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Interactive Visual Analysis

@ Given data —
foo much and/or too complex to be shown all at once:

@ IVA is an interactive visualization methodology
to facilitate

@ the exploration and/or analysis of data
(not necessarily the presentation of data), including

® hypothesis generation & evaluation, sense making,
@ knowledge crystallization, efc.

® according to the user’s interest/task, for ex.,
by interactive feature extraction,

® navigating between overview and details, e.g.,
to enable interactive information drill-down [Shneiderman]

@ through an iterative & interactive visual dialog



Interactive Visual Analysis <> Visual Analytics ...

@ IVA (interactive visual analysis) since 2000

@ Tightly related to visual analytics, of course, e.g.,
integrating computational & interactive data analysis

@ Particular methodology with specific components
(CMV, linking & brushing, F+C vis., elc.)

@ General enough to work in many application fields,
but not primarily the VA fields (national security, etc.),
in particular “scientific data” fields...

Target Data Model: “Scientific Data”

@ Characterized by a combination of

® independent variables, like space and/or time
(cf. domain)

® and dependent variables, like pressure, temp., etc.
(cf. range)

® So we can think of this type of data as given as d(x)
with X <> domain and d <> range — examples:

® CT data d(x) with xeR3and deR

® unstead 2D flow v(x,f) with xeR?, teR, and veR?
® num. sim. result d(x,f) with xeR3, teR, and deR”"
® system sim. d(p) with peR” and qeR"™

@ Common property:
® d is (atleast to a certain degree) continuous wrt. x



Interactive Visual Analysis of Scientific Data

@ Interactive visual analysis (as exemplified in this tutorial)
works really well with scientific data, e.g.,

® results from numerical simulation (spatiotemporal)
® imaging / measurements (in particular multivariate)
® sampled models

® When used to study scientific data, IVA employs
® methods from scientific visualization (vol. rend., ...)

® methods from statistical graphics (scatterplots, ...),
information visualization (parallel coords., efc.)

® computational tools (statistics, machine learning, ...)

@ Applications include

® engineering, medicine, meteorology/climatology,
biology, efc.

The lterative Process of IVA

@ Loop / bundling of two complementary parts:

® visualization — show to the user!
Something new, or something due to interaction.

® interaction — tell the computer!
What is interesting? What to show next?

@ Basic example (show — brush — show — ...),

cooling jacket context:

1. show a histogram of temperatures l
2. brush high temperatures (>90°[£2°])
3. show focus+context vis. in 3D

4. locate relevant feature(s)

@ KISS-principle IVA:
@ linking & brushing, focus+context visualization, ...




Show & Brush (IVA level 1)

@ Tightest IVA loop " A typical (start into an)
@ show data (explicitly IVA session of this kind:
represented information) ® bring up multiple views
® one brush (on one ® at least one for x, ¢
view, can work on >1 dims.) ® at least one for g

@ | see (something)!

® brush this “something”
@ linked F+C visualization
brush ® first insight!
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Show & Brush (IVA level 1) ,?4
® Tightest IVA loop - A typical (start into an)
@ show data (explicitly IVA session of this kind:
represented information) ® bring up multiple views
® one brush (On one ® at least one for x, ¢
view, can work on >1 dims.) ® at least one for g
: @ | see (something)!
® Requires:

® brush this “something”
@ linked F+C visualization

@ interactive brushing i
capabilities on views " first insight!

(brushes should be editable)
@ focus+context visualization
@ linking between views

@ multiple views (=2)

... leads to... _
degree of interest

' “.... requires...
... Is realized via ...

@ Allows for different IVA patterns (wrt. domain & range)

(next slide)



IVA: Multiple Views

® One dataset, but multiple views
@ Scatterplots, histogram, 3D(4D) view, etc.
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IVA: Interactive Brushlng - : N

@ Move/alter/extend
brush interactively

@ Interactively explore/
analyze multiple variates

[Doleisch et al., '03]
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IVA: Focus+Context Visualization

@ Traditionally space distortion [Mackinlay et al. 1991]
® more space for data of interest
@ rest as context for orientation

® Generalized F+C visualization >
® emphasize data in focus (color,opacity, ...)
@ differentiated use of visualization resources
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IVA: Linked Views

® Brushing: mark data subset
as especially intersting

@ Linking: enhance brushed
data in linked views
consistently

(F+C)
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[Doleisch & Hauser, '02]



IVA: Degree of Interest (DOI)

® doi(.): data items fr; (table rows) — degree of interest
doi(tr,) € [0,1]

x y dl  d2  doi
@ doi(tr;) = 0 = tr, not interesting (tr; € context) ? E ]ng Efs 533

& doi(tr) =1 = tr, 100% interesting (tr; € focus) 210| 770] OASHE

3.0 210 050 ado

e . o1 210 002 o000

® Specification C 1z 0% 000
@ explicit, e.g., through direct selection AR

. . . . 0o 2 220 012 odd

® implicit, e.g., through a range slider 3T 2010 o5 013

202 1730 135 100

min; | 0,0000000000 = ﬁhﬁ maz; | 72,0000000000 = 32 1210 220 060

0 3 360 07 o0l

13 3090 130 Qo0

H . y 203 250 210 010

@ Fractional DOI values: 0 < doi(tr,) < 1 22 na 2mow

® several levels (0, low, med., ...)
® a continuous measure of interest
@ a probabilistic definition of interest

(cont’'d on next slide)

IVA: Smooth Brushing — Fractional DOI

@ Fractional DOI values esp. useful wrt. scientific data:
(quasi-)continuous nature of data <» smooth borders

® Goes well with gradual focus+context vis.
techniques (coloring, semitransparency)

@ Specification: smooth brushing [Doleisch & Hauser, 2002]
@ “inner”’ range: all 100% interesting (DOI values of 1)
® between “inner” & “outer” range: fractional DOI values

@ outside “outer” range: not interesting (DOI values of 0)
11

| doi | doi | —t
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brush  dimension brush  dim.



Three Patterns of SciData IVA

® Preliminary: domain x & range d visualized (=2 views)

)

® brushing on domain visualization, ,
...fomxtod...

e.g., brushing
special locations X -

in the map view S SR S—
(1 » local investigation “d”
® brushing on range visualization,

e.g., brushing - G\frwi/_\
outlier curves

in a function ‘d’”
graph view F Ny

(2] » feature localization “X”
relating multiple  [*d” ~—~_ - Withnd..~

|
range variates o s ()
© » multi-variate analysis “‘d”

@ A lot can be done with basic IVA, already! [pareto rule]

® We can consider a layered information space:
from explicitly represented information (the data)
to implicitly contained information, features, ...
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IVA — Levels of Complexity
@ A lot can be done with KISS-principle IVA! ffareto ‘|g1

@ For more advanced exploration/analysis tasks,
we extend it (in seveal steps):

@ IVA, level 2: logical combinations of brushes, e.qg.,
utilizing the feature definition language [Doleisch et al., 2003]

@ VA, I 3: attribute derivation; advanced brushing,
with interactive formula editor; e.g., similarity brushing

@ VA, I4: application-specific feature extraction, e.g.,
based on vortex extraction methods for flow analysis

@ Level 2: like advanced verbal feature description
@ ex.: "hot flow, also slow, near boundary” (cooling j.)
®@ brushes comb. with logical operators (AND, OR, SUB)
® in a tree, or iteratively ((((b, op; b4) 0p, b,) 0p; bs) ...)

IVA (level 2) Example




IVA — Levels of Complexity

® A lot can be done with KISS-principle IVA‘\!/(pareto ‘IET‘

@ For more advanced exploration/analysis tasks,
we extend it (in seveal steps): ne

£ )
® VA, level 2: logical combinations of brughes  «og
utilizing the feature definition language [Meisch et B2,

@ VA, I 3: attribute derivation; advanced brushing,
with interactive formula editor; e.g., similarity brushing

@ VA, I4: application-specific feature extraction, e.g.,
based on vortex extraction methods for flow analysis

@ Level 3: using general info extraction mechanisms,
two (partially complementary) approaches:

1. derive additional attribute(s), then show & brush
2. use an advanced brush to select “hidden” relations

IVA (level 3): Advanced Brushing

@ Std. brush: brush 1:1 what you see
Adyv. brush: executes additional function (‘intelligent™?)

@ Examples: ’
\ | w angular brushing [Hauser etal., 2002]

\ /== similarity brushing [Muigg et al., 2008]

Feature
Extraction

Brushing  extensions o

,,,,,,,,,,,,,,

percentil




IVA (level 3): Attribute Derivation

@ Principle (in the context of iterative IVA):
® see some data feature O of interest in a visualization
® identify a mechanism T to describe ®

® execute (interactively!) an attribute derivation step
to represent O explicitly (as -
new, synthetic attribute[s] d,)) Smoe b:hg> gD o

nnnnnnnnnnnnnn BrUShIng
® brush d,to get ®

® Tools T to describe @ from:
® numerical mathematics
@ statistics, data mining
® elc.
> scientific computing

® IVAw/T < visual computing

® The tools T, available in an IVA system,
must reflect/match the analytical steps of the user:

@ Example: /
. . fiafl .
@ first vis. &l < user wishes to select
' the “band” in the middle
® so? )

an advanced brush? a lasso maybe?
— let’'s normalize y
and then brush (a)

l|| \
® leading to the wished selection: g ilﬁ|||“|!ﬂww



What user wishes to reflect?

® Many generic wishes — users interest in:

® something relative (instead of some absolute values),
example: show me the top-15%

® change (instead of current values),
ex.: show me regions with increasing temperature

® some non-local property,
ex.: show me regions with high average temperature

@ statistical properties,
ex.. show me outliers

@ ratios/differences,
ex.: show me population per area, difference from trend

@ elc.

® Common characteristic here:
® questions/tools generic, not application-dependent!

How to reflect these user wishes?

® Many generic wishes — users interest in:

[ | Something relative (instegrl nf coame ahenliite valiiec)
example: show me the fop- = use, e.g., normalization

® change (instead of current values) | |
ex.: show me regions with inc = derivative estimation

® some non-local property, o _
ex.: show me regions with hic =>numerical integration

@ statistical properties,
ex.: show me outliers = descriptive statistics

@ ratios/differences,
ex.. show me population per area, difference = calculus

@ efc. = data mining
(fast enough?)

@ Common characteristic here:
® questions/tools generic, not application-dependent!



Some useful tools for 3r-level IVA

@ From analysis, calculus, num. math:

@ linear filtering (convolve the data with some linear filter
on demand, e.g., to smooth, for derivative estimation, etc.)

@ calculus (use an interactive formula editor for computing

simple relations between data attributes; +, —, -, /, etc.)
@ gradient estimation, numerical integration (e.g.,
wrt. space and/or time) = example

@ fitting/resampling via interpolation/approximation

@ From statistics, data mining: — example

® descriptive statistics (compute the statistical moments,
also robust, measures of outlyingness, detrending, etc.)

® embedding (project into a lower-dim. space, = example
e.g., with PCA for a subset of the attribs., etc.) = example

@ Important: executed on demand, after prev. vis.

3rd-level IVA — Sample Iterations

® The Iterative Process of 3rd-level IVA:

@ you Iook at some temp. distribution over some reg/on

@ you are interested raising temperatures,
but not temperature fluctuations

@ you use a temporal derivate estimator, for ex.,
central differences f, change = (tuwre—toast)/1€n(future—past)
® you plot {4 €-9., iN @ histogram
and brush what ever change you are interested in

® maybe you see that some frequency amplification
due to derivation, so you go back and

@ use an appropriate smoothing filter
to remove high frequencies from the temp. data,
leading to a derived, new 1 = { . data attribute

@ selecting from a histogram of 7, (computed like above)
is then less sensitive to temperature fluctuations




3rd-level IVA — Sample Iterations

@ The Iterative Process of 3rd-level IVA:

® Example 2:

@ you bring up a scatterplot of d, vs. d,:
(from an ECG dataset [Frank, Asuncion; 2010])

@ obviously, d, and d, are correlated,

our interest: the data center wrt. the main trendl

@ we ask for a (local) PCA of d, and d,:
@ then we brush the data center

@ we get the wished selection

@ from here further steps are possible...,
incl. study of other PCA-results, efc.

N N

504 ; pcl4,

@ Useful statistical measures include:

A

péz ﬂ

[Kehrer et al., TVCG 2011]

® moments (u, g, ...), robust versions (median, IQR, ...)

® quartiles, octiles, and quartiles g(p)

@ Useful views allow the interactive visual analysis

® quantile-plot g(p) vs. p,
here for numerous x

@ detrending (e.g., —q.),
normalization (e.g., 2)

g(p) of temp.
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| [IEEE Vis, 2008] ’I
Brushing of Attribute Clouds for the Visualization of

Multivariate Data

Heike Janicke, Michael Béttinger, and Gerik Scheuermann, Member, IEEE

2D embedding: brushed corresponding
the attribute cloud iz cloud: S sages feature(s):

IVA — Levels of Complexity

® A lot can be done with KISS-principle IVA! fareto gile}*

® For more advanced exploration/analysis tasks,
we extend it (in seveal steps): n -,

@ IVA, level 2: logical combinations of brughes  «og
utilizing the feature definition language [Meisch et M&a0o7,

@ VA, I 3: attribute derivation; advanced brushing,
", e.g., similarity brushing

combinati show feature extraction, e.g.,
ethods for flow analysis

‘ w traction mechanisms,

attribute

derivation oaches:
multiple 5), then show & brush
views &sels: . brushing

select “hidden” relations




IVA — Levels of Complexity

® A lot can be done with KISS-principle [VA! Apareto ‘Ié’T‘

@ For more advanced exploration/analysis tasks,
we extend it (in seveal steps): ‘ »,

® VA, level 2: logical combinations of br S Yal¥
utlllzmg the feature definition language | eISCh et K’mn |

@ VA |. 3: attribute derivation; advanced Jrus
with interactive formula editor; e.g., simil¥frit P ﬁa‘

® VA, 14: application-specific feature extrac *cr" o
based on vortex extraction methods for flow & ’;lly*

@ Level 4: application-specific procedures
@ tailored solutions (for a specific problem)
® “deep” information drill-down
@ efc.

@ which distribution : temperature
[~570°C — ~1160°C ]
has data attribute d,?

® howdod;and d;
relate to each o{her’?

(multivariate analysis) Co,co |
. [ [ . 3 pume

(W/PCA)

[ ] Wthh dk d|Scr|m|nate due to oxidation
data features? co

® Understanding data wrt. domain x

® where are relevant features?
(feature localization) two

slices

® which values at specific x? IRURNIN
(local analysis) i

® how are they related to
parameters?




The lterative Process of IVA...

...leads to an interactive & iterative workbench

for visual data exploration & analysis
(compare to visual computing, again) .

\/ - f;:‘

\ -,

O & ¥

@ A really important question is:
how fast is one such loop?

® Jean-Daniel Fekete, 2012:

: )

Response Times g

TABLE 3. HUMAN TIME CONSTANTS FOR TUNING EL’..

COGNITIVE CO-PROCESSOR * 0.1 sec-animation, visual continuity, sliders 5

TIME CONSTANT VALUE | REFERENCES * 1 sec-systemresponse, conversation break %

Perceptual processing | .1s | [5) * 10 sec - cognitive response 3

Immediate response 1s [21] ] Stuart K. Card, George G. Robertson, Jock D. Mackinlay. The information visualizer, an )

Unit task 10s [5‘2” information workspace. Proc. CHI '91, 181-186, 1991. S_D‘

)

THE INFORMATION VISUALIZER, * Beyond 20 sec, users wait and loose attention | =
AN INFORMATION WORKSPACE — Forget their goals and plans

Stuart K. Card, George G. Robertson, Jock D. Mackinlay
Xerox Palo Alto Research Center - Progress bar needEd!

y N I
(415 4944362, Card PARC@ Xeror. COM CHI '91

Categories of Interaction Pace

@ Separate » unit task » immediate » continuous

@ separate: offline processing

@ unit task [Card et al., '91]: =10s —
before attention breaks!

® immediate: =1s —

The unit task time constant. Finally, we scck to make it
possible for the user to complete some elementary task act
within 10 sec (say, 5~30 sec) [5,21], about the pacing of a
point and click editor. Information agents may require
considerable time to complete some complicated request,
but the user, in this paradigm, always slays active. He or
she can begin the next request as soon as sufficient

information has devcloped from the last or even in parallel
with it.

maintains an interplay, a conversation

@ continuous: =0.1s —
smooth in the eye (perception)

The perceptual processing time constant, The Cognitive
Co-processor is based on a continuously-running scheduler
loop and double-buffered graphics. In order to maintain
the illusion of animation in the world, the screen must be
repainted at least every .1 sec [5]. The Cognitive Co-
processor thercfore has a Governor mechanism that
monitors the basic cycle time. When the cycle time
becomes too high, cooperating rendering processes reduce
the quality of rendering (c.g., leaving off most of the text
during motion) so that the cycle speed is increased.

The immediate response time constant. A person can make
an unprepared response to some stimulus within about a
second [21]. If there is more than a second, then either the
listening party makes a backchannel response to indicate
that he his listening (e.g., "uh-huh") or the speaking party
makes a response (e.g., "uh..”) to indicate he is still
thinking of the next speech. These serve to keep the parties
of the interaction informed that they are still engaged in an
interaction. In the Cognitive Co-processor, we attempt (o
have agents provide status feedback at intervals no longer
than this constant. Immediate response animations (e.g.,
swinging the branches of a 3D tree into view) are designed
to take about a second. If the time were much shorter, then
the user would lose object constancy and would have to
reorient himself. If they were much longer, then the user
would get bored waiting for the response.

@ Really important differences on the user side!



Topology-Aware Navigation in Large

C3: Interaction e

T. Moscovich, F. Chevalier, N. Henry Riche, E. Pietriga, J.-D. Fekete, ACM CHI 09

® Jean-Daniel Fekete, 2012:

Examples Of Interac Visual Form Interaction: ScatterDice

View-level =
— Topology-Aware Navigation in Larg K o
Visual-form level < i
— ScatterDice, GraphDice

Data level

— Dynamic Queries, Brushing His

yleL reulwas [ymsbeq

1

Machine Learning Level

The Iterative Process of IVA...

...leads to an interactive & iterative workbench

for visual data exploration & analysis
(compare to visual computing, again) Gm;:,,&,;:,m:

@ Different levels of complexity (show & brush, logical
combinations, advanced brushing & attribute derivation, etc.)...

. . . . _Optimizing I?rocesses in
...lead to according iteration freqUENCIES: esimarsoleare,
@ on level 1. smooth interactions, many fps,
for example during linking & brushing

@ on level 2: interleaved fast steps of brush ops.,
for example when choosing a logical op. to cont. with

® on level 3: occasionally looking at a progress bar,
for example when computing some PCA, etc.

@ These frequencies limit the spectrum of usable tools
» New res. work will help to extend this spectrum!




The lterative Process of IVA...

...iIs a very useful methodology
for data exploration & analysis

..is very general and can be (has already been)

applied to many different application fields
(in this talk the focus was on scientific data)

..meets scientific computing as a complementary

methodology (with the important difference that in IVA
the user with his/her perception/cognition is in the loop
at different frequencies, also many fps)

..Is not yet fully implemented (we've done something,
e.g., in the context of SimVis, ComVis, etc.) — from here:
different possible paths, incl. InteractiveVisualMatlab, IVR, etc.)
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