Basics of Interactive Visual Analysis

Helwig Hauser (Univ. of Bergen)

Interactive Visual Analysis

- Given data too much and/or too complex to be shown all at once:
- IVA is an interactive visualization methodology to facilitate
 - the exploration and/or analysis of data (not necessarily the presentation of data), including
 - hypothesis generation & evaluation, sense making,
 - knowledge crystallization, etc.
 - according to the user's interest/task, for ex., by interactive feature extraction,
 - navigating between **overview** and **details**, *e.g.*, to enable interactive information drill-down [Shneiderman]
- through an iterative & interactive visual dialog

Interactive Visual Analysis ↔ Visual Analytics

- IVA (interactive visual analysis) since 2000
- **Tightly related to visual analytics**, of course, *e.g.*, integrating computational & interactive data analysis
- Particular methodology with specific components (CMV, linking & brushing, F+C vis., etc.)
- General enough to work in many application fields, but not primarily the VA fields (national security, etc.), in particular "scientific data" fields...

Target Data Model: "Scientific Data"

- Characterized by a combination of
 - independent variables, like space and/or time (cf. domain)
 - and dependent variables, like pressure, temp., etc. (cf. range)
- So we can think of this type of data as given as d(x) with x ↔ domain and d ↔ range examples:
 - CT data $d(\mathbf{x})$ with $\mathbf{x} \in \mathbb{R}^3$ and $d \in \mathbb{R}$
 - unstead 2D flow $\mathbf{v}(\mathbf{x},t)$ with $\mathbf{x} \in \mathbb{R}^2$, $t \in \mathbb{R}$, and $\mathbf{v} \in \mathbb{R}^2$
 - num. sim. result $d(\mathbf{x},t)$ with $\mathbf{x} \in \mathbb{R}^3$, $t \in \mathbb{R}$, and $\mathbf{d} \in \mathbb{R}^n$
 - **system sim.** q(p) with $p \in \mathbb{R}^n$ and $q \in \mathbb{R}^m$
- Common property:
 - d is (at least to a certain degree) continuous wrt. x

Interactive Visual Analysis of Scientific Data

- Interactive visual analysis (as exemplified in this tutorial) works really well with scientific data, e.g.,
 - results from numerical simulation (spatiotemporal)
 - imaging / measurements (in particular multivariate)
 - sampled models
- When used to study scientific data, IVA employs
 - methods from scientific visualization (vol. rend., ...)
 - methods from statistical graphics (scatterplots, ...), information visualization (parallel coords., etc.)
 - computational tools (statistics, machine learning, ...)
- Applications include
 - engineering, medicine, meteorology/climatology, biology, etc.

The Iterative Process of IVA

- Loop / bundling of two complementary parts:
 - visualization show to the user! Something new, or something due to interaction.
 - interaction tell the computer! What is interesting? What to show next?
- Basic example (show brush show …), cooling jacket context:
 - show a histogram of temperatures
 - brush high temperatures (>90°[±2°])
 - 3. show focus+context vis. in 3D
 - 4. locate relevant feature(s)

KISS-principle IVA:

linking & brushing, focus+context visualization, ...

Show & Brush

(IVA level 1)

- **Tightest IVA loop**
 - show data (explicitly) represented information)
 - one brush (on one view, can work on >1 dims.)

A typical (start into an) IVA session of this kind:

- bring up multiple views
 - at least one for x. t
 - at least one for d_i
- I see (something)!
- brush this "something"
- linked F+C visualization
- first insight!

Show & Brush

(IVA level 1)

A typical (start into an)

IVA session of this kind:

bring up multiple views

at least one for d;

I see (something)!

at least one for x, t

brush this "something"

linked F+C visualization

Tightest IVA loop

- show data (explicitly represented information)
- one brush (on one view, can work on >1 dims.)

Requires:

- multiple views (≥2)
- interactive brushing capabilities on views (brushes should be editable)
- focus+context visualization
- linking between views

... leads to...

first insight!

. is realized via ...

degree of interest

Allows for different IVA patterns (wrt. domain & range)

IVA: Multiple Views

- One dataset, but multiple views
- Scatterplots, histogram, 3D(4D) view, etc.

IVA: Interactive Brushing

- Move/alter/extend brush interactively
- Interactively explore/ analyze multiple variates

IVA: Focus+Context Visualization

- Traditionally space distortion
 - more space for data of interest
 - rest as context for orientation
- Generalized F+C visualization
 - emphasize data in focus (color, opacity, ...)
 - differentiated use of visualization resources

IVA: Linked Views

- Brushing: mark data subset as especially intersting
- Linking: enhance brushed data in linked views consistently (F+C)

(brushed view)

(linked views)

IVA: Degree of Interest (DOI)

• doi(.): data items tr_i (table rows) \rightarrow degree of interest

 $doi(tr_i) \in [0,1]$

- $doi(tr_i) = 0 \Rightarrow tr_i$ not interesting $(tr_i \in context)$
- $doi(tr_i) = 1 \Rightarrow tr_i \ 100\%$ interesting $(tr_i \in focus)$
- Specification
 - explicit, e.g., through direct selection
 - implicit, e.g., through a range slider

			40	60			
min:	0,0000000000	=			max:	72,00000000000	÷

- Fractional DOI values: 0 ≤ doi(tr_i) ≤ 1
 - several levels (0, low, med., ...)
 - a continuous measure of interest
 - a probabilistic definition of interest

x	у	d1	d2	doi
0	0	17,20	-0,22	0,00
1	0	12,10	0,10	0,00
2	0	7,70	0,45	0,00
3	0	2,10	0,90	0,00
0	1	24,10	0,02	0,00
1	1	21,90	0,36	0,00
2	1	15,50	0,87	0,74
3	1	11,10	1,20	1,00
0	2	27,20	0,12	0,00
1	2	24,10	0,66	0,18
2	2	17,30	1,35	1,00
3	2	12,10	2,20	0,60
0	3	35,50	0,67	0,00
1	3	30,90	1,30	0,00
2	3	24,50	2,10	0,10
3	3	20,80	2,90	0,00

(cont'd on next slide)

IVA: Smooth Brushing → Fractional DOI

- Fractional DOI values esp. useful wrt. scientific data: (quasi-)continuous nature of data

 smooth borders
- Goes well with gradual focus+context vis. techniques (coloring, semitransparency)

- Specification: smooth brushing [Doleisch & Hauser, 2002]
 - "inner" range: all 100% interesting (DOI values of 1)
 - between "inner" & "outer" range: fractional DOI values
 - outside "outer" range: not interesting (DOI values of 0)

Three Patterns of SciData IVA

■ Preliminary: domain x & range d visualized (≥2 views)

IVA – Levels of Complexity

(1/4)

- A lot can be done with basic IVA, already! [pareto rule]
- We can consider a layered information space: from explicitly represented information (the data) to implicitly contained information, features, ...

IVA – Levels of Complexity

A lot can be done with KISS-principle IVA! [pareto [le]]

- For more advanced exploration/analysis tasks, we extend it (in seveal steps):
 - IVA, level 2: **logical combinations of brushes**, *e.g.*, utilizing the *feature definition language* [Doleisch et al., 2003]
 - IVA, I. 3: attribute derivation; advanced brushing, with interactive formula editor; *e.g.*, similarity brushing
 - IVA, I4: application-specific feature extraction, e.g., based on vortex extraction methods for flow analysis
- Level 2: like advanced verbal feature description
 - ex.: "hot flow, also slow, near boundary" (cooling j.)
 - brushes comb. with logical operators (AND, OR, SUB)
 - in a **tree**, or **iteratively** ($(((b_0 op_1 b_1) op_2 b_2) op_3 b_3) ...)$

IVA (level 2) Example

IVA – Levels of Complexity

A lot can be done with KISS-principle IVA! [pareto [le]]

- For more advanced exploration/analysis tasks, we extend it (in seveal steps):
 - IVA, level 2: logical combinations of brushes utilizing the feature definition language [Decision et al. 2007]
 - IVA, I. 3: attribute derivation; advanced brushing, with interactive formula editor; *e.g.*, similarity brushing
 - IVA, I4: application-specific feature extraction, e.g., based on vortex extraction methods for flow analysis
- Level 3: using general info extraction mechanisms, two (partially complementary) approaches:
 - 1. derive additional attribute(s), then show & brush
 - 2. use an advanced brush to select "hidden" relations

IVA (level 3): Advanced Brushing

- Std. brush: brush 1:1 what you see
 Adv. brush: executes additional function ("intelligent"?)
- Examples:

IVA (level 3): Attribute Derivation

- Principle (in the context of iterative IVA):
 - see some data feature Φ of interest in a visualization
 - identify a mechanism T to describe Φ

execute (interactively!) an attribute derivation step

to represent Φ explicitly (as new, synthetic attribute[s] d_{ω})

- **brush** d_{φ} to get Φ
- Tools T to describe Φ from:
 - numerical mathematics
 - statistics, data mining
 - etc.
 - > scientific computing
- IVA w/ T ↔ visual computing

Attribute Derivation ↔ **User Task** / example

- The tools T, available in an IVA system, must reflect/match the analytical steps of the user:
- Example:
 - first vis.:

- ⇔ user wishes to select
 the "band" in the middle
- an advanced brush? a lasso maybe?
- ah!

→ let's normalize y and then brush (a)

leading to the wished selection:

What user wishes to reflect?

- Many generic wishes users interest in:
 - something relative (instead of some absolute values), example: show me the top-15%
 - change (instead of current values), ex.: show me regions with increasing temperature
 - some non-local property, ex.: show me regions with high average temperature
 - statistical properties, ex.: show me *outliers*
 - ratios/differences, ex.: show me population per area, difference from trend
 - etc.
- Common characteristic here:
 - questions/tools generic, not application-dependent!

How to reflect these user wishes?

- Many generic wishes users interest in:
 - something **relative** (instead of some absolute values), example: show me the *top-1* ⇒ **use**, *e.g.*, **normalization**
 - change (instead of current values) ex.: show me regions with incr⇒ derivative estimation
 - some non-local property, ex.: show me regions with hig ⇒ numerical integration
 - statistical properties, ex.: show me *outliers* ⇒ *descriptive statistics*
 - ratios/differences, ex.: show me population per area, difference ⇒ calculus
 - $\Rightarrow \textbf{data mining}$ (fast enough?)
- Common characteristic here:
 - questions/tools generic, not application-dependent!

Some useful tools for 3rd-level IVA

- From analysis, calculus, num. math:
 - **linear filtering** (convolve the data with some linear filter on demand, e.g., to smooth, for derivative estimation, etc.)
 - calculus (use an interactive formula editor for computing simple relations between data attributes; +, -, ·, /, etc.)
 - gradient estimation, numerical integration (e.g., wrt. space and/or time) ⇒ example
 - fitting/resampling via interpolation/approximation
- From statistics, data mining:
 - descriptive statistics (compute the statistical moments, also robust, measures of outlyingness, detrending, etc.)
 - embedding (project into a lower-dim. space,
 e.g., with PCA for a subset of the attribs., etc.)

 <u>example</u>
- Important: executed on demand, after prev. vis.

3rd-level IVA – Sample Iterations

(1/2)

- The Iterative Process of 3rd-level IVA:
 - Example 1:
 - you look at some temp. distribution over some region
 - you are interested raising temperatures, but not temperature fluctuations
 - you use a **temporal derivate estimator**, for ex., central differences $t_{\text{change}} = (t_{\text{future}} t_{\text{past}})/\text{len}(\text{future-past})$
 - lacktriangle you plot $t_{\rm change}$, e.g., in a **histogram** and **brush** what ever change you are interested in
 - maybe you see that some frequency amplification due to derivation, so you go back and
 - use an appropriate smoothing filter to remove high frequencies from the temp. data, leading to a derived, new $\tau = t_{\text{smooth}}$ data attribute
 - lacktriangle selecting from a **histogram** of $au_{\rm change}$ (computed like above) is then less sensitive to temperature fluctuations

3rd-level IVA – Sample Iterations

- The Iterative Process of 3rd-level IVA:
 - Example 2:
 - you bring up a scatterplot of d_1 vs. d_2 : (from an ECG dataset [Frank, Asuncion; 2010])
 - obviously, d_1 and d_2 are correlated, our interest: the **data center** wrt. the main trend
 - we ask for a (local) **PCA** of d_1 and d_2 :
 - then we brush the data center
 - we get the wished selection
 - from here further steps are possible..., incl. study of other PCA-results, etc.

Visualizing / analyzing lots of statistics

[Kehrer et al., TVCG 2011]

- Useful statistical measures include:
 - moments (μ , σ , ...), robust versions (median, IQR, ...)
 - **quartiles**, octiles, and quartiles q(p)
- Useful views allow the interactive visual analysis
 - quantile-plot q(p) vs. p, here for numerous **x**
 - **detrending** $(e.g., -q_2)$, **normalization** (e.g., z)

Brushing of Attribute Clouds for the Visualization of Multivariate Data

Heike Jänicke, Michael Böttinger, and Gerik Scheuermann, Member, IEEE

IVA – Levels of Complexity

(4/4)

A lot can be done with KISS-principle IVA! [pareto [le]]

- For more advanced exploration/analysis tasks, we extend it (in seveal steps):
 - IVA, level 2: logical combinations of brushes utilizing the feature definition language [Deisch et la 2007]
 - IVA, I. 3: attribute derivation; advanced brushing,

derivation

multiple

views & sels.

adv. brushing

s), then show & brush select "hidden" relations

oaches:

IVA – Levels of Complexity

A lot can be done with KISS-principle IVA! (pareto [le])

- For more advanced exploration/analysis tasks, we extend it (in seveal steps):
 - IVA, level 2: logical combinations of brushes utilizing the feature definition language [Meisch et 1, 2005]
 - IVA, I. 3: attribute derivation; advanced brushing, with interactive formula editor; e.g., similarity
- based on vortex extraction methods for flow a larger
- Level 4: application-specific procedures
 - tailored solutions (for a specific problem)
 - "deep" information drill-down
 - etc.

Interactive Visual Analysis – delivery

- Understanding data wrt. range d
 - which distribution has data attribute d_i?
 - how do d_i and d_j relate to each other? (multivariate analysis)
 - which d_k discriminate data features?

- Understanding data wrt. domain x
 - where are relevant features? (feature localization)
 - which values at specific x? (local analysis)
 - how are they related to parameters?

The Iterative Process of IVA...

- ...leads to an **interactive** & **iterative** workbench for **visual data exploration** & **analysis** (compare to **visual computing**, again)
- Different levels of complexity (show & brush, logical combinations, advanced brushing & attribute derivation, etc.)...
- ...lead to according iteration frequencies:

comment on human time constants

- on level 1: smooth interactions, many fps, constants for example during linking & brushing
- on level 2: interleaved fast steps of brush ops., for example when choosing a logical op. to cont. with
- on level 3: occasionally looking at a progress bar, for example when computing some PCA, etc.
- These frequencies limit the spectrum of usable tools
- ➤ New res. work will help to extend this spectrum!

The Iterative Process of IVA...

- ...is a very useful methodology for data exploration & analysis
- ...is very general and can be (has already been) applied to many different application fields (in this talk the focus was on scientific data)
- ...meets scientific computing as a complementary methodology (with the important difference that in IVA the user with his/her perception/cognition is in the loop at different frequencies, also many fps)
- ...is **not yet fully implemented** (we've done something, e.g., in the context of **SimVis**, **ComVis**, etc.) from here: different possible paths, incl. InteractiveVisualMatlab, IVR, etc.)

Acknowledgements

■ You!

- Krešimir Matković & Giuseppe Santucci!
- Helmut Doleisch, Raphael Fuchs, Johannes Kehrer, Çağatay Turkay, et al.!
- Collaboration partners (St. Oeltze, Fl. Ladstädter, G. Weber, et al.)
- All around SimVis and ComVis and ...
- Funding partners (FFG, AVL, EU, UiB, ...)