
Tutorial Syllabus

Surface Visualization
- Marching Cubes and its improvements
- Smoothing of surface visualizations

(30 min.)

Direct Volume Visualization
- Ray casting and texture-based approaches
- Projection methods

(30 min.)

3D Vessel Visualization (30 min.)

Virtual Endoscopy (30 min.)

Virtual and Augmented Reality (20 min.)

Medical Training and Surgical Planning (20 min.)
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Vessel Visualization - Structure

• Prevalent Visualization Approaches

• Model-based Surface Visualization

• Model-free Surface Visualization

• Direct Volume Rendering Approaches
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Prevalent Visualization Approaches

a) Slice-based visualization, Multi-Planar Reformations (MPR)
b) Maximum Intensity Projection (MIP)
c) Closest Vessel Projection (CVP) [Zuiderveld1995]

d) Surface Rendering (SR) 
e) Curved Planar Reformation (CPR) [Kanitsar2001]
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Different Application Fields

• Visualization in vascular diagnosis and vascular surgery: 
– Close adherence to the image data (vascular cross section)
– Mostly slice-based examination, Curved Planar Reformations
– 3D visualization must be accurate
– Vascular surgery: bypass surgery, endoscopic treatment of aneurysms

• Visualization in surgery planning and medical education:
– Clear communication of topology and morphology
– Comprehension of spatial relations to other structures
– Correct depiction of curvature, depth relations and diminution of the 

diameter towards the periphery
– Traditional methods not well-suited due to image noise, partial volume 

effect and limited resolution of CT and MRT
– Reconstruction of vascular structures based on a model
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Model-based Surface Visualization



Model Generation

• High resolution CTA- or MRA-data  Segmentation 
Skeletonization  Analysis of shape and branching pattern

• Resulting model:
– Graph represents vascular topology
– Edges = branches, nodes = branchings                                                                             
– List of skeleton voxels per branch 
– Radii per skeleton voxel
– Branching information
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Model Assumption and Visualization Requirements

Simplifying model assumption:
• Circular cross-sections of                                                               

non-pathological vessels
Keep in mind: methods are not                                                 

intended for vessel diagnosis

Requirements:
• Correct representation of the vessel diameter
• Smooth, organic looking vessel shape
• Uniform treatment of all branching types
• Closed vessel ends
• Avoidance of structures inside the vessels
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Cylinder Fitting

• Gerig et al., 1993: “Symbolic Description of 3d structures applied to cerebral 
vessel tree obtained from MR angiography volume data” 

• Graph representation (edges, nodes) of the vessel tree for 
structural analysis, e.g. identification of sub trees

• Representation of the local vessel                                                      
diameter by means of fitting                                                          
cylinders along the vessel skeleton

• Ray-tracing of the scene
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Truncated Cone Fitting

• Hahn et al., 2001: “Visualization and Interaction Techniques for the 
Exploration of Vascular Structures”

• Filtering: Smoothing of the skeleton and radius (Binominal filter)
• Rendering: Mapping of the model to geometric primitives

1. Concatenation of truncated cones along the skeleton
2. Mapping of truncated cones to polygons

• Left: Cerebral blood vessels (MR-Data: Prof. Terwey, Bremen) 
• Middle: Hepatic vein and portal vein of clinical dataset (CT-Data: Prof. Galanski, MH Hannover)
• Right: Corrosion cast of the human liver (Data: Prof. Fasel, Uni Genf)
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Truncated Cone Fitting

• Discontinuities at branchings become obvious at close-up views
• Inner polygons are constructed and therefore not suitable for 

virtual angioscopy
• But: A very fast method which has been applied in routine 

since 2004 (used for planning ~ 3000 interventions)
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Subdivision Surfaces

• Felkel et al., 2002: ”Surface Reconstruction of the Branching Vessels for 
Augmented Reality Aided Surgery“

• Computation of reference frame for each skeleton voxel to 
avoid twisting of the reconstructed vessel 

• Visualization in two steps:
– Construction of a coarse initial mesh by means of quads
– Iterative refinement of the initial mesh applying Catmull-Clark 

subdivision surfaces
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Convolution Surfaces

• Oeltze and Preim, 2005: “Visualization of Vascular Structures: Method, 
Validation and Evaluation”

• Application of implicit functions (Zero set F(p)-Iso=0)

• Convolution Surfaces [Bloomenthal1991]
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Convolution Surfaces

• Exploration of filter functions
• Selection guided by the following criteria: 

– Correct display of the diameter,
– Avoid unwanted effects,
– Fast computation

• Results: 
• Narrow Gaussian is a good choice
• For even narrower filter kernels, implicit surface converges against 

truncated cone visualization
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Freeform Surfaces

• Ehricke et al., 1994: “Visualization of vasculature from volume data”

• Spline-curves represent the vessel skeleton 
• Voxel ring describes local cross section
• Mean Square Approximation by means of freeform surfaces
• Arbitrary cross-sectional shapes may be reconstructed
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Simplex Meshes

• Bornik et al., 2005: “Reconstruction and Representation of Tubular Structures 
using Simplex Meshes”

• Simplex Meshes are a special kind of deformable models   
[Delingette 1999]: each vertex is adjacent to 3 neighboring vertices

• Visualization in two steps:
1. Construction of an initial simplex mesh by connecting adjacent cross-

section polygons in a sophisticated manner
2. Iterative mesh deformation based on Newtonian law of motion
 External forces directed to sampling points based on cross sections and 

radii (affects mainly branchings)
 External forces directed to boundary voxels of the segmentation result 

(affects regions with no circular cross-section shape)
 Internal regularizing forces

• Arbitrary cross-sectional shapes may be reconstructed
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Comparison
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Method Geometry

Gerig1993 Cylinder no local 
diminution no yes no no

Hahn2001 Truncated cone yes no yes yes no

Felkel2002 Subdivision 
Surface yes

yes yes no yes

Oeltze2004 Convolution 
Surface yes yes yes yes yes

Reconstruction of arbitrary cross-sectional shapes

Ehricke1994 Freeform 
Surfaces yes* yes* no* no* yes*

Bornik2005 Simplex Mesh yes yes yes yes yes

d
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Application Scenarios

• Analysis of aneurysms in cerebral vasculature
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Application Scenarios

• Analysis of the bronchial tree

BVM 2011 - Vis & VR in Medicine – 3D Vessel Visualization 18 /35



Application Scenarios

• Liver tumor resection
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Model-free Surface Visualization



Characterization

• Primary goal: correct representation of cross-sectional shape
• Simplifying model-assumption of circular cross-sections is 

invalid for pathologic vessel parts, e.g., aneurysms, and also for 
certain non-pathologic vessels, e.g., the trachea

• Model-free approaches are either based on
– a segmentation mask including the vascular structures or 
– just the original data if segmentation and surface generation are 

intrinsically tied to each other 
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Multi-level Partition of Unity Implicits

• Schumann et al., 2007: “Model-free Surface Visualization of Vascular Trees”
• Idea based on Ohtake et al., 2003: “Multi-level Partition of Unity Implicits”

• Approximation of a point cloud by a surface
• Algorithm:

1. Transforming segmentation mask into point cloud
2. Refinement of point cloud at “stair cases” and very thin vessels
3. Spatial subdivision of the point cloud by an octree
4. Local approximation of the cloud by algebraic surfaces
5. Blending of local approximations results in global approximation
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Multi-level Partition of Unity Implicits

• Local approximation and blending
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Multi-level Partition of Unity Implicits
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MC

MPU

CS

MC = Marching Cubes
CS = Convolution Surfaces

Aneurysm, 1sec, Δ 53,948

Aneurysm, 5.3sec, Δ 61,324 Portal Vein, 13.7sec, Δ 166,780

Portal Vein, 2sec, Δ 80,020

[Schumann2006]
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Multi-level Partition of Unity Implicits

Surface distances from MC- to MPU-result in voxel diagonals (Vd)
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Dataset Φ σ Rms Median Max >Vd/2 [%] 

Bronchial Tree 0.17 0.11 0.21 0.16 1.4 0.69

Portal    Vein 0.17 0.11 0.2 0.15 0.84 0.82

Cerebral Tree 0.2 0.13 0.24 0.2 1.68 1.7

Aneurysm 0.21 0.16 0.27 0.19 1.9 4.1

Average 0.19 0.13 0.23 0.17 1.46 1.84
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Level-Sets

• Deschamps et al., 2002: “Fast surface and tree structure extraction of 
vascular objects in 3d medical images”

• Surface segmentation of thin, branching structures based on 
Fast-Marching and Level Set methods

• Algorithm:
– Inflation of a “long balloon” from user-given starting point
– Propagation of only one moving front and freezing of other points
– Definition of a distance-based stopping criterion 
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3D Active Shape Models

• Lekadir and Yang, 2006: “Carotid Artery Segmentation Using an Outlier 
Immune 3D Active Shape Models Framework”

• Construction of the ASM based on a training set
• Computation of tolerance intervals for outlier detection during 

training stage
• ASM fitting under consideration of the tolerance intervals
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Direct Volume Rendering Approaches



Characterization

• Direct visualization of contrast-enhanced 3D/4D data
• Requires neither a segmentation nor an analysis of vasculature
• Often prefiltering of the data to further enhance vessels
• Good overview of the entire vasculature in 3D 
• Often combined with methods for more detailed inspection of 

cross-sectional shape and vessel lumen, e.g., MPR and CPR
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Vessel Enhancement Filtering

• Popular vesselness filter by A. Frangi [Frangi1998]

• Computation of a vesselness measure based on the Eigenvalues 
of the Hessian (second order local structure of an image)
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Non-Parametric Vessel Detection

• Joshi et al., 2008: “Effective Visualization of Complex Vascular Structures 
Using a Non-Parametric Vessel Detection Method”

• New vesselness measure that performs better at branches
• Based on an intensity profile around each voxel
• Combination of new measure with visualization techniques 

which improve shape as well as depth cues
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Automatic Transfer Function Specification

• Glaßer et al., 2010: “Automatic Transfer Function Specification for Visual 
Emphasis of Coronary Artery Plaque”

• Based on coarse segmentation of coronary tree
• Transfer function (TF) is automatically designed such that 

pathologic changes (plaque) are highlighted
• TF adaptation to each dataset by local histogram analysis 
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Summary

• Prevalent Visualization Approaches
– CPR and MPR well suited for inspecting vascular cross-sections
– SR hampered by image noise and partial volume effect
– MIP and CVP fail to always convey depth information correctly

• Model-based Surface Visualization
– Communicates topology & morphology, unsuitable for vessel diagnosis
– Approaches require segmentation and skeletonization of the vessels

• Model-free Surface Visualization
– Suitable for vessel diagnosis, correct depiction of cross-sections
– Vessel segmentation and visualization may compose a joint process

• Direct Volume Rendering Approaches
– Appropriate as an overview visualization
– Vessel enhancement as a pre-processing step
– Coupling of a 3D representation with MPR and CPR views
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