Tutorial Syllabus

Surface Visualization - Marching Cubes and its improvements - Smoothing of surface visualizations	(30 min.)
Direct Volume Visualization - Ray casting and texture-based approaches - Projection methods	(30 min.)
3D Vessel Visualization	(30 min.)
Virtual Endoscopy	(30 min.)
Virtual and Augmented Reality	(20 min.)
Medical Training and Surgical Planning	(20 min.)

Medical Training

- Increasing demand on (advanced) training in medicine
- Trend towards computer-aided learning and training systems
 - Browsing- und presentation systems (z.B. VoxelMan)
 - Interactive courses (z.B. Campus)
 - Web-based platforms (z.B. webop)
 - Surgical simulators (z.B. Lap Mentor)

Campus: web-based, interactive course, http://www.medicase.de/

Webop: web platform for surgical education, http://www.webop.de/

Laparoscopy simulator *Lap Mentor*, http://www.simbionix.com

LiverSurgeryTrainer (LST)

- SOMIT-FUSION: "Schonendes Operieren mit innovativer Technik"
- Teilprojekt: "Training computergestützer Operationsplanung in der Leberchirurgie"

- Conception of the LiverSurgeryTrainer based on learning theory:
 - Training of therapeutic decision making and planning for oncological interventions and living donor liver donations
 - Introduction to computer-aided surgery planning
 - Publication of new therapeutic and planning strategies

Didactical Background

- Specific complex cognitive skills (Pilots, Physicians,...)
- Learning modell for communication of instructional knowledge
- Four-Component-Instruction Design-Model [Merriënboer et al. 2002]
- Properties of the model:
 - Supportive information
 - E.g., theoretical basics, case information
 - Just-in-time information
 - > E.g., z.B. different levels of support
 - Learning tasks
 - > E.g., extended right-sided resection
 - Part-task practice
 - > E.g., resection of dummy objects

Welcome Screen

Overview of all steps

Resection Plane

Examine vasculature and define resection plane in 2D

Resection Result

View the resection result in 3D and refine if necessary in 2D/3D

Resection Assessment

Compare the recommendation of an expert with your strategy

Additional Information

View media of the real surgery and the post-operative process

Evaluation

- Formative evaluation in spring 2007 [Cordes2007]
- Invitation of 32 surgeons world-wide
- Supply of a DVD including extensive material for self-study
- 2 cases (tumor resection and living donor liver transplantation)
- Online questionnaires for evaluation
- Return rate: 13 questionnaires
- Consistently positive feedback but wishes for:
 - A more clearly arranged user interface
 - Increased performance
 - A simplified resection strategy for beginners
- Summative evaluation is pending

http://www.liversurgerytrainer.de/

Surgical Planning

- Part of treatment planning process
- (Visualization) goals:
 - Risk assessment
 - Estimate size, location, regional distribution of pathologies
 - Determine regional anatomy, e.g., rare variants
 - Measurements, e.g., distances to risk structures
 - Access planning, e.g., in thorax surgery
 - Implant placement
 - Integration of functional simulations

- Success criterion for a planning system:
 - Influence on treatment decisions, in particular on the surgical strategy

NeckSurgeryPlanner (NSP)

- Support of ear nose throat (ENT) surgery
- Major application fields:
 - Tumors in the throat, mouth, nose, and ear region
 - Neck dissections (removal of pathologic lymph nodes)
- Integration of techniques for segmenting important structures,
 e.g., the tumor, lymph nodes, blood vessels, muscles [Cordes2006]
- Integration of dedicated visualization techniques, measurement facilities [Tietjen2010], and automated animations [Mühler2010]
- Supported by two DFG grants and one EXIST grant from BMBF
- Starting in 2004 and lasting 5 years in total

In-depth Task Analysis

Detailed analysis of the medical workflow at the ENT department in Leipzig

• Methods:

- Interviews, observations, small questionnaires, video and audio recording
- Long user stories (including motivation of the stakeholders)
- Verification of these stories with clinical users

Results:

- Importance of panendoscopy and its documentation
- Integration of findings from panendoscopy with results from CT data
- Assessment of infiltrations of anatomic structures by a tumor
- Incorporation of measurement facilities
- Support documentation!
- Use of planning tools in tumorboard discussions

Patient Anatomy

Location of the Primary Tumory

Quality of Visualizations

Different studies related to:

- Shininess,
- Textures,
- Illumination effects

Adapted to anatomic structures, such as bones, muscles, vessels

Virtual Panendoscopy

Attach photos

Infiltrations

Sequences of simple visualizations for assessing infiltrations

Infiltrations

Sequences of simple visualizations for assessing infiltrations

Incorporation of Measurements

Computation of extents and minimal distances to directly support tumor staging and therapeutic questions [Rössling2010]

Tumor Staging and Documentation

TNM-Klassifikation	T1N3M?
Tumor: T1 T2	
Ausdehnung:41x35x19 mm Volumen 17ml	
- Infiltration Schildknorpel	
Nodes: N3 Node 1 > 20mm Node 2 > 18mm Node 3 > 24mm	
- Lymphknotenbefall nur links	sseitig
Metastasen (?)	

Documentation

Schematic drawing of neck anatomy for (automatic) annotation

Evaluation

Planning:

- Documentation of 7 operations
- Planning first without, later with 3D-vizualization of relevant structures

Results [Fischer2009]:

- In 4/7 cases infiltration of risk structures was assessed differently (e.g. 1x infiltration of the salivary gland was detected, 1x infiltration of the salivary gland was excluded)
- Determined trust of surgeons (*Level of Trust*): 7/7 > 50%, average: 67%
- In 2/7 cases the surgical strategy was adapted
- In all 7 cases the TNM-classification suggested by the system was considered correct.

25 /26

Literature

- Boehm [2009]: "3D-Panendoscopy". International Journal of Computer Assisted Radiology and Surgery.
- Cordes [2006]: "Preoperative Segmentation of Neck CT Datasets for the Planning of Neck Dissections". In: Proc. of SPIE Medical Imaging: Image Processing.
- Cordes [2007]: "Evaluation of a Training System of the Computer-based Planning of Liver Surgery." In: Proc. of Jahrestagung d. dt. Gesellschaft f. Computer –und Roboterassistierte Chirurgie e.V. (Curac).
- Fischer [2009]: "Three-dimensional Visualization for Preoperative Planning and Evaluation in Head and Neck Surgery". Laryngo-Rhino-Otologie, 88(4).
- Merriënboer [2002]: "Blueprints for complex learning: The 4C/ID-model". Educational Technology, 50(2).
- Mühler [2010]: "Animationen und Explorationstechniken zur Unterstützung der chirurgischen Operationsplanung". PhD thesis, University of Magdeburg.
- Rössling [2010]: "Fast and flexible distance measures for treatment planning", IJCARS.
- Tietjen [2010]: "Illustrative Visualisierungstechniken zur Unterstützung der präoperativen Planung von chirurgischen Eingriffen". PhD thesis, University of Magdeburg.

