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A Short Presentation

« B. Preim is computer scientist with a background in computer
graphics, visualization and HCI

« Staff member at MeVis Research (1999-2003)

 Current research:

— Basic methods of medical visualization, virtual endoscopy and
augmented reality

— (3D) interaction techniques for surgical planning and training
— (perception-based) evaluations of medical visualization techniques

— Applications in ENT surgery, liver surgery, orthopedics, cardiology
and recently orthopedics
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Content

2D and 3D Visualization for the Exploration of Medical | (15 min.)
Volume Data
Surface Visualization (30 min.)
- Marching Cubes and its improvements
- Smoothing of surface visualizations
Direct Volume Visualization (30 min.)
- Ray casting and texture-based approaches
- Projection methods
3D Vessel Visualization (45 min.)
Virtual Endoscopy (30 min.)
Virtual and Augmented Reality (15 min.)

Visualization Research Group
}” University of Magdeburg

Bernhard Preim - CARS Tutorial

s (



Medical Volume Data

e Play anincreasing role (~ 70 mio. CT examinations world wide per year,
2008)

e Regular data in an orthogonal lattice
e Resolution:

— Anisotropic datasets (slice distance > distance of pixels in the slice)

— Typical:  CT or MRI data: 512x512 per slice,
80-250 slices, resolution: 12 bit per slice,
~20-50 Mvoxel

— High-End: Multi-Slice CT: 1024x1024 per slice,
up to 2000 slices (whole body scans),
~ 4000 MVoxel

e Lessusual: PET, SPECT with a lower resolution
e Emerging: 3D Ultrasound (no regular grid)

I Visualization Research Group 4 (
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2D and 3D Visualization for the Exploration of

Medical Volume Data

e 3D visualizations:
— clearly arranged, descriptive, intuitive
— give an overview on spatial relations

e 2D visualizations:
— are common in radiological diagnostics
— permit the precise evaluation of structures
— permit exact selections (for measurements, ...)

e Combination of both representations with suitable
synchronizations

I Visualization Research Group
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2D and 3D Visualization for the Exploration of

Medical Volume Data

e Synchronized 2D and 3D views.

e The crosshairs in one of the
orthogonal 2D views can be
used to select the slice
displayed in the other two 2D
views.

e Brightness and contrast of one
view can be transferred to
other views.

Visualization Research Group
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2D and 3D Visualization for the Exploration of
Medical Volume Data

Images Dorte Apelt, Fraunhofer MEVIS
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2D and 3D Visualization: Measurement
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Distance measurement in 3D and 2D visualization. The
endpoints of the lines can be moved in both views, whereas
the respective view is adapted.
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2D and 3D Visualization: Measurement

Automatic Measurements vs. Interactive measurements. The correct
extent of a metastasis was significantly underestimated with a 2D slice
view by experienced radiologists.

Images Ivo Rossling, Univ. Magdeburg
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2D and 3D Visualization: Placement of
Applicators

e Placement of the applicator into the center of a metastasis in 2D
(the active zone is red).

e Placement of the applicator by means of a 3D visualization, whereas
the bones are displayed as volume rendering, and the liver surface
and the metastases are displayed as isosurfaces.
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2D and 3D Visualization: Placement of
Applicators
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Videos from Arne Littmann,
Fraunhofer MEVIS
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Surface Visualization

Visualization of isosurfaces and
segmentation results
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Surface Visualization

Visualization of isosurfaces and
segmentation results
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Surface Visualization: Introduction

Assumption:
e Relevant structures are segmented.

e Segmentation is model-based (Snakes, ...), with “classical” procedures (Region
Growing, Watershed, ...), or manually

e Segmentation result is binary represented at the voxel level (1 for the foreground,
0 for the background).

Visualization: 15t idea: presentation of the voxels (“Cuberille” approach)

Herman, Liu (1979)

I Visualization Research Group
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Surface Visualization: Introduction

Visualization, better idea:

e linear interpolation, depiction on a polygonal surface (isosurface for the
value 0.5)

e definition of vertices, triangulation, definition of normals
e rendering by using the graphics hardware

How can this be realized?
e follow the outlines
— very difficult in 3D, many case distinctions

e Locally independent inspection of the cells. Determine how the cell is
cut from the surface.

— basic idea of Marching Cubes (patented in 1985, published in 1987)

I Visualization Research Group
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From Contours in Slices to Surfaces

Which problems need to be solved?

e (Correspondence. (which contour of
one slice belongs to a contour at the
next slice)

e Triangulation (Tiling). C1 and C2 be
corresponding contours. How shall
these contours be connected
through triangulation?

e Branching problem. If the number of
contours in one slice Sn is different
to the number of contours in the
neighbor slice Sn+1.

Visualization Research Group
}” University of Magdeburg
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,Surfaces from Contours®, Meyers
et al. (1992)
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From Contours in slices to Surfaces

e Correspondence problem. Comes up, if the following applies:

The contours C1 (Sn) and C1 (Sn+1) belonging to an object do not overlap
themselves, and the number of contours belonging to one objectis > 1 in Sn

and/or Sn+1.

e What does Marching Cubes?
— An overlapping of contours in neighbored slices is assumed.

— Limitations? In case of a large slice distance or thin objects which
proceed diagonal to the slices.

— If the requirements are not fulfilled, separate surfaces are generated.

-

e |nsuch cases, correct solutions are complex.
— Interpolation of intermediate slices often helps.
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Surface Visualization: Marching Cubes

e Consideration of the 2D case (Marching Squares). Isoline for iso=0.5.

e Ambiguity:
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© Dirk Bartz
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Surface Visualization: Marching Cubes

Extension to 3D:

e there are 14 topologically
different cases of how a cell can Case0  Case 1
proceed through a surface.

Procedure (rough): Case4  Case5

e determine the case for each cell. S

e determine the triangles if the cell
is cut. Case 8 Case 9 Case 10 Case 11

Case 12 Case 13 Case 14

© Dirk Bartz
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Surface Visualization: Marching Cubes

Marching Cubes

Purpose: transfer of the voxels of a volume with a given
value into a triangle net (Lorensen et al. [1987])

Procedure:

1. Consider cells from 4 voxels of the slice k and 4 voxels of the
slice k+1

2. Check out which vertices are lying above the threshold value,
create an index

3. Determine the involved edges

Determination of points at these edges through linear
interpolation

5. Connection of these points to create triangles

I Visualization Research Group
}” University of Magdeburg
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Indirect Volume Visualization: Isosurfaces

Marching Cubes

Step 2:

V,, Vs, Vg, Vg— above,
V,, V3, V,, V,— below
Index: 1000 1101
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Step 4: Linear interpolation

Example: determination of e, to the edge
(V1; Vz)

el)= v, + (isoval = f(v,)) / (f(v,) - f(v,)) * (v,—
V1

© Alexandre Telea
Step 5: Triangles
(ey €5 €11  (eg,€5€)
(e, €g €;) (€1, €10, €6)
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Surface Visualization: Marching Cubes

What is important about Marching Cubes?
e Simple

e Compared to Cuberille: Better surface reepresentation through
linear interpolation

— But: Viewers are also sensitive for discontinuities of the first and second
order derivative

e Ambiguities and inconsistencies, no treatment of the corres-
pondence problem, no optimal solution for the tiling problem

e Relatively precise, but improvable

e Relatively fast procedure
— But: A lot of time is spent on cells which do not contribute to the surface

e Fast rendering

I Visualization Research Group 22 (
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Surface Visualization: Marching Cubes

Quality problems through linear interpolation and
Gouraud shading

Virtual bronchoscopy

© Dirk Bartz
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Surface Visualization: Marching Cubes

Case 3

~_

e Holes in the surface arise, if, for the neighbored cells, once the
decision is made to divide the intersections and once the decision is
made to connect them.

© Dirk Bartz
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Surface Visualization: Marching Cubes

e How can this inconsistency be corrected?

— Interpolation of points at the interface. The state of this point
(above/below) is decisive (Nielsen, Hamann [1991])

— Usage of the complete case list (Schroder et al. [1998])
— Decomposition of the cells into tetrahedrons (Shirley, Tuchman [1990])

e How can Marching Cubes be accelerated?

— Fast recognition of areas that are not affected by the surface.
Representation of the scene through hierarchic data structures, e.g.,
min-max-octrees (Wilhelms, van Gelder [1992])

I Visualization Research Group
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Surface Visualization: Smoothing and Noise

Reduction

Problem:

Generation of surface models from segmentation results leads
to artifacts, especially in case of strongly anisotropic data

MR data, 3D visualization, picture

I Visualization Research Group Bernhard Preim - CARS Tutorial
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Surface Visualization: Smoothing and Noise

Reduction

General practice:
e Interpolation of intermediate slices
e “Manual“ smoothing
e.g., in vtk (vtkSmoothPolyDataFilter), itk, 3D Studio, Amira

Disadvantages

e complex trial-and-error process

e not reproduceable, not standardized
e only visual control

I Visualization Research Group 27 (
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Surface Visualization: Smoothing and Noise

Reduction

Extraction of surfaces

Voxel level Surface level

I
Raw data .‘ Filtering ) mentation .‘ Filtering > Surface ) Filtering
| =0 -Extraction |
| 1

Pipeline of algorithms for the post-processing of segmentation
results (e.g., closure of holes), surface generation and
subsequent smoothing

Adaptation of the respective procedures to
e the class of anatomic structure (e.g., tumor, organ, ...)

* imaging or segmentation parameters (e.g., slice distance,
model-based segmentation)

Visualization Research Group
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Surface Visualization: Smoothing and Noise

Reduction

e Smoothing of the segmentation result through smoothing filters
(e.g., Gauss) or morphologic methods

Surface level

Voxel level

Raw data .‘ Filtering »| Segmentation —p Filtering > Surface > Filtering
I _ -Extraction |
| 1

/ e First, erosion and

modification:

'oJo[o[o]of0fo0 06263333266

00 D/ﬁlnmu 100) O , 1 1

0 (00100 100/100/100| © v=vy— (Vg —vp)x3g

O ¥00/100/100/100/100f O e Afterwards, twice dilatation

|2 Nomo 109/ O and modification:

0O 0 00000

. N d

Source: Neubauer et al., IEEE Visualization 2004 'V = Uper — (V2 — V1) % 3 50
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Surface Visualization: Smoothing and Noise

Reduction

e Smoothing of the segmentation result through
morphological methods

Visualization Research Group
University of Magdeburg
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Smoothing of Surfaces

e Large amount and diversity of methods

e (Clear application in the CAD area and for the smoothing
of models which have been acquired with the laser
scanner.

e CAD area: preservation of sharp (orthogonal) edges with
preferably optimal smoothing of planar areas

e Medical surface models: barely sharp edges, curvatures
are partly changing very fast, "large" models

I Visualization Research Group
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Smoothing of Polygonal Surfaces: Requirements

Analog to the smoothing of image data:
e Elimination of high frequency noise at the receipt of features
Measures/Evaluation:
— curvature plots, total curvatures
e Speed
e Accuracy
Measures:
— distances between the original surface and the smoothed surface
— volume maintenance

I Visualization Research Group
}", University of Magdeburg
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Smoothing of Polygonal Surfaces

e |terate over all vertices and replace each vertice through a weighted
average from its former value and the vertices from the surrounding

e Which surrounding?
— vertices in a specific distance (Euclidean distance)

— vertices which are connected to the current vertice (directly or
through a path of length n) (topological distance)

— Typical: vertices in the topological distance of 1 or 2

‘ Second order neighbors
- Direct neighbors

Bernhard Preim - CARS Tutorial 33 (
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Smoothing of Polygonal Surfaces:

Laplace Smoothing

e Considers the points g_i in the topological distance of 1
e Parameter: smoothing factor a and number of iterations

e Realized in vtk (vtkSmoothPolyDataFilter), ...
e Simple, fast realization

e Causes strong (uncontrolled) shrinkage and the favored smoothness is
often only achieved through total smoothing of minor features

smoothing with a = 0.5
and 20 iterations

Laplace
YW=100% “=80,8%

I Visualization Research Group
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Smoothing of Polygonal Surfaces:

Laplace Smoothing with Correction

e (Correction to maintain the volume

e In each step, modified nodes are shifted back about a certain
value (the average of all shiftings in the considered
surrounding)

e Additional parameters:

— How strong is the shifting in direction to the original point?
— How is the shifting of the neighbors considered?

Visualization Research Group . .
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Smoothing of Polygonal Surfaces:
Laplace Smoothing with Correction

Criginal Laplace Laplace+HC
Y=100% W=80,8% Y=99,8%

From: Vollmer et al., ,Improved Laplacian Smoothing of
Noisy Surface Meshes”, Eurographics, 1999

I Visualization Research Group
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Smoothing of Polygonal Surfaces:

Low-pass Filtering

e Alternating implementation of two filterings similar to Laplace
with different factors o and u

n—1
p=p+AY wilg—p)
1=0

e Filtering: usually 1/n (all neighbors have the same influence; like
Laplace)

e Selection of u: a bit smaller than a
e Default: - u=-1.02 a (Taubin, 1995)

Bernhard Preim - CARS Tutorial
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Smoothing of Polygonal Surfaces:

Comparison of Elementary Methods

Criteria: Quality, volume maintenance (measurement in Amira), run time
Methods/parameters:

Laplace, Laplace with correction, Low-pass

Different iteration steps: 5, 10, 20, 50

Different weighting factors: 0.05, 0.1, 0.3, 0.5, 0.7, 0.9

Different neighborhood: 1, 2 (topological)

v

Leber Lymphknoten | Kopfwendemuskel | Beckenknochen

Halsschlagader
Faces 37.148 3.412 9.616 53.930 1.956
Vertices | 18.576 1.708 4.804 27.211 982
Voxel |1.696.250 |1.664 101.035 430.318 16.404

I Visualization Research Group

/,‘,, University of Magdeburg Bernhard Preim - CARS Tutorial



Smoothing of Polygonal Surfaces:

Comparison of Methods

VVVYvYvev

Original Laplace Laplace+HC LowPass Laplace+HC LowPass
2. Ordnung 2. Ordnung
V=100% V=91,0% V=99,9% V=100,1% V=99.6% V=100,2%
2.03s 3.91s 4,365 224.14s 220.95s
Criginal Laplace Laplace+HC Laplace 2. Ordnung+HC LowPass LowPass 2. Crdnung
Y=100% W=80,3% W=00,8% W=05,2% Y=100,0% W=00, 2%

Smoothing factor: 0.5, 20 iterations

I Visualization Research Group
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Smoothing of Polygonal Surfaces:
Comparison of Methods

Y=100,4%

All images with smoothing factor 0.5 and 10 iterations

I Visualization Research Group
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Smoothing of Surfaces: Comparison of Methods

Criginal Laplace Laplace+HC Laplace 2. Crdnung+HC LowPass LowPass 2. Ordnung
Y=100% W=102,2% W=102,2% W=B2,7% W=104,3% %=099,3%

Carotid artery: Smoothing factor: 0.7 and 10 iterations
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Smoothing of Surfaces: Comparison of Methods

(@) (b) (c) (d) (€) ()

Original, low-pass filtering with one neighborhood and extended
neighborhood as well as the corresponding curvature values.
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Distance-Aware Smoothing

Mesh smoothing considering clinically
relevant constraints

* Volume preservation (e.g. tumors)
* Shape preservation

* Preservation of distances between
structures

(From: M6nch [2010], VCBM)
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Distance-Aware Smoothing

Clinically relevant aspects

e Estimation of security margins
e Risk assessment in planning of interventions and surgery
e Consider spatial relations in smoothing

(From: Monch [2010], VCBM)
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Distance-Aware Smoothing

e Computation of minimal Euclidean distances to all (relevant) neighbor
structures

e Scaling of the smoothing parameters depending on the distance to risk
structures

== Direct Linear Scaling
0,9 | seess Linear Scaling with Safety Margin a4

= =Exponential Scaling -/

- -I'“'r"’"‘ h— rf." ;

Final Scaled Distance Value

0 0,1 0,2 0,3 0.4 0,5 0,6 0,7 0,8 0,9 1

Initial Distance Value

(From: Ménch [2010], VCBM)
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Distance-Aware Smoothing

Smoothing method Min. Euclidean
Abst.

No smoothing 0.35 mm 100%
Global Laplacian smoothing 2.17 mm 88.91%
Distance-Aware Laplace 0.35 mm 93.46%
Distance-Aware Laplace (exp) 0.35mm 94.84%

Original Model Uniform Laplacian Distance-Aware

Smoothing Laplace

)

Lfadeoris o fuunnt)

l B
T
17y
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Distance-Aware Smoothing

Volume preserving methods (b, d): l'l'"-_;-jiw
* No modifications of distances A M;,r
il T-r'«'! 7%
* No sufficient reduction of '
staircases
Color-coding of
distances to the
original model
‘ Visualization Research Group
", University of Magdeburg




Focussing on Artifacts

e Smoothing...
— Leads to loss of volume and
— Removes potentially relevant details

I

No sufficient reduction of staircases

—> |dentification of critical artifacts

— Restriction of smoothing to these
areas

Bernhard Preim - CARS Tutorial
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Focussing on Artifacts

Stepwise approach:

1. Computation of the orientation of faces

2. Computation of differences in the local
orientation of faces

3. Computation of weights according to the
distance to ,staircases”

4. Distance-based weighting in the smoothing
process

I Visualization Research Group
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Focussing on Artifacts

..

Color-coding of angle Color-coding of C_olor-codmg of
between surface ,staircasiness” d'S'_fa_nCGS to the
normal and slicing original model

direction

I Visualization Research Group
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Preserving , Caps”

1. lterate over all potential
,Staircases”/“caps”

2. Determine surface normal at boundary

surfaces (positive or negative distances

in slicing direction)

Count changing directions

4. Remove staircases/plateaus from the
candidate list, if the direction is
constant for the staircase/plateau

w
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Focussing on Artifacts

Bernhard Preim - CARS Tutorial
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Smoothing of Polygonal Surfaces:

Recommendations

In general, artifact removal is a global problem. Local solutions may only
partially solve the problem!

e A low-pass filter is the best solution for all object classes.

For smaller objects

— Topological neighborhood of the size 2, 20-50 iterations,
weighting: 0.7

For flat or larger objects, especially with poblem points:
— Topological neighborhood: 1, approx. 20 iterations

e For elongated, branching objects:

— No really good filter (- Vessel Visualization part will provide appropriate
methods)

— Low-pass filter with topological neighborhood of 1, weighting factor: 0.5 and
10 iterations

I Visualization Research Group
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Surface Visualization: References
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Surface Visualization: References
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Overview:
Gabriel Taubin. ,,Geometric Signal Processing on Polygonal Meshes”, Eurographics, State of
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Direct Volume Visualization

I Visualization Research Group
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Direct Volume Visualization: Structure

Direct Volume Visualization

e |ntroduction

e |mage-based Volume Visualization
e Texture-based Volume Visualization

e Projection Methods

I Visualization Research Group
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Direct Volume Visualization: Introduction

Requirements:

e detailed visualization of the original data (relevance for
diagnostic and therapeutic purposes)

e Good rendition of the spatial relations (visual cues like
shadows, highlights, depth cueing)

e High presentation speed

e Integration of surface and volume data (hybrid rendering)

I Visualization Research Group
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Direct Volume Visualization: Introduction

DVR procedure for medical visualization:

e /mage-based procedures which (re)trace a ray for each
pixel in the scene and compound the colors/the grey
value from the hit voxels (back to front), weighted with
transparency

e Object-based procedures which sample the voxels and
determine how the voxels contribute to the image (front
to back), and (splatting, Westover [1990], Hanrahan
[1991])

e Texture-based procedures which use a 3D texture
memory and hardware support for the texture mapping.

I Visualization Research Group
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Direct Volume Visualization: Introduction

I Visualization Research Group
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Direct Volume Visualization: Introduction

Examples:
Inner ear with HRCT: matrix: 512x512, thickness: 1 mm,

slice dist: 0.5 mm, 64 slices, resolution: 0.12 mm
Intracranial vessels, CTA: 512x512x256, resolution: 1 mm,

thickness: 1 mm
" What is typical?

Many transparent or semi-
transparent voxels

How is this specified?

Through an appropriate
transfer function

CT Inner Ear Detail CTA Aneurysma Detail
1 MB (128 x 128 x 64) 2 MB (128 x 128 x 128) Source: Rezk-Salama, 2002
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Direct Volume Visualization: Introduction

Setting of TFs for grey values and transparency (very often
a linear function).

Histogram displayed as context in a graphic editor.

Darstellung

Source: Hastreiter, 1999

o o o o0 o1 o1 1
Daten
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Direct Volume Visualization:

Image-based Methods

e Pursuit of rays in the scene (ray casting)
e Per sampling point:

— Rounding up to the next voxel il
(nearest neighbor) \l
— Trilinear interpolation from the |
8 surrounding voxels ﬁ"\'
h
i
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Direct Volume Visualization:

Image-based Methods

Trilinear interpolationl(x):
Intensity/density at the point x

I(V,) =1(V,) (1-x,) (1-y,) (1-z,)
+1(Ve) (1-x,)(1-y,) z,
+1(Vy) (%) (1-y,) (1-Z,)
+1(Vy) x,(1-y,) z,
+1(V) x, ¥, (1-2)
+1(V,) X, ¥,2,+
+1(Vy) (1-x,) y, (1-2)
+1(Vy) (1-x)) y, z,
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Direct Volume Visualization:

Image-based Methods

Interpolation and application of the transfer function

e 1Istvariant: Application of the TF (classification) to all vertices near
the filter (result: RGBA quadruple) and afterwards (tri)linear
interpolation of these quadruples (pre-classification)

e 2ndyariant: Interpolation of the intensity values from the data (e.g.,
Hounsfield Units) and afterwards application of the transfer function
to the interpoled result (post-classification)

Problem of the first variant: Color perception is non-linear in
RGB and interpolation for up to 4 channels. But this variant
is very often supported through hardware lookup tables.
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Direct Volume Visualization:

Image-based Methods

PRE-CLASSIFICATION POST-CLASSIFICATION
I T
] o —_—
51 £ 5
E 2 -
2] 8 -
§ ToE 8 ]
5 2 M- 5
el e
2 oW £
L= I [=T -
E E interpolation
I|”rj|I|E|3|I|I|I|I|I|I 1 |I|I|I|I|I|I

data value —= data value —»

A late application of the TF is more precise!
Source: Rezk-Salama, Dissertation, 2002
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Direct Volume Visualization:

Image-based Methods

Interpolation and application of the transfer function

pre-classification post-classification

Source: Rezk-Salama, 2002
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Direct Volume Visualization:

Image-based Methods

Basic algorithm ray casting:

for y; =1 to ImageHeight
for x; =1 to ImageWidth
for z,= 1 to RaylLength
foreach x, in ResamplingFilter (x;, y;, )
foreach y, in ResamplingFilter (x, y, z,)
foreach z, in ResamplingFilter (x, y, z))

add contribution of Voxel [xo, Yo, z,] to ImagePixel [x, y]

The resampling filter corresponds to the interpolation (often 2x2x2 values)

Problem: The volume is not traversed in the order in which it lies in the

memory. Often, voxels which are not in the cache or in the central memory,
are required.
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Direct Volume Visualization:

Image-based Methods

e Problem: consistent sampling of the volume in case of perspective
projection (diverging rays)
e Possible solution:
— Splitting of the rays
— The ray integrates a broader area for slices that are further away

Image plane
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Direct Volume Visualization:

Image-based Methods

Influence of the sampling rate on alias effects (increment: 2.0 voxel, 1.0 voxel,
0.1 voxel), (© Schroeder et al. [1998])

Suggestion: increment < 0.5 voxels (according to the sampling theorem:

sampling at least with the double frequency which is present in the discrete
data).
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Direct Volume Visualization:

Image-based Methods

Influence of the sampling rate on alias effects
(increment: 1.0 voxel, 0.2 voxels)
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Direct Volume Visualization:

Image-based Methods

Aliasing artifacts may also be reduced with jittering (slight random
modifications of sampling points without affecting overall sampling
density)

" Christian Rieder,
Fraunhofer MEVIS
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Direct Volume Visualization:

Texture-based Methods

Volume Definition

e The volume is loaded into the 3D texture memory.

e Application of a (hardware-based) lookup table, in which the data
can be scaled and shifted and be mapped to RGBA values
(transformation into an internal format)

e |f volume > texture memory
— partition of the volume into bricks

— overlapping of the brick ends for a correct interpolation at the
edges
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Direct Volume Visualization:

Texture-based Methods

Basic Approach:
e The volume is cut through equidistant planes

e Textured polygons are generated for each slice plane. They are
drawn from back to front and overlaid semi-transparently.

e If volume > texture memory
— sorting of the blocks according to the distance
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Direct Volume Visualization:

Texture-based Methods

Ebenen parallel
zur Bildebene

raumliches
Ergebnisbild

Procedure for the use of 3D textures
(© Peter Hastreiter, University of Erlangen)
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Direct Volume Visualization:

Texture-based Methods

Division of the volume into bricks, artifacts (black stripes)
in case of non-observance of the boundaries
(© Peter Hastreiter, University of Erlangen)
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Direct Volume Visualization:

Texture-based Methods

Division into bricks. Thus, the data overlap about one voxel in
each dimension and continuous transitions raise at the
boundaries.

a b ¢ d d e [ g
Wrong Subdivision r Correct Subdivision

© Peter Hastreiter, University of Erlangen
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Direct Volume Visualization:

Projection Methods

Average Projection Average of all hit Simulation of x-ray
voxels per ray projections

Maximum (minimum) | Brightest and (darkest) | lllustration of vessels,

Intensity Projection voxel hit per ray noise-added data
(M(m)IP)

Closest Vessel First local maximum lllustration of vessels
Projection (Zuiderveld | above a threshold

[1995])
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Direct Volume Visualization:
Projection Methods

MIP (Data: MR angiography)
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Direct Volume Visualization:
Projection Methods

Comparison of MIP and DVR, cerebral vessels, purpose: diagnosis of

aneurysms (Data: MR angiography, Prof. Terwey, Bremen)
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Direct Volume Visualization:

Projection Methods

Restriction of the data on which a MIP is applied:

(1) Remove certain structures which disturb the MIP

Interaction.
Example: Removal of bones (interactively by
placing a seed point and Region Growing).

(2) Apply the MIP to a certain partial volume.
Example: MIP illustration in a segmented organ for the
selective evaluation of this organ
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Direct Volume Visualization:
Projection Methods

MIP and CVP of brain vessels (© Karel Zuiderveld)

To evaluate spatial relations, movies with rotations of MIP and
CVP in a central perspective are often used.
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Direct Volume Visualization: Lightning

e Angle of incidence O: angle
between L and N (determines
the diffuse reflection)

e Reflection angle r: angle
between R and N.

e Angle ® between VandR
determines the intensity of the

incident light. L-Light Vector
. N-Surface normal
e IfV=R (reSpethely 0 =O)r the R-Reflected Light Vector
light is reflected maximal to the V-View Vector
viewer.
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Direct Volume Visualization: Lightning

e Approximation of the surface normal by calculating
> the gradient (grey level gradient shading, Source:
Hohne and Bernstein [1986])

* Problem: Memory requirements:4 Byte * 3 per voxel

e Indirect storage of the normals as indices in a field of
normalized vectors (rounding)

— Discretization of the normal in a gradient lookup
table

e |lluminated illustration of an MRT data set
(high sampling rate and trilinear interpolation)
Problems:

e High noise sensibility (possibly smooth gradients) or
ignore small gradients (use a threshold value)

e No consideration of the gradient strength

Visualization Research Group 84 (
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Direct Volume Visualization: Shading

Common variants of gradient estimation: Y
o
(1) central differences (6 neighbors): I ged
VV(X)= (8V/dx,dV/dy, dV/0z) e

VYV (Xi; Yir Zk) = (% (V(Xi+1, Yjr Zk) - (V(Xi-y Yir Zk));
(2 (V(Xi; Yi+1r Zk) - (V(Xii Yi-v Zk));
(2 (VX ¥} Zkar) = (VX Yp 264)) )
(2) Gradient estimation of from the 26 neighbors (weighting
according to the distance from the central voxel)

(3) Gradient calculation, not from direct neighbors, but from
Xi+2r Xi-2r Yis2r Yicor Ziv2r Zicos
The second variant is more complex, but qualitatively better.
Problems: treatment of boundaries, line structures
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Direct Volume Visualization: Shading

Christian Rieder,
Fraunhofer MEVIS

Volume rendering with disabled and enabled lightning.
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Direct Volume Visualization: Boundary Enhancement

| P I Y

‘ Christian Rieder,
Volume rendering with lightning (only) and Fraunhofer MEVIS
additional boundary enhancement
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Direct Volume Visualization: Tagged VR

Tappenbeck [2006]
Segmentation: Tumor

Visualization: Distance-based TFs (distance to tumor mapped to
opacity and color)
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Direct Volume Visualization:

Hierarchical Methods

e Goal: restrict rendering to visible portions and/or
Importance

e Typical data structure: Octree

e Node size, 16x16 .... 64x64

e Requires resampling, e.g. by means of a rank filter

e QOverlap of the nodes for correct interpolation (1 voxel)
e Moderate additional memory load

I Visualization Research Group

/,‘,, University of Magdeburg Bernhard Preim - CARS Tutorial



Direct Volume Visualization:

Hierarchical Methods

e QOctree nodes are rendered back to front
e Order of nodes depends on the viewing direction
e Lower resolution may be used for interactive rendering

r@ﬂﬂ !
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Link [2006]
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Emphasis and Smart Visibility

Goal: Clearly show focus
objects

£} ) L “
4 A iiA TER ) "{ }
\ ‘.‘\\‘ “Z(' , '1'
N\ [ ,
;51 : }
| i{ !‘h},(:; I
[Viola et al. 2004]
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Emphasis and Smart Visibility

Regional emphasis with Smart Visibility:

[Viola et al. 2004]
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Emphasis and Smart Visibility

Principle of cone-based cutaways and ghosting for a focus
object represented by its surrounding sphere

t = by /sin(a)

+ >

[Kubisch et al. 2010]
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Neck Dissections: Ghost Views

e Geometry reduction for interactive
cutaways and ghost views:

— lymph node model L circa 10K to 100K
vertices

— Convex hull CH(L) in 3d - ~200 vertices
(viewpoint independent)
— Project CH(L) to the viewplane

— CH(P(CH(L))) in 2d = ~20 vertices

— Minimal enclosing circle + margin
to define a cylindrical cutregion

— Draw silhouettes on edges

[Kriger et al. 2005
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Neck Dissections: Exploration of Lymph Nodes

e Ghost views for the sequential emphasis of lymph nodes

e Cylindrical cutting volume, color saturation, transparency
and silhouettes

[Kriger et al. 2005
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Smart Visibility Techniques

DA |\lmn
A tumor is highlighted by a cone highlighted b )
breakway. Additional shading effects are

employed for spatial perception

nndo i
OGdcC i

w

y

y circle mask ghosting.
Silhouette edges of structures in
front are preserved.
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Smart Visibility Techniques

e Cylindrical and silhouette-based cutaway views

(From: Kubisch [2010])
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Validation in Medical Visualization

e Essential parameters of accuracy:

— Position fault: distance between a displayed point (e.g., border
between 2 materials) and its precise location

— Fault of normals: deviation of the approximated normal from
the actual normal (angle in degree)

e How can accuracy be evaluated?

— Qualitatively through the viewing of pictures. Problem: An
exact solution is unknown.

— Quantitatively through the volume visualization of phantoms:
exact results are known. Problem: Transferability to clinical
data.

I Visualization Research Group
}” University of Magdeburg

Bernhard Preim - CARS Tutorial 98 (



Validation in Medical Visualization

e Test piece: ball, SIEMENS
star, and disconnected
cylinder.

e Left: surface visualization.

e Right: volume visualization
after discretization (1 mm?3).
Color coding of the arising
position faults.

© Pommert [2004]
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Tools for Volume Visualization:
Volume per 1000 — Image Gallery

MIP restricted to a

subvolume (slab)
Data: Cardiac CTA

abdominal
vessels

Aneurysm of
the abdominal
aorta
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Tools for Volume Visualization:
Volume per 1000 — Image Gallery

tumor in the neck area

MIP illustration of the
kidney (vessels)
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Literature: Volume Rendering
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Visualization of Vascular Structures
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Visualization of Vascular Structures:

Motivation

« Vasc. Structures are highly important for many crucial
diagnostic and treatment planning tasks, e.qg.

— diagnosis of ischemic stroke,
— coronary heart disease,
— aneurysms,
— arteriovenous malformations,
— diseases of peripheral arteries
 Methods are also applicable for visualization of other branching
and elongated structures, such as
— nerves,
— fiber tracts, and
— (some) muscles
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e Methods for 3D Visualization of Vasculature

e Direct Volume Rendering
— Tagged volume rendering of coronaries
e Model-free Surface Visualization
e Model-based Surface Visualization
— Explicit Construction of Vascular Geometries
— Implicit and Parametric Methods
e From Vascular Surface Geometry to Simulation Models

Bernhard Preim - CARS Tutorial
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“Traditional” Visualization Approaches

Traditional approaches:

slice-based examination Isosurface Rendering

Maximum Intensity Projection, Curved Planar Reformation
Closest Vessel Projection [Zuiderveld, 1995]
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Vascular Diagnosis vs. Surgery Planning

e Visualization in vascular diagnosis and vascular surgery:
— Close adherence to the image data (vascular cross section)
— Mostly slice-based examination, Curved Planar Reformations
— 3D visualization must be accurate

— Vascular surgery: bypass surgery, endoscopic treatment of
aneurysms

e Visualization in surgery planning and medical education:
— Clear communication of topology and morphology
— Comprehension of spatial relations to other structures

— Correct depiction of curvature, depth relations and diminution of
the diameter towards the periphery

— Traditional methods not well-suited due to image noise, partial
volume effect and limited resolution of CT and MRT

— Reconstruction of vascular structures based on a model

Bernhard Preim - CARS Tutorial 109 (
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Vasc. Structures: Direct Volume Rendering

MIP visualization. Right image: After applying a , vesselness“-filter.
Filter is based on the Hessian and applied in different scales
—>performance problems. [Frangi, 1998]
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Vasc. Structures: Direct Volume Rendering

/7

Hessian Entropy-based measure Combination

= 2

Improved vesselness filter considering branchings explicitly
(looking at polar profiles in case of branching candidates). Faster,
but still not real-time [Joshi, 2008]
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Vasc. Structures: Direct Volume Rendering

Gradient magnitude

Intensity

1D Transfer Functions do not allow to distinguish skeletal structures and
contrast-enhanced vessels. [Vega, 2003]

Visualization Research Group . .
I/" University of Magdeburg Bernhard Preim - CARS Tutorial 112




Vasc. Structures: Direct Volume Rendering

(Screenshot from Johann Drexl, Fraunhofer MEVIS)

Bone removal. DVR of vascular structures. Original scene (left),
bones to be removed (middle) and resulting visualization restricted
to the heart, the kidney and vascuiar structures (right). Compared to
the initial scene, bone removal significantly improves the display of
vascular structures.
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Vasc. Structures: Direct Volume Rendering

e Specialized visualizations may be generated based on
segmentation information (tagged volume rendering)

e Visualization may be restricted to segmented vascular
structures or focus+context visualizations may be
generated

e Application in diagnosis of vascular diseases, such as
aneurysms, coronary artery disease
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Direct Volume Rendering: Coronary Vessels

Aorta

Case study: Coronary heart disease (CHD)
RCA

e Soft, Fibrous and Hard Plaques

e Stenotic narrowings (Stenosen)

e Goal: show vessel wall and

abnormalities in the vessels Scheme of the heart and

e Solutions may be transferred to other the coronary arteries

vascular diagnosis tasks

Cross sections of the coronary
arteries
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Direct Volume Rendering: Coronary Vessels

e TF specification based on the density distribution ...
— ...of blood (Kg1004: TBi0od )

— ..anthe vessel wall (Ky.;y Owan) Haufigkeit

e Calculation of pgs09: Tsi00d
based on the segmentation
mask

e Delineation of
calcifications
- No fixed threshold

- M lood T 30 Blood

Logarithmically scaled histogramm
of the segmentation result
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Direct Volume Rendering: Coronary Vessels

e Definition of control points S, - Sq
e Computation of parameters Uy 004: Oriood @3N Kyair Owall
e Specification of TF,, und TF;, based on the histogramme

Umgebung Gefal’- Blut Verkalkungen

wand
A A A
/4 Y
Haufigkeit
A

TF.p GlalSer et al. [2010]
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Direct Volume Rendering: Coronary Vessels

e Assignment of colour and opacity
— Decreased opacity for TF3D
— For enhanced recognition: strongly saturated colours
— Calcifications and Stents should be white:

Umgebung Gefal- Blut Verkalkungen Umgebung Gefall- Blut Verkalkungen
wand wand
r A Y A Y Y A\ N 4 A Y A Y Y A B
Opazitat Opazitat
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Direct Volume Rendering: Coronary Vessels

DVR of two datasets with automatically specified TFs

(Datasets from Dr. S. Achenbach) GlaRer et al. [2010]
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Vasc. Structures: Focus-and-Context Rendering

e Enhanced visualization of cerebral vasculature

e Diagnosis of an aneurysm

e Focus: aneurysm, immediate inflow and outflow

e Focus visualization: saturated colours, high opacity

e Context visualization: decreasing saturation and opacity

Neugebauer et al. [2009] (CARS)
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Surrounding Vasculature

Automatic filtering successfully applied to 10 datasets from two
hospitals: Varying resolution, intensity distribution, device, quality
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Vasc. Structures: Focus-and-Context Rendering

Example of final focus + context rendering of two Different stages of
different dataset context
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Vasc. Structures: Reusable Rendering

Standardized Analysis of Intracranial Aneurysms Using Digital Video Sequences

Web-based system providing videos of automatically generated volume
rendering of cerebral aneurysms for inter-patient and inter-study comparison

TF-setting and clip-plane placement based on predefined protocol. Automatic
rotations (video generation)

Sabine Iserhardt-Bauer (Erlangen)
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Vasc. Structures: Size-based transfer functions

Manps the local scale of features to color a
rJU Cilw ITWVwUI JVUIiTWw Wi TuUbL I W VW WWVIWVI U

Interactive rate for scale field calculation through a continuous scale-
space analysis and a set of detection filters
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Direct Volume Rendering:

Hybrid 2d and 3d Rendering

e 3D surface rendering of
segmented vessels

e Direct volume
rendering of the
surrounding (skeletal
structures as anatomic
context)

e MPR orthogonal to the
vessel centerline

Boskamp et al. [2004]
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Image Data and Vessel Analysis

e High resolution CT- or MR-data =» Segmentation =» Skeletonization
=>» Analysis of shape and branching pattern

Y Y

[Selle, 2000]
Results of vessel analysis: S

e Graph represents vascular topology

— Edges = branches, nodes = branchings
e List of skeleton voxels per branch
e Radii per skeleton voxel

e Branching information

S
[Ehricke, 1994]
Bernhard Preim - CARS Tutorial 126 (
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Model-based Visualization —

Model Assumption and Requirements

Simplifying model assumption:

e Circular cross-sections of
non-pathological vessels

Keep in mind: methods are not
intended for vessel diagnosis

Requirements:
e Correct representation of the vessel diameter
e Smooth, organic looking vessel shape

e Uniform treatment of all branching types

e (losed vessel ends

e Avoidance of structures inside the vessels

[Mazziotti, 1997]
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Model-based Visualization — Cylinder Fitting

e Gerigetal.,, 1993: “Symbolic Description of 3d structures
applied to cerebral vessel tree obtained from MR angiography
volume data”.

e Graph representation (edges, nodes) of the vessel tree for
structural analysis, e.g. identification of subtrees

e Representation of the local vessel
diameter by means of fitting
cylinders along the vessel skeleton

[Gerig, 1993]
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Model-based Visualization — Truncated

Cone Fitting

e Filtering: Smoothing of the skeleton and radius (Binominal filter)
e Mapping: 1. Concatenation of truncated cones along the skeleton
2. Mapping of truncated cones to polygons

From: Hahn, Preim, Selle (2001)

Left: Cerebral blood vessels (MR-Data: Prof. Terwey, Bremen)

Middle: Hepatic vein and portal vein of clinical dataset
(CT-Data: Prof. Galanski, MH Hannover)

Right: Corrosion cast of the human liver (Data: Prof. Fasel, Uni Genf)
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Model-based Visualization — Truncated

Cone Fitting

e Discontinuities at branchings become obvious at close-up views
e Inner polygons arise and therefore not suitable for virtual angioscopy

e But: A very fast method which has been in routine use since 2004
(used for planning ~ 3000 interventions)

I Visualization Research Group
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Model-based Visualization — Freeform Surfaces

Modelling incompletely segmented nerves and vascular structures
with B-splines. Application within the VoxelMan [Pommert, 2001]
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}", University of Magdeburg

Bernhard Preim - CARS Tutorial 131 (



Visualization of Vascular Structures:

Implicit Methods

Idea (exploration of implicit surfaces):

e Implicit functions ( F(x,y,z) — Iso = 0)
e Original application in computer graphics
— Blobby Molecules for the display of electric fields, Blinn [82]

F(p)=e™
w = width coefficient

Implicit surfaces for the visualization of tree structures [Blinn, 1982]

e Energy distribution: skelett points as energy sources
e Skeleton points define isospheres
e Problem: Smooth surfaces at line segments
— Solution: Convolution Surfaces (Jules Bloomenthal)

I Visualization Research Group
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Visualization of Vascular Structures:

Convolution Surfaces

Convolution Surfaces (Bloomenthal and Shoemake [1991])
e Convolution of a signal with a filter

e Here: Convolution of line segments with a 3d-lowpass filter

F(p) = [ h(s = p)ds = (h® S)(p) -

e Polygonization with an isovalue depending on the filter

Visualization Research Group
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Visualization of Vascular Structures:

Convolution Surfaces

‘ | (d}
'. EE; . (e}

()
_ o dw
| / hipl=e "7, m=5h2. d =0

Flp) = f_'i"EH'f'I"[H]ﬁ 2 =2 pn—o

e — Iso =1/32 =0.03125.

Exploration of filter functions.

Selection guided by the following criteria:

e Correct display of the radius,
Accuracy

[ J
e Fast computation
R

cril+:
SUil.

e A narrow Gaussian filter is a good choice.

e For even narrower filter kernels the implicit surface converges
against the truncated cone visualization.
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Visualization of Vascular Structures:
Applications of Convolution Surfaces

Portal vein of a human liver

Oeltze/Preim ,Visualization of Vascular Structures with
Convolution Surfaces”,

( I Visualization Research Group
", University of Magdeburg
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Visualization of Vascular Structures:

Validation of Convolution Surfaces

Comparison: Convolution surface as wireframe; truncated cones as
shaded surface visualization.
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Visualization of Vascular Structures:
Validation of Convolution Surfaces
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Visualization of Vascular Structures:

Validation of Convolution Surfaces

e (Quantitative validation (directional distances) between CS and
Truncated Cones and CS to Isosurface of the segmentation result.

.

CS - Isosurface: Large distances only at the root of vascular trees
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Application Scenarios —

Analysis of the Bronchial Tree

Bronchial tree (> 3000 branchings, > 3 M triangles, 54 seconds)
in a human lung (volume rendering).
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Model-based Visualization — Comparison

Method Geometry

Gerig, : no local

1993 Cylinder diminution no yes no no
Hahn, Truncated

2001 cone Yes no yes yes no
Ehricke, Freeform N " N N N
1994 Surfaces yes yes no no yes
Felkel, Subdivision Ves e e o e
2002 Surface Y Y Y
Bornik, Simplex

AAAC NA e yes yes yes yes yes
ZUUD viesn ' ' ' ' '
Oeltze, Convolution e e e e os
2004 Surface Y Y Y y Y
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Model-Free Visualization

e Simplifying model-assumption of
circular cross-sections is invalid
for pathologic vessel parts, e.g.
aneurysms

e Even Non-pathologic vessels may exhibit
non-circular cross-sections

] o)
| |

relative Querschnittsidnderung
—
|

1
-20 -10 10 20 30

0 .., [mmHa]

[Schmidt, 2004] * [Schumann, 2007]
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Model-Free Visualization —

Multi-level Partition of Unity Implicits

Approximation of a point cloud by a surface [Ohtake et al. 2003]

e Visualization of vasculature based on post processed segmentation
result (points placed within boundary voxels)

e Arbitrary cross-sections may be reconstructed
e Suitable for vessel diagnosis

e Algorithm:
— Spatial subdivision of the point cloud by an octree
— Local approximation by means of surfaces
— Blending of local approximations results in global approximation

I Visualization Research Group
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Multi-level Partition of Unity Implicits

/ Piecewise quadratic \

Adaptive local approximation

refinement /\

_

- /

* Fast reconstruction of surfaces from
scattered data
* Surface approximation with adaptive
error control
e Search points in sperical regions
[Ohtake et al. 2003]
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Model-Free Visualization Partition of Unity

weight

Support of Q(X)
Q(x)=0 (local approximation with quadrics)

Distance

Weighted average of local approximations W ’X\ () ’X\
AUYAAY,
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Model-Free Visualization

Adaptive subsampling of thin branches

-.-.-.-J

H
4K\ i

. oeRy

’;-.-.-.-.-“

[Schumann, 2007]
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Model-Free Visualization

To reduce aliasing, subvoxel are included
at certain features.

direct step / diagonal step

[Schumann, 2007]
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Model-Free Visualization — Results (1)

[Schumann, 2007]
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Model-Free Visualization — Results (2)

Adjacent Vessels
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Model-Free Visualization — Results (3)
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Model-Free Visualization — Smoothness

Maximum curvature
as a measure of
smoothness

e Computed using
AMIRA™

e Comparison of MC
and MPU

e Histogram of the
curvature values

[Schumann, 2007]
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Model-Free Visualization — Surfaces Distances

Surface distances from MC- to MPU-result in voxel diagonals (V,)

Dataset @ o Rms Median Max >V /2 [%]
Bronchial Tree 0.17 0.1 0.21 0.16 1.4 0.69
Portal Vein 0.17 0.1 0.2 0.15 0.84 0.82
Cerebral Tree 0.2 0.13 0.24 0.2 1.68 1.7
Aneurysm 0.21 0.16 0.27 0.19 1.9 4.1
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Virtual Angioscopy

Visualization technique: Isosurface rendering based on smoothed
segmentation result. Combination of overview and detail view.

Specific application: Planning interventional treatment of cerebral
aneurysms. [Bartz 99]
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Simulation and Visualization of Blood Flow:
Model Generation

Voxel model — smoothed surface model — feature lines — adaptive
refinement by considering feature lines [Ceb01]
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Model generation: Subdivision

Adaptive refinement of grid resolution (element size) considering curvature
e Patient1: 60 K Triangles - 800 K Tetraeder
e Patient 2: 175 K Triangle - 4 000 K Tetraeder, [Ceb01]
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Model generation

GIMIAS: Graphical Interface for Medical Image Analysis and Simulation.
Plugin-based Application
AngioMorphology, AngioSegmentation, StentDeployment
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Visualization of Vasculature and Simulated Flow

e Inserting virtual stents for evaluating resulting hemodynamic
situation. Clinical goal: Reconstruction of normal hemodynamic

- e = B

relations by optimal choic and placement of a stent
e Source: Webpage Juan Cebral
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Visualization of Internal Flow

Problem: Surface shape is essential since flow and surface characteristics
are tightly coupled provides = but needs to be visually reduced to convey
the internal flow

Solution: specialized rendering style (“smart visibility”) which provides
necessary morphological hints without occluding

Ghosted Rendering Attenuation
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Visualization of Internal Flow

Aneurysm Ghosted

3 . Composin
Surface View P &

Morphological Line A Atmospheric
Features Rendering . _(*4_‘3 Attenuation

: Flow b e
Flow Information : W
Techniques \

[Gasteiger 10]
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Visualization of Internal Flow

Simple semitransparent rendering

Ghosted View with boundary
enhancement and emphasis of
features
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Conclusion

e Therapy planning and medical education require clear communication
of topology and morphology

e Model-based reconstruction of the vascular surface

— Subdivison and Convolution Surfaces closely adhere to the data and
generate smooth, organic looking surfaces
e Il Not suitable for vessel diagnosis due to simplifying model
assumption of circular cross-sections

e Vessel diagnosis requires accurate representation of vascular cross-
section

e Model-free reconstruction of the vascular surface directly from the
segmentation result by means of MPUs

is made
-~ A

11184

QO
%)

e Ill Suitable for vessel diagnosis since no mode
LI b S I e 1IN 110N A1

n ssumptio
rl\-lvll

e (Quantitative analysis of global/local deviations for validation
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e Accelerating the visualization with Convolution Surfaces and MPUs to
facilitate an application in clinical routine

e Hybrid visualization, integrating Convolution Surfaces and MPUs for
vessel parts with nearly circular cross-sections and for vessel parts
whose cross-sections strongly deviate from this model assumption,
respectively

e Mapping of additional information to the vascular surface, e.g.
existence of plaque or blood flow quantities

e Adapting general methods to specific needs, e.g., exploration of the
cardiovascular system

Visualization Research Group
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Virtual Endoscopy

o wer{fndo¥iew 3 = B3] Blx]
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e |Introduction and Motivation

e Rendering Techniques
e Navigation and Interaction Concepts
e Application Areas
— Virtual Colonoscopy (Diagnosis)
— Virtual Bronchoscopy (Diagnosis)

— Virtual Endoscopy for Sinus Surgery (Intervention Planning and
Training)

— Virtual Endoscopy for Minimally-Invasive Surgery of the Pituitary
Gland (Intervention Planning)

e Commercial Systems
e Conclusion
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Introduction

e Virtual Endoscopy is based on high-resolution medical image data
(often CT) and is a viewing and exploration mode derived from
optical endoscopy.

e In optical endoscopy a thin (flexible or stiff) fiber optic is moved to
the target area.

e Virtual endoscopy: Virtual camera is moved along air- or fluid filled
structures.

e Optical properties of endoscopes are mapped to the virtual camera.
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Introduction

e Endoscopy is used as diagnostic tool and can be combined with
interventions, e.g., removal of polyps or taking biopsies.

e Virtual endoscopy is limited to applications without interventions.
e Requirements for virtual endoscopy:

— Sufficient accuracy

— ldentifiable (segmentable) structures of interest

— Interactivity (high frame rate)

e Large amounts of data and interactivity — these aspects are
difficult to achieve at the same time. Special emphasis is
needed!

I Visualization Research Group
}” University of Magdeburg

Bernhard Preim - CARS Tutorial 169 (



Introduction

Major applications for virtual endoscopy

e Diagnosis: virtual bronchoscopy

e Diagnosis: vascular diseases, such as aneurysms

e Screening for colon cancer prevention (or early detection)

e Treatment planning with respect to endoscopic procedures, such as
Functional Endoscopic Sinus Surgery

e Training for endoscopic interventions. Due to the limited visual
access there is a high demand for training these procedures.
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Introduction

Instruments for optical endoscopy:

Brochoscope,
Coloscope

Light source,

Video processor

Sources: above — http://www.olympus.de/endo

below — http://www.info-endoskopie.de

Nooses,
Forceps
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Introduction

8 mm polyp

Optical Endoscopy
4 mm polyp

Image Courtesy Dirk Bartz, Univ.

Virtual Endoscopy of Leipzig
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* |n contrast to optical endoscopy, virtual endoscopy allows

— to ,look behind the walls”
— to reduce risks and costs associated with optical endoscopy

e However, virtual endoscopy
— cannot be combined with interventions
— does not provide realistic colour and texture information and
— does not allow physical contact

— is of limited value if the structure of interest has changed since
acquisition, e.g. ,,brain shift”
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Concept

Patient Optical
, >
preparation endoscopy
v b
Patient _p | S€gmentation | ___ Surface |
scan / path planning extraction
I
' ' |
|
: : - - 4d
Guided _y | Virtual -
navigation endoscopy

Image Courtesy Dirk Bartz,
Univ. of Leipzig
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Segmentation/Path Planning

e Accuracy and value of virtual endoscopy depends on segmentation
quality.
e Reliable, fast and automatic segmentation in general is very difficult.

e Good results are achieved in case of air-filled structures in CT, such
as the colon.

e Path planning often based on the skeleton and/or the distance field
of the target structure.

I Visualization Research Group 175 (
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Segmentation/Path Planning

The distance field in the colon may be Interactive path specification
used for path computation and based on coronal slices.
supporting guided navigation.

(From: Hong et al. 1997)
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Rendering Techniques

Surface visualization and Direct Volume Rendering
e Surface visualization requires pre-processing (segmentation).

e Segmentation result is converted to a polygonal mesh, post-

processed (smoothing) and efficiently rendered using graphics
hardware.

e Perspective rendering is preferred
e Acceleration Techniques:

— Occlusion culling (restrict rendering to the small visible portion)
— Empty-Space-Leaping

I Visualization Research Group
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Rendering Techniques

Image Courtesy Dirk Bartz, Univ.
of Leipzig

Typical artifacts of surface models generated by means of Marching
Cubes for virtual endoscopy.
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Rendering Techniques

Occlusion Culling:

Specific possibilities of endoscopic views:

e Endoscopic views have very limited visibility

e Removal of occluded geometry (occlusion culling)
e Frequently achieves culling of 90%

View frustum Image Courtesy Dirk Bartz,
Univ. of Leipzig
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VE: Rendering Techniques

Parallel versus Perspective Rendering

More structures are visible
with perspective rendering.

Although parallel rendering

is faster, perspective

vV VY 47

rendering is preferred. —
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VE: Rendering Techniques

For intervention planning and training, it is essential to simulate the
distorted view of virtual endoscopy.

To provide a sufficient overview, lenses at the tip of endoscopes use
large opening angles (30°, 70°).

View from the sphenoid sinus to the pituitary gland

Images are courtesy of André Neubauer, VR Vis Vienna
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VE: Rendering Techniques

,Look behind the wall“
Provide additional information compared to obotical endoscopy

constant blending parameter  Modified blending considering the distance
between fore- and background

Blended fore- and background images for first-hit ray
casting. Images are courtesy of André Neubauer, VRVis
Wien.
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VE: Rendering Techniques

lllumination
ambient diffuse
diffuse diffuse
¥ - * o
low specular high Specular Source: Virtual Endoscopy and
Related 3D Techniques, Springer
2001
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VE: Rendering Techniques

Direct volume rendering

e Trilinear interpolation (better than linear interpolation,
used in Marching Cubes)

e Special variant of ray-casting, first hit raycasting
(Neubauer, 2004), where a predefined number of
surfaces along each ray are located.
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VE: Rendering Techniques

Advanced Effects: Ambient Occlusion (rough but fast
approximation of shadowing)

Virtual Colonoscopy. Isosurfaces are extracted and shown with
normai shading (left) and Screen-space ambient occlusion (right).
(From: Russ [2010])
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VE: Rendering Techniques

Detail textures are added to convey wet effects (left) and fluent may

I Visualization Research Group
/4, University of Magdeburg

Bernhard Preim - CARS Tutorial




VE: Rendering Techniques

High quality curvature calculation allows on-the-fly enhancement of
possible polyp structures (From: Russ [2010])
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Interaction and Navigation

Navigation Models - Paradigms
e Planned Navigation (“Autopilot®)
— Specification of a camera path
— Camera is more or less fixed to that path
— VCR-like interaction
— Costly refinement

— Some observations: only 70% of all polyps are visible in a typical
flight through the colon. 95 % are visible if the flight is also shown
in the reverse direction.

e Manual/free Navigation
— Often difficult to control
— Requires heavy 3D interaction
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Interaction and Navigation

Guided Navigation:

e Combines flexibility and guidance

e Interactive and intuitive

e Camera dives through scene like submarine

e Current and thrust through distance fields and kinematic rules

e Principles have been invented in the Vivendi-System (Bartz, 2003)
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Interaction and Navigation

Distance to the target and distance to the vessel wall are employed
for guided navigation (Hong, 1997). Images courtesy of Shigeru
Muraki, AIST Japan
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Interaction and Navigation

Ill

Besides ,traditional” input devices, graphics tablets, force feedback
devices as well as tactile input may be employed.

Sources: http://www.wacom.com

http://www.sensable.com
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Interaction and Navigation

Comparison of different input devices

e |nput devices
— SpaceMouse

— PHANToM without force
feedback

— PHANToM with force
feedback

e Subjective Evaluation

— Ease of learning, ease of
use, spatial orientation

— Satisfaction and level of
fatigue
e PHANToM with force feedback
vielded best results

(From: [Krlger, 2007])
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Applications: Virtual Colonoscopy

Cancer of the colon is a leading cause of death - prevention and early
detection is crucial.

Optical endoscopy is an effective diagnostic procedure to inspect the colon
wall for pathologies.

However, it is expensive (sedation of the patient) and suffers from low
patient acceptance. - Virtual Endoscopy

Major goals:
e Reliable identification of polyps >5 mm
e Low rate of false positives (e.g., residual fluid or remaining stool)

e Efficient processing of data for mass screening application of a whole
age group
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Applications: Virtual Colonoscopy

Transverse colon Transverse colon

Ascending
colon
Ascending
colon

Descending
colon

Sigmoid colon

Coronal (left) and sagittal (right) view of the colon.
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Applications: Virtual Colonoscopy

Results:

e The diagnostic performance (sensitivity, specificity)
depends on many factors.

e Similar results to optical endoscopy are feasible (high
quality data, experienced radiologists).

e |tis essential that every part of the colon was inspected.
Visibility maps indicate which regions have not been
visited.
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Applications: Virtual Brochoscopy

Diagnostic and therapy planning related to diseases of the
tracheo-bronchial system, e.g., lung cancer, emphysema, ...

Based on high resolution CT data (300 slices, 512x512)
Target structures: Airways, blood vessels, tumors

Segmentation of all structures requires a complex pipeline [Bartz,
2003]. In particular, reliable identification of the 5th and 6th

generation of inner airways is difficult to accomplish.
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Applications: Virtual Brochoscopy

r."

d Trachea
Main bronchi

Virtual bronchoscopy for surgery planning. Blended visualization of
objects is crucial. (From: Bartz et al., 2003)
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Applications: Training

e Teaching anatomy of patients
from interior viewpoints.

e Simulating endoscopic
interventions, e.g. sinus
surgery.

e Challenging application area
since instrument-tissue
interaction as well as soft
tissue deformation must be
simulated.

Endoscopic Sinus Surgery Simulator
[Weghorst, 1997]
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Applications: Functional Sinus Surgery

Major goals:
e 3D visualization of relevant structures

e Evaluation of spatial relations, e.g. with respect to risk
structures, such as the optical nerve

e Measurement (e.g. to evaluate whether certain
structures may be reached)

e Access planning

e Documentation of treatment planning
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Applications: Functional Sinus Surgery

Cube Equal

Patient 25
(370 511 28)

1082 GV

The more extended pathologic swellings are, the more difficult is the
segmentation.
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Applications: Functional Sinus Surgery

N S,

Endoscopic Sinus Surgery Planning System (From: [Kriiger, 2008])
Realistic visualization of wetness effects for maximum similarity to
intraoperative views
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Applications: Functional Sinus Surgery

SinusEndoscopy Karonal Axial
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First user interface: too complex, too many settings and para-meters.
Improved Ul applied to 125 patients (From: [Kriger, 2008])
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Applications: Functional Sinus Surgery

Feedback: Drawing and annotation facility is crucial for surgical planning
and collaborative discussions.
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Applications

Virtual Endoscopy for Minimally-
Invasive Surgery of the Pituitary
Gland.

Benign tumors are frequent
Minimally-invasive removal is

WV Wl ¥ P W s

£th Images are courtesy of
state-of-the-art. André Neubauer, VRVis Wien.
Risk structures have to be

considered.
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Applications

overview image

Virtual endoscopy for diagnosis of cerebral aneurysms and
planning neurointerventions (From: [Bartz et al. 2001])
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Commercial Systems

Rendering, interaction and navigation techniques are similar to research
prototypes. Careful integration in hospital information systems and
clinical workflows are essential.

In particular, for virtual colonoscopy

e Philips EasyVision Endo 3D

e Viatroxnix V3D Viewer/Colon

e GE Advantage Winodws

e Vital Images Vitrea2/CT Colonography

Most of them

e use raycasting as rendering mode,

e nrawwido [caomi_Vatnitamatrice nath nlanninag anAd
[JIUVIUC \DCIIII ’OULUIIIQLI\.— 'JQLII PIGIIIIIIIS aliuu

e guided as well as manual navigation
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Conclusion

e Virtual endoscopy for intervention planning has great potential.
However, the added planning time hampered wide-spread use so far.

e Requirements, with respect to accuracy, strongly depend on
application area.

e Virtual endoscopy cannot be used when examination of tissue sample
iS necessary.

e Validation and clinical evaluation are crucial aspects. The book by

Rogalla et al. (Virtual Endoscopy and Related 3D Techniques) provides
an excellent overview on these aspects.
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Augmented Reality and

Intraoperative Visualization

Augmented Reality:

Overlay of real data (,,patient”) and virtual data (geometric patient
model)

AR in Intraoperative Visualization:
Live-data (Op-Video) combined with pre-op. Patient model

Prerequisites:

e Appropriate dataset (not too old)

e Preprocessing (Segmentation, ...)

e Registration (Mapping: Pre-Op — Intra-Op.)
e Tracking of surgical instruments

e Update during surgery

e Appropriate output devices
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Augmented Reality and

Intraoperative Visualization

Brain shift and tissue deformation:

e Due to influence of surgical instruments and forces exercted on the
tissue deformations occur

e Brain shift: Movement of (parts of the brain) after the skull is opened
e |nitial registration is still valid in some portions of the brain.
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Augmented Reality and
Intraoperative Visualization

Images Courtesy Peter Hastreiter,

Univ. Erlangen
Tissue deformation due to brain shift.
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Augmented Reality and

Intraoperative Visualization

Registration:

Mapping of patient data to intraoperative position/orientation
Optimization process guided by landmarks

— Anatomic landmarks (difficult to locate them reliably and
precisely)

— Fiducial markers attached to the patient at known positions
— Point cloud of the skin derived with a laser pointer
e Fiducial markers enable highest accuracy

Point cloud sufficiently precise for a variety of interventions
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Augmented Reality and
Intraoperative Visualization

Reference ﬁ&\ = Laser
&

star ———_S« | ;._—.ﬂnointer

]

Image Courtesy Jurgen Image Courtesy BrainLab AG
Hoffmann, Univ. Tubingen Feldkirchen

ICP-based registration of a point cloud
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Augmented Reality and

Intraoperative Visualization

Tracking surgical instruments:
Instruments attached with reflective spheres
Optical tracking:
The instruments are seen by two cameras.
— requires direct line of sight
Electromagnetic tracking

No direct line of sight required. Lower accuracy
compared to optical tracking. Magnetic field must not
be disturbed.

Infrared cameras
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Augmented Reality and

Intraoperative Visualization

Reflective
spheres Reference

star

Images Courtesy Jurgen
Hoffmann, Univ. Tubingen

Tracked pointer tool to identify fiducial positions. A reference star is
connected to the forehead.
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Augmented Reality and

Intraoperative Visualization

NDI
Polaris
-}
camera
ST ‘ K Touch )
_ screen
[ =:‘ I -y PC . P |
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Augmented Reality and

Intraoperative Visualization

Intraoperative visualization options:
e Data are projected on a special fixed monitor

e Data are projected on a small flexible display in the
surgeons hand. Display is tracked.

e Data are included in the endoscope view.
e Data are projected directly onto the patient.
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Augmented Reality and

Intraoperative Visualization

Visualization Research Group

7}9 University of Magdeburg

Incision point for Veress needle

Intra-hepatic vessels
Veress needle

Electro-magnetic tracker

Augmented Reality in
Liver Surgery

Animal Experiment
(Scheuering, 2003)
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Augmented Reality and

Intraoperative Visualization

Intra-hepatic vessels

Vascular territory

Scheuering, 2003

Video overlay of a laparoscopic liver image with 3D renderings from
pre-planning.
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Augmented Reality and

Intraoperative Visualization

2% | = F . Image Cou rtesy
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Intraoperative 3D ultrasound in the OR. Preoperative imaging.
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Augmented Reality and
Intraoperative Visualization
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Augmented Reality and
Intraoperative Visualization

A real face, the Bounding Box of the data set
( .-0. .
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Augmented Reality and
Intraoperative Visualization
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Prototype for AR-assisted neuro surgery. Left: A tumor is overlaid to
the intraoperative visualization (green); Right: A transparent slice
image is shown. Contours of the tumor in diefferent depth are shown.
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More detail on all this

1 Introduction
BERNHARD PREIN  DIRK BART2 2 Medical Image Data and Visual Perception
3 Acquisition of Medical Image Data

VIS ua I IZa'I:loT 4 Medical Volume Data in Clinical Practice

N 5 Image Analysis for Medical Visualization
Médi iné 6 Fundamentals of Volume Visualization
" 7 Indirect Volume Visualization
8 Direct Volume Visualization
9 Algorithms for Direct Volume Visualization
10 Exploration of Dynamic Medical Volume Data
11 Transfer Function Specification

12 Clipping, Cutting, Virtual Resection

13 Measurements in Medical Visualization
THEORY. ALGORITHMS. AND APPLICATIONS

Tha Bargen Ksudmann Samnes in Compatar Gesphics

15 Virtual Endoscopy
16 Augmented Reality
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More detail on all this

e See our website: www.vismd.de and www.medvis.org

e See (Dutch/German) Working group: http://www.fg-medvis.de/
e Charl Botha: http://www.mendeley.com/profiles/charl-botha/

e Timo Ropinksi: http://viscg.uni-muenster.de/150-Dr--Timo-Ropinski.htm|

e Anners Ynnerman: http://webstaff.itn.liu.se/~andyn/ITN/Home.html

e QOur tutorial page:

e http://wwwisg.cs.uni-magdeburg.de/
visualisierung/wiki/doku.php?id=teaching_tutorials:start
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