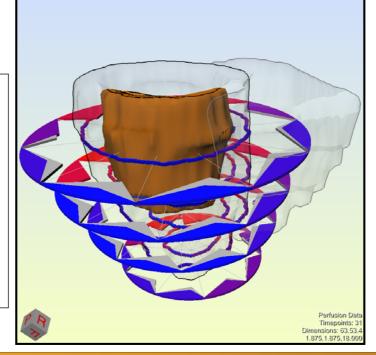
3D BEP segments coding perfusion parameters PE (color) and Up-Slope (size)

User-defined myocardial division

IEEE Visualization 2008

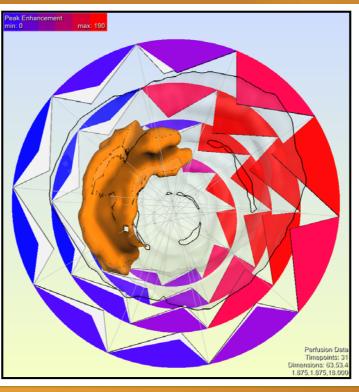
Visual Analysis of Perfusion Data

43/60


Coronary Heart Disease 3D Time-intensity Curves

3D TICs colored according to parameter PE

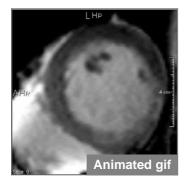
Right ventricle serves as context information

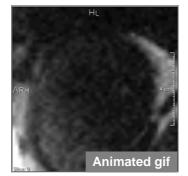

Emphasized ventricular wall supports spatial orientation

Coronary Heart Disease 3D Time-intensity Curves

View along the long-axis of the ventricle provides a good overview presentation (default setting)

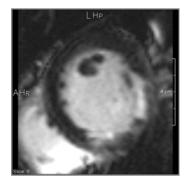
IEEE Visualization 2008


Visual Analysis of Perfusion Data

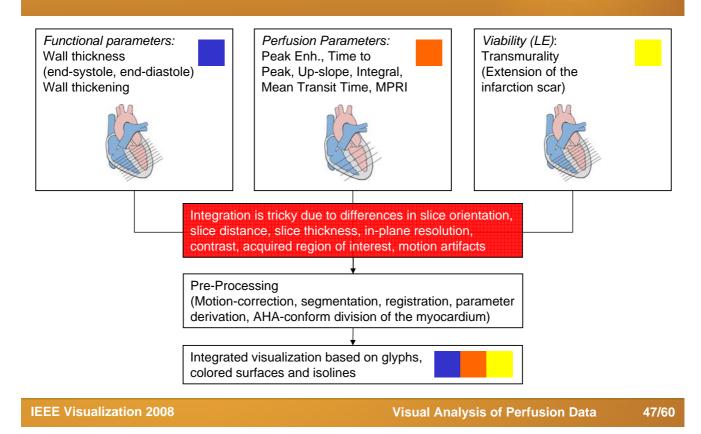

45/60

Coronary Heart Disease Fusing Perfusion, Function & Viability

MR scanning protocol involves in addition to perfusion, the measurement of functional parameters and viability Integration for diagnosis of cardiac ischemia and infarction

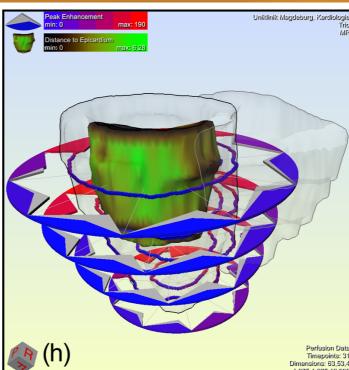

- → Differentiation of ischemic and healthy tissue
- Differentiation of scarred tissue and temporarily inactive but viable myocardium (stunned vs. hibernating)

Function

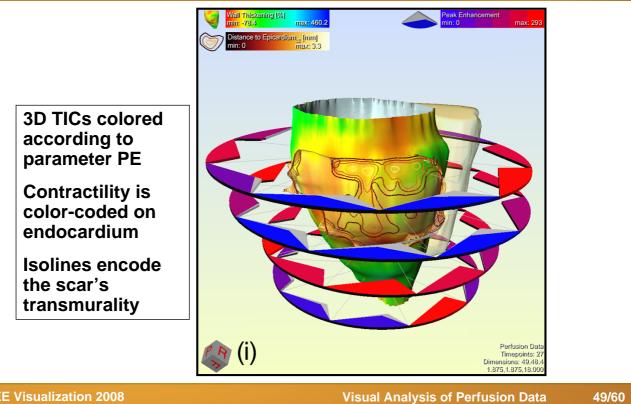

Perfusion

Viability (Late Enhancement)

Coronary Heart Disease Fusing Perfusion, Function & Viability



Coronary Heart Disease Integrating Perfusion and Viability



3D TICs colored according to parameter PE

Transmurality is color-coded on scar

Coronary Heart Disease Fusing Perfusion, Function & Viability

IEEE Visualization 2008

Glyph-based Visualization Conclusion

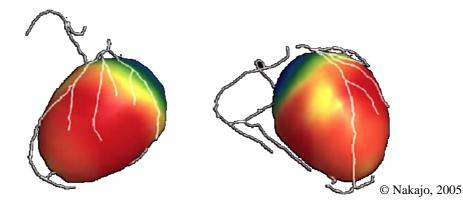
Simple glyph shapes (cube, sphere,...) may be applied in a voxel-wise analysis

Segment-wise analysis benefits from more advanced glyph shapes (3D Bull's Eye Plot Segments and 3D Time-intensity Curves)

Hypothesis: 3D Time-intensity Curves facilitate the most intuitive and easy to learn TIC shape coding \rightarrow Evaluation is pending

Glyphs can be combined with colored surfaces and isolines for an integrated analysis of perfusion, contractility and viability

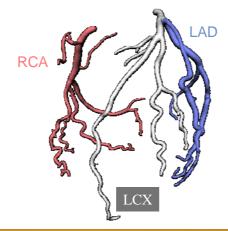
Future Work: Integration of a visualization of the coronary arteries


Integration of Perfusion and Morphologic Data

Correlation of myocardial territories and supplying coronary branches to detect stenosis or to evaluate severity of a known stenosis

Fusion of single photon emission computed tomography (SPECT) and X-ray coronary angiography [Schindler, 1999]

Fusion of SPECT and CT data [Nakajo, 2005]



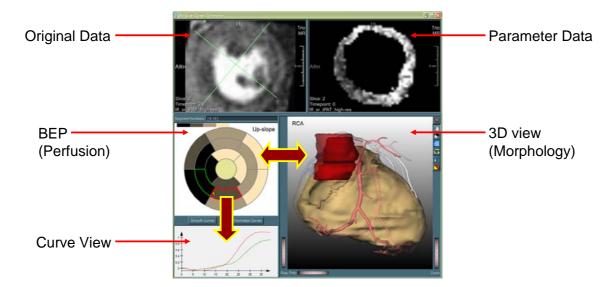
Integrated visualization of MR-perfusion and CT-morphologic data (coronary arteries, aorta ascendens, left ventricle) [Oeltze, 2006]

Segmentation of coronaries/aorta by advanced 3D region growing algorithm [Hennemuth, 2005]

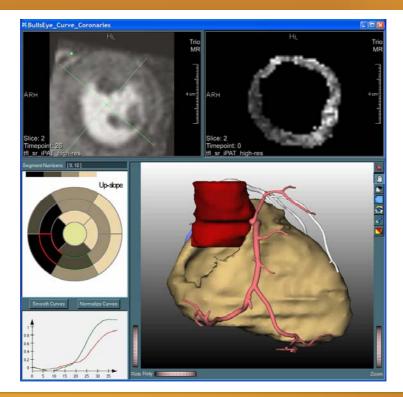
Manual labeling of coronary branches (LCX, LAD, RCA)

IEEE Visualization 2008

Visual Analysis of Perfusion Data


53/60

Coronary Heart Disease Linked Views


Fusion of MR-perfusion and CT-data by establishing bidirectional link between BEP and 3D view

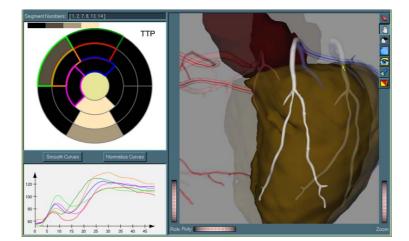
Focusing of supplying branch after picking segments in BEP

Coronary Heart Disease Identifying Supplying Branch (Video)

IEEE Visualization 2008

Visual Analysis of Perfusion Data

55/60


Coronary Heart Disease Identifying Supplied Segments

Accentuation of supplied segments after picking an artery in the 3d-view

User is guided through scene by animations [Mühler, 2006]

Semi-automatic definition of appropriate viewpoint for each artery

- A. Fessel (Dept. of Radiology, University of Magdeburg)
- J. Wiener, Radiology, Boca Raton Community Hospital, Florida
- M. Fenchel, S. Miller and A. Seeger, Max Planck MR-center, University Tübingen
- S. Achenbach, Department of Radiology, University of Erlangen-Nürnberg,
- Siemens Medical Solutions

The presented work is based on the diploma theses of Christian Bendicks, Anja Kuß, Arvid Malyszczyk and Lydia Paasche.

IEEE Visualization 2008

Literature 1/3

57/60

Visual Analysis of Perfusion Data

Breeuwer [2002]: "Comprehensive visualization of first-pass myocardial perfusion: The uptake movie and the perfusogram". In: Proc. of ISMRM.

- Cerqueira [2002]: "Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart". Circulation, 105(4).
- Coto [2005]: "MammoExplorer: An Advanced CAD Application for Breast DCE-MRI". In: Proc. of Vision, Modelling, and Visualization (VMV).
- Hennemuth [2005]: "One-click coronary tree segmentation in CT angiographic images". In: Proc. of Computer Assisted Radiology and Surgery (CARS).
- König [2000]: "Cerebral perfusion CT: theoretical aspects, methodical implementation and clinical experience in the diagnosis of ischemic cerebral infarction". Röfo, 172(3).
- Kohle [2002]: "Exploration of time-varying data for medical diagnosis". In: Proc. of Vision, Modeling, and Visualization (VMV).
- Kuß [2006]: Techniken zur Exploration myokardialer Perfusionsdaten. Master's thesis, University of Magdeburg.
- Mlejnek [2005]: "Profile Flags: a Novel Metaphor for Probing of T2 Maps". In: Proc. of IEEE Visualization.

Mlejnek [2006]: "Application-Oriented Extensions of Profile Flags". In: Proc. of EuroVis.

Mühler [2006]: "Adaptive script based animations for medical education and intervention planning". Technical Report. University of Magdeburg.

- Muigg [2008]: "A Four-level Focus+Context Approach to Interactive Visual Analysis of Temporal Features in Large Scientific Data." Computer Graphics Forum 27(3).
- Nakajo [2005]: "Three-dimensional registration of myocardial perfusion SPECT and CT coronary angiography". Ann Nucl Med, 19(3).
- Oeltze [2005]: "Multiparametervisualisierung zur Exploration dynamischer Bilddaten". In: Proc. of Bildverarbeitung für die Medizin (BVM).
- Oeltze [2006]: "Integrated Visualization of Morphologic and Perfusion Data for the Analysis of Coronary Artery Disease". In: Proc. of EuroVis.
- Oeltze [2007]: "Interactive Visual Analysis of Perfusion Data". IEEE TVCG, 13(6).
- Oeltze [2008a]: "Intuitive Mapping of Perfusion Parameters to Glyph Shape". In: Proc. of Bildverarbeitung für die Medizin (BVM).

IEEE Visualization 2008

Visual Analysis of Perfusion Data 59/60

Literature 3/3

- Oeltze [2008b]: "Glyph-Based Visualization of Myocardial Perfusion Data and Enhancement with Contractility and Viability Information". In Proc. of the first Eurographics Workshop on Visual Computing for Biomedicine (EG VCBM).
- Paasche [2007]: "Integrierte Visualisierung kardialer MR-Daten zur Beurteilung von Funktion, Perfusion und Vitalität des Myokards". In: Proc. of Bildverarbeitung für die Medizin (BVM).
- Panting [2001]: "Echo-planar magnetic resonance myocardial perfusion imaging: parametric map analysis and comparison with thallium SPECT". J Magn Reson Imaging, 13(2).
- Preim [2003]: "Mehrdimensionale Visualisierung dynamischer Bilddaten am Beispiel der Durchblutungsquantifizierung". In: Proc. of Simulation & Visualisierung (SimVis)
- Preim [2007]: "Visualization in Medicine." Morgan Kaufmann.
- Preim [2008]: "Survey of the Visual Exploration and Analysis of Perfusion Data". Accepted for IEEE TVCG. To appear 2008 or 2009.
- Ropinski [2008]: "Taxonomy and Usage Guidelines for Glyph-based Medical Visualization". In: Proc. of Simulation & Visualisierung (SimVis)
- Rueckert [1999]: "Nonrigid registration using free-form deformations: application to breast MR images". IEEE Trans Med Imaging, 18(8).
- Schindler [1999]: "Fusion imaging: combined visualization of 3D reconstructed coronary artery tree and 3D myocardial scintigraphic image in coronary artery disease". Int J Card Imaging, 15(5).