

Advanced Visual Medicine: Techniques for Visual Exploration & Analysis

Image-guided Surgery and Medical Mixed Reality

Dirk Bartz

Visual Computing (ICCAS), University of Leipzig dirk.bartz@iccas.de

Image-guided Surgery (1)

- Image-guided Surgery (IGS)
- Tracks instruments during intervention
- Representation of instruments in patient dataset
- Requires tracking technique
 - Magnetic tracking
 - Interference with metallic objects
 - Small magnetic field
 - Complex setup
 Does not require line-of-sight
 Can track (invisible) tip of instrument

Image-guided Surgery (1)

- Tracks instruments during intervention
- Representation of instruments in patient dataset
- Requires tracking technique
 - Magnetic tracking
 - · Optical (infrared) tracking
 - Tracks only end of instrument
 - Requires line-of-sight
 High accuracy
 No (little) interference

IEEE Visualization 2008

Image-guided Surgery and Medical Mixed Reality

3/56

Image-guided Surgery (1)

- Tracks instruments during intervention
- Representation of instruments in patient dataset
- Requires tracking technique
 - Magnetic tracking
 - · Optical (infrared) tracking
 - Video tracking
 - Low accuracy
 - Requires line-of-sight Simple setup

Image-guided Surgery (1)

- Tracks instruments during intervention
- Representation of instruments in patient dataset
- Requires tracking technique
 - Magnetic tracking
 - · Optical (infrared) tracking
 - Video-tracking
- Requires registration of patient to dataset

IEEE Visualization 2008

Image-guided Surgery and Medical Mixed Reality

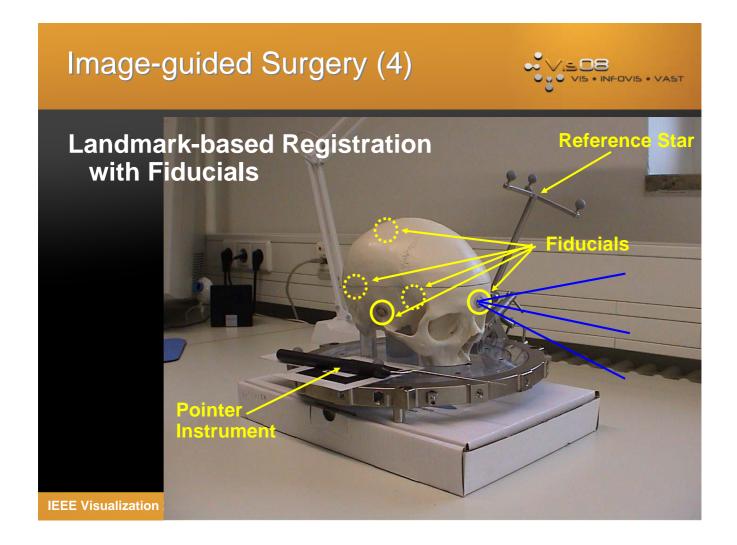
5/56

Image-guided Surgery (2)

Registration:

- Computes relationship between patient (OR coordinate system) and image dataset
- Usually rigid transformation: Rotation, Translation
- Landmark-based (fiducial markers)
- Pointset-based (laser pointer, ICP)

Image-guided Surgery (3)


Landmark-based Registration with Fiducials

In maxillo-facial surgery, 2.4 screws, placed in asymmetrical positions, are used as fiducials

IEEE Visualization 2008

Image: Maxillo Facial Surgery Tübingen]

Image-guided Surgery (5)

Landmark-based Registration with Fiducials

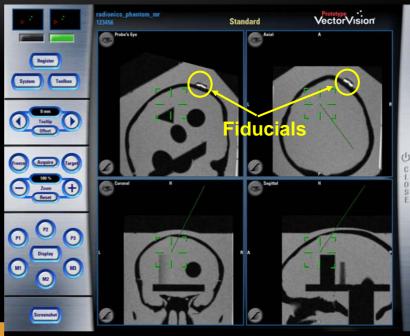
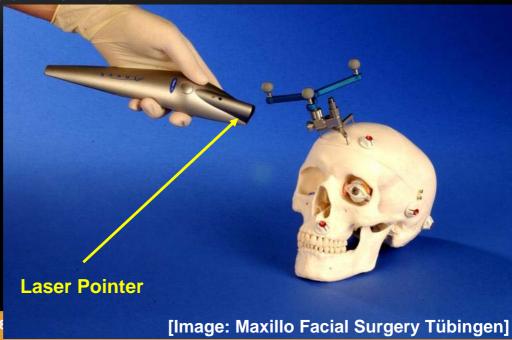

IEEE Visualization 2008

Image: Maxillo Facial Surgery Tübingen]

Image-guided Surgery (6)

Typical Image-based Navigation/Surgery (IGS)

IEEE Visualization 2008


radionics phantom mr 123456

1/14/2004 - 10:07 AM

Image-guided Surgery (7)

Pointset-based Registration with Laser Pointer

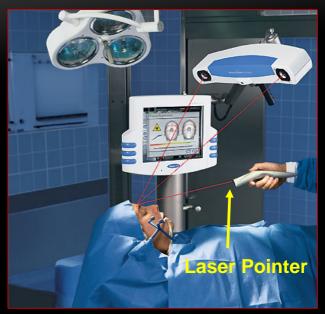
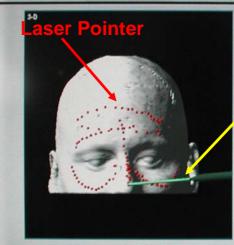

IEEE Visualization 2008

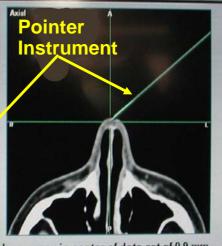
Image-guided Surgery (8)

Pointset-based Registration with Laser Pointer

- Laser point is seen by infrared cameras
- Pointsets are measured
- Registration by ICP

IEEE Visualization 2008


Image: Maxillo Facial Surgery Tübingen]


Image-guided Surgery (9)

Patient Registration

The matching succeeded with a predicted accuracy in center of data set of 0.9 mm.

Please check accuracy!

IEEE Visualization 2008

[Image: Maxillo Facial Surgery Tübingen]

Image-guided Surgery (10)

Optical (infrared) Tracking

Infrared Camera 1

Marker Clamp

Surgical Tool

Infrared Sources

Infrared reflecting spheres

Reference Star

Infrared Camera 1

Image-guided Surgery (11)

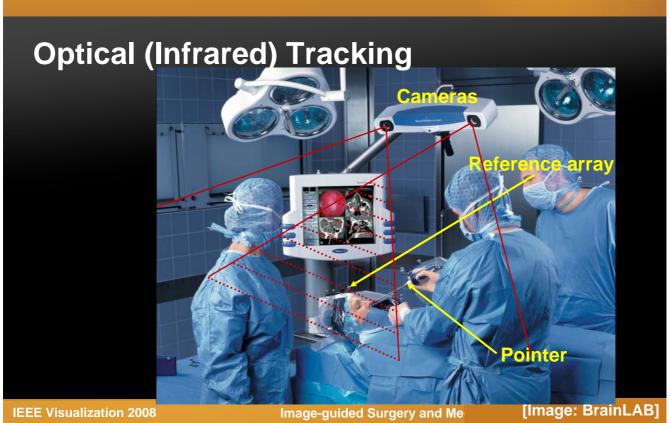


Image-guided Surgery (12)

Issues

- Accuracy: The better the registration, the better the accuracy is
- Occlusion of markers: tracking not possible
- Visibility: Only visible end of instruments is tracked (ie., minimally-invasive surgery)
- Adaptiveness: Marker clamp needs to be fixed to instrument

Image-guided Surgery (13)

Issues, cont'd

- Tissue deformation
 - IGS typically depends on preoperative data acquisition
 - Depending on target area, significant deformations may take place (ie., Brainshift)
 - Deformations occur not uniformly (may be small in target area)
 - Data is not up-to-date, or intra-operative imaging is required

IEEE Visualization 2008

Image-guided Surgery and Medical Mixed Reality

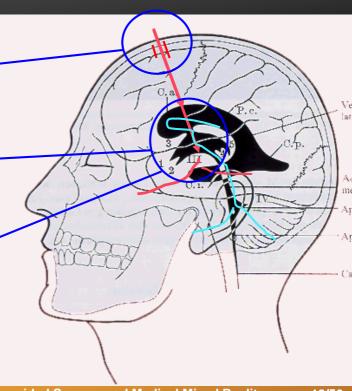

17/56

Image-guided Surgery (14)

Example for Brainshift

- Drilled hole in skull: significant deformations
- Ventricular system: negligible deformations
- After ventriculostomy: (still minor) deformations

IEEE Visualization 2008

Image-guided Surgery and Medical Mixed Reality

18/56

Image-guided Surgery (15)

Tissue Deformation

- Head: Can be potentially controlled (setup)
- Abdomen: Very difficult to control (permanent non-uniform deformations)
- Heart/Lungs: Might be controllable by heart/breathing monitor (periodic movement)

IEEE Visualization 2008

Image-guided Surgery and Medical Mixed Reality

19/56

Intra-operative Imaging (1)

Possible with

- MRI (OpenMR, intra-operative fullfield MR)
- X-rays (C-arm, intra-operative CT)
- Ultrasound
- Endoscopic scanners

Images need to be **registered** with patient and preoperative acquired dataset (ie., marker clamp is **fixed to ultrasound probe**)

Intra-operative Imaging (2)

OpenMR

- Allows direct, but limited access to patient
- Low field scanner (ie.,0.2T-0.5T): limited image quality
- Requires MR-suitable instruments and OR

IEEE Visualization 2008

Image-guid Image: Brigham & Womens Hospital

Intra-operative Imaging (3)


Intra-operative full-field MR (1.5T)

- Patient is moved on OR-table in and out of MR scanner
- Requires MR-suitable instruments and OR
- Expensive and complex system (requires shielded cabin)

Intra-operative Imaging (4)

Intra-operative full-field MR (1.5T)

Intra-operative Imaging (5)

C-Arm / intra-operative CT

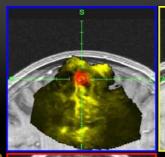
- X-ray images
- 2D (C-Arm)
- Lower quality as extra-operative scanning
- Radiation

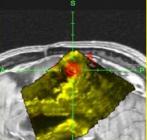
Intra-operative Imaging (2)

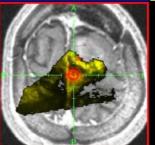
Ultrasound

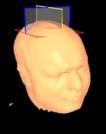
- Emits soundwaves and records echo
- Truly interactive scanning
- Very noisy, difficult to interpret
- Various modes
- Often used for abdomen, brain, heart

IEEE Visualization 2008


[Images: Siemens Medical Solutions]


Intra-operative Imaging (3)

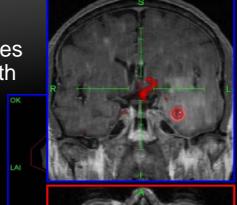


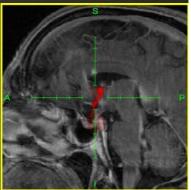

Ultrasound

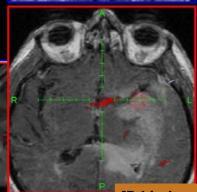
- Used to adapt to brainshift or other tissue deformations (resection control)
- Lacks good spatial orientation
- What additional instrument is used?

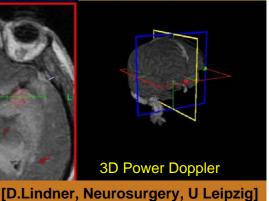
Tumor remnant at red area

• 5% difference between 3D US and post MRI


Intra-operative Imaging (4)




Ultrasound


 Use typically requires the registration with pre-operative datasets (neurosurgery: often MRI)

 Addional US functionality: Doppler for blood flow

IEEE Visualization 2008

Intra-operative Imaging (5)

Endoscopic Scanners

- Introduced through endoscope to target area
- Laser scanner for geometric measurements

 Holographic scanners for volumetric measurements (depends on optical properties

though)

 No (little) available devices, mostly research

IEEE Visualization 2008

Image-guided

Medical Mixed Reality (1)

- Real world viewing device needs to be tracked
- Fusion of real and virtual videostreams
- How to handle virtual objects behind the real objects (occlusion handling)

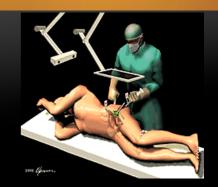
IEEE Visualization 2008

Image-guided Surgery and Medical Mixed Reality

29/56

Medical Mixed Reality (2)

Combines virtual and real world in a mixed reality (augmented reality)


- Tracking method
- Display method
 - Head-Mounted-Displays (HMDs):
 - Too cumbersome/bulky for surgery
 - Too limited perception and motion
 - Video see-through devices
 - Standard display (monitor) plus video camera

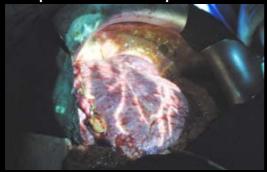
Medical Mixed Reality (3)

Video/Semi-See Through

- Registered TFT for virtuality
- See-through for reality
- But, reduced visual quality

IEEE Visualization 2008

Image-guided Surgery and Medical Mixe


[Schwaldt, 2002]

Medical Mixed Reality (4)

Projection

- Poor quality without good projection screen
- Occlusion by objects between projector and screen
- Requires more space

[Ritter et al., 2006]

Medical Mixed Reality (6)

Standard display and Camera

- Post processing → good quality
- Navigated display or navigated camera

[Images: VCM L/TÜ]

IEEE Visualization 2008

Image-guided Surgery and Medical Mixed Reality

33/56

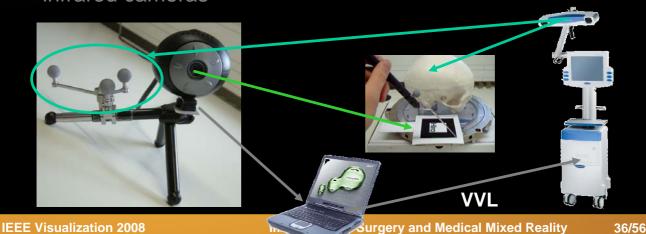
Medical Mixed Reality (7)

Various Medical Mixed Reality Projects

- Mixed Endoscopic Reality [Dey et al., MICCAI 2000]
- Ultrasound and HMDs [Sauer et al., ISAR 2001]
- Minimally-invasive liver surgery [Scheuering et al., Medical Imaging 2001]
- MEDARPA [Schwald et al., **ISMAR 20021**
- ARSys-Tricorder [Goebbels, **CURAC 2003**]

Medical Mixed Reality (8)

IEEE Visualization 2008


Image-guided Surgery and Medical Mixed Reality

35/56

Medical Mixed Reality (9)

- Infrared cameras see patient (skull) and video marker
- · Infrared cameras see marker clamp on webcam
- · Webcam sees video marker (ARToolkit)
- System computes transformation between webcam and infrared cameras

Medical Mixed Reality (10)

Camera is moving

Medical Augmented Reality based on Image Guided Surgery

Overlay of manually placed tumor model

IEEE Visualization 2008

Image-guided Surgery and Medical Mixed Reality

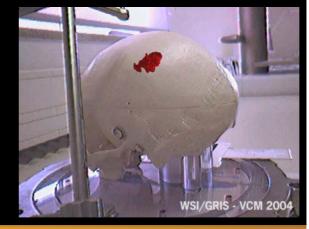

37/56

Medical Mixed Reality (11)

Issue

- High position accuracy, but lower orientation accuracy
 - visual vibrations due to small errors in orientation
- Occlusion

IEEE Visualization 2008


Image-gu

Medical Mixed Reality (12)

Standard MMR

- Virtual objects are painted over video stream
- Does not allow correct depth perception
- Objects behind should be
 - not painted at all
 - painted differently (semi-transparent, etc.)

IEEE Visualization 2008

Image-guided Surgery and Medical Mixed Reality

39/56

Medical Mixed Reality (13)

Occlusion Issue

- Video stream is 2D, hence it does not contain depth information
- Virtual objects are 3D and maintain depth information
- Medical mixed reality requires correct depth sorting for depth perception
 - → We need to recover depth information

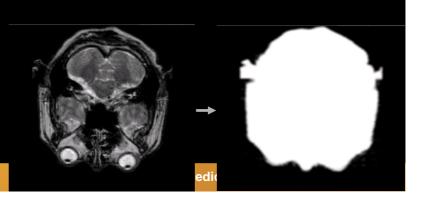
Medical Mixed Reality (14)

Recovery of 3D Depth Information

- Have preoperative acquired patient dataset
- Extract phantom geometry of patient
- Render phantom into depth buffer for depth sorting only
- But: Phantom is usually too complex for mandatory interactivity
 - → Simplify phantom

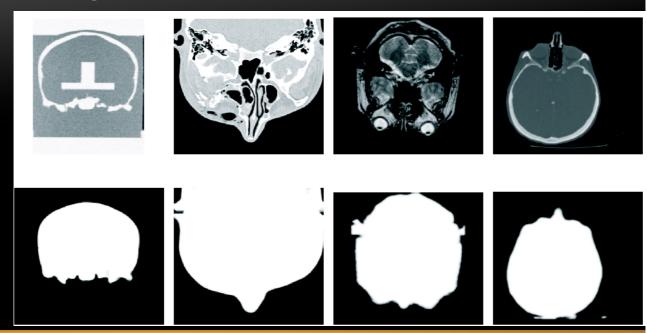
IEEE Visualization 2008

Image-guided Surgery and Medical Mixed Reality


41/56

Medical Mixed Reality (15)

Simplify Phantom


- Clean dataset (Gauss, opening/closing)
- Compute visual hull (cull interior details): First-hit ray casting
- Smooth result (Median, Gauss)
- Extract isosurface

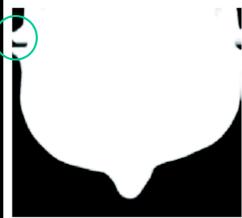
Medical Mixed Reality (16)

Examples

IEEE Visualization 2008

Image-guided Surgery and Medical Mixed Reality

43/56


Medical Mixed Reality (17)

Small Imperfections

- Ray-casting does not catch all details, in particular details in non-convex areas
- But accuracy sufficient for virtually all cases

Medical Mixed Reality (18)

Correct Occlusion Handling

• Details at cheek bone are also handled correctly

IEEE Visualization 2008

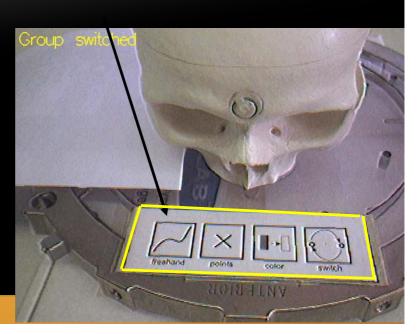
Image-guided Surgery and Medical Mixed Reality

45/56

Medical Mixed Reality (19)

Interaction in the OR

- Assisting personnel
- Pedal-button (hard to find the right one)
- Tracked instruments


Medical Mixed Reality (20)

Interaction in the OR

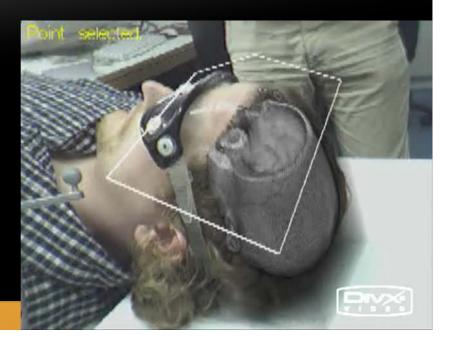
- Calibrated, sterilizable stickers
- Once calibrated, interaction can be measured by tracking system
- Flexible functionality (ie., screen shots, mapping of volume, etc.)

IEEE Visualization 2008

Medical Mixed Reality (21)

Interaction in the OR

- Calibrated, sterilizable stickers
- Once calibrated, interaction can be measured by tracking system
- Flexible functionality (ie., screen shots, mapping of volume, etc.)



Medical Mixed Reality (22)

Interaction in the OR

 Specification of target points

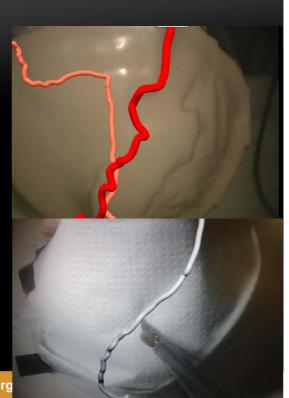
IEEE Visualization 2008

Medical Mixed Reality (23)

Application in Heart Surgery

- 3D printing phantom
- Risk structures on basis of optical/electrical conductor

Medical Mixed Reality (23)



Application in Heart Surgery

- 3D printing phantom
- Risk structures on basis of optical/electrical conductor

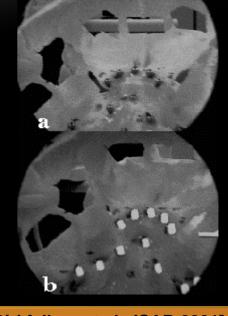
Medical Mixed Reality (24)

Various Medical Mixed Reality Projects

- Needle biopsies with Ultrasound and HMD
- Supporting visualization of organs, risk structures etc.

IEEE Visualization 2008

Image-gu [Image: Bajura et al., SIGGRAPH 1992]


Medical Mixed Reality (25)

Various Medical Mixed Reality Projects

 VarioscopeAR – Augmented Microscope

IEEE Visualization 2008

Image-guided Surger [Birkfellner et al., ISAR 2001]

Medical Mixed Reality (26)

Various Medical Mixed Reality Projects

• Liver Surgery: Supporting visualization of organs, risk structures etc.

Summary

- Image-guided surgery uses tracking and registration to match patient dataset to patient on OR table
- Occlusion issue needs to be solved
- Tissue deformation may be a significant problem for image-guided surgery
- May require intra-operative imaging
- Simulation of tissue deformation is still too far off

IEEE Visualization 2008

Image-guided Surgery and Medical Mixed Reality

55/56

Acknowledgements

University of Leipzig

- Arun Vorunganti, Daniela Wellein, Silvia Born: ICCAS
- Dirk Lindner, Christos Trantakis, Jürgen Meixensberger: Neurosurgery

University of Tübingen

- Jan Fischer, VCM
- Jürgen Hoffmann, Maxillo-Facial Surgery
- Marcos Tatagiba, Neurosurgery

BrainLAB

Markus Neff, Robert Schmidt, Rainer Birkenbach