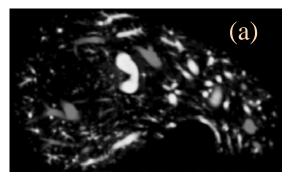
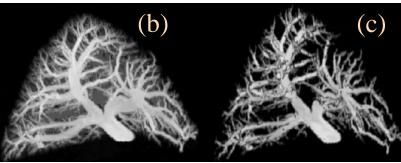
Visualization and Virtual Reality in Medicine

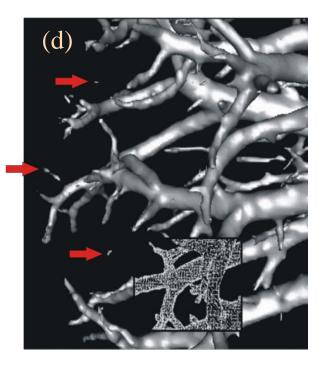
Prof. Dr.-Ing. Bernhard Preim, Dr.-Ing. Steffen Oeltze-Jafra Lehrstuhl für Visualisierung Universität Magdeburg

Tutorial Syllabus

Surface Visualization - Marching Cubes and its improvements - Smoothing of surface visualizations	(40 min.)
3D Vessel Visualization	(30 min.)
Labeling Medical Visualizations	(20 min.)
Break	(15 min.)
Direct Volume Visualization - Ray casting and texture-based approaches - Projection methods	(40 min.)
Multifield Medical Visualization	(30 min.)
Virtual Endoscopy	(20 min.)

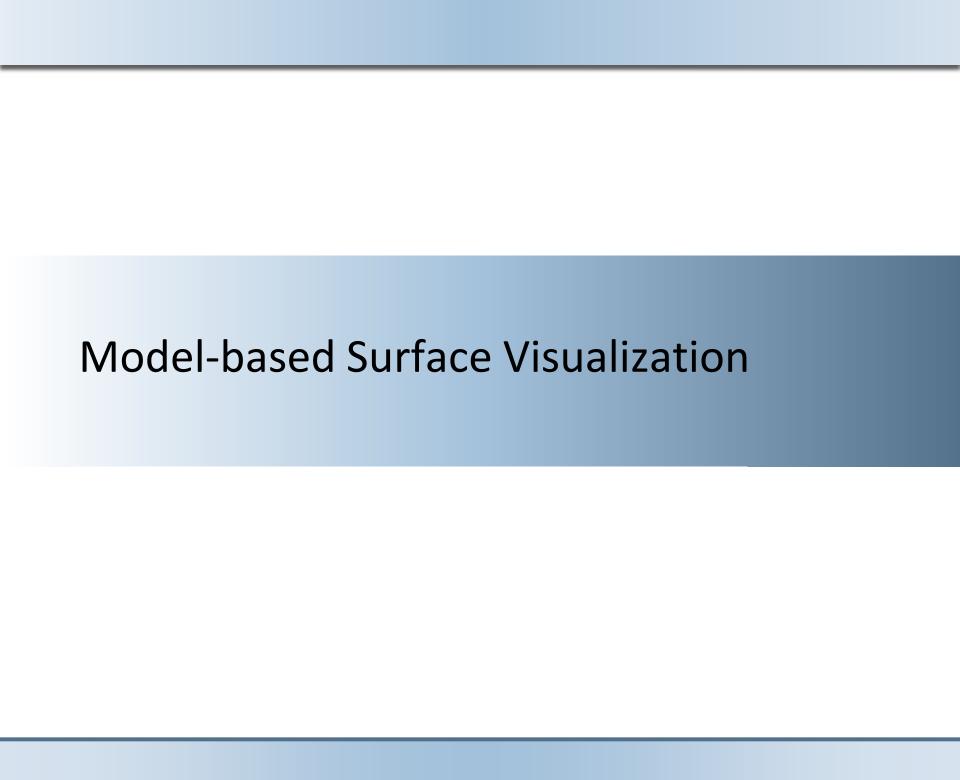

Vessel Visualization - Structure


- Basic Visualization Approaches
- Model-based Surface Visualization
- Model-free Surface Visualization
- Direct Volume Rendering Approaches

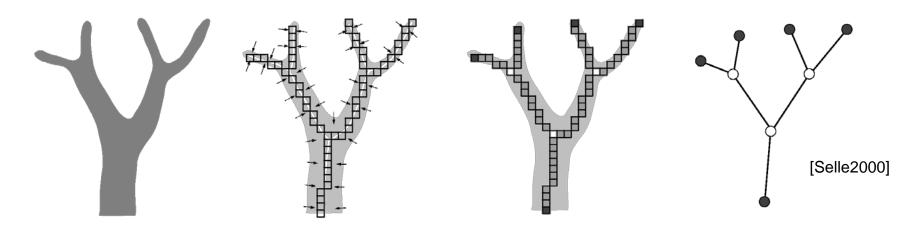


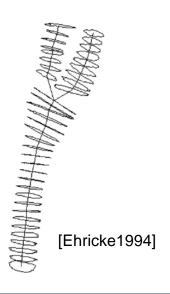
Prevalent Visualization Approaches

- a) Slice-based visualization, Multi-Planar Reformations (MPR)
- b) Maximum Intensity Projection (MIP)
- c) Closest Vessel Projection (CVP) [Zuiderveld1995]
- d) Surface Rendering (SR)
- e) Curved Planar Reformation (CPR) [Kanitsar2001]



Different Application Fields

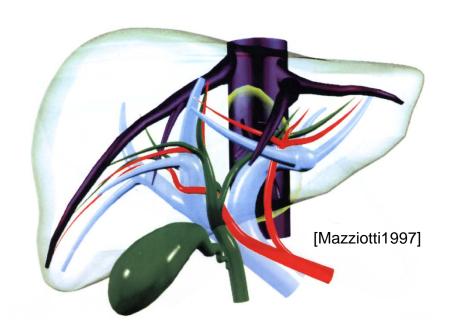

- Visualization in vascular diagnosis and vascular surgery:
 - Vascular surgery: bypass surgery, endoscopic treatment of aneurysms
 - Close adherence to the image data (vascular cross section)
 - Mostly slice-based examination, CPR
 - 3D visualization must be accurate
- Visualization in surgery planning and medical education:
 - 3D visualization must clearly communicate topology
 - Often, simplifying assumptions regarding morphology
 - Comprehension of spatial relations to other structures
 - Correct depiction of curvature, depth relations, and diminution of the diameter toward the periphery
 - MIP, CVP, and SR not well-suited due to image noise, partial volume effect, and limited resolution of CT and MRT
 - Often, reconstruction of vascular structures based on a model



Model Generation

High resolution CTA- or MRA-data → Segmentation →
 Skeletonization → Analysis of shape and branching pattern

- Resulting model:
 - Graph represents vascular topology
 - Edges = branches, nodes = branchings
 - List of skeleton voxels per branch
 - Radii per skeleton voxel
 - Branching information

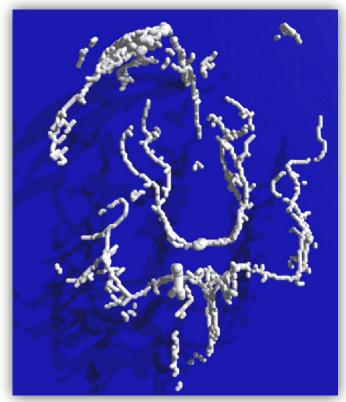


Model Assumption and Visualization Requirements

Simplifying model assumption:

 Circular cross-sections of non-pathological vessels

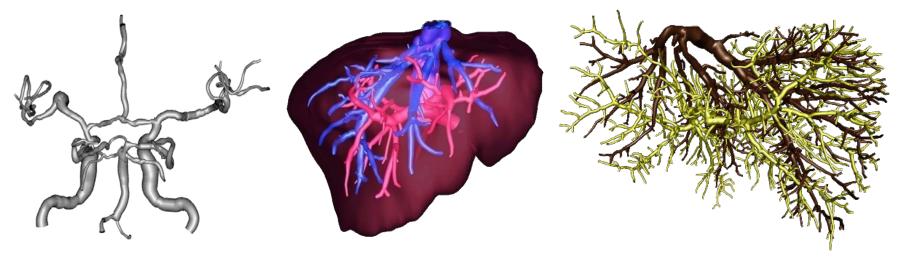
Keep in mind: methods are not intended for vessel diagnosis


Requirements:

- Correct representation of the vessel diameter
- Smooth, organic looking vessel shape
- Uniform treatment of all branching types
- Closed vessel ends
- Avoidance of structures inside the vessels

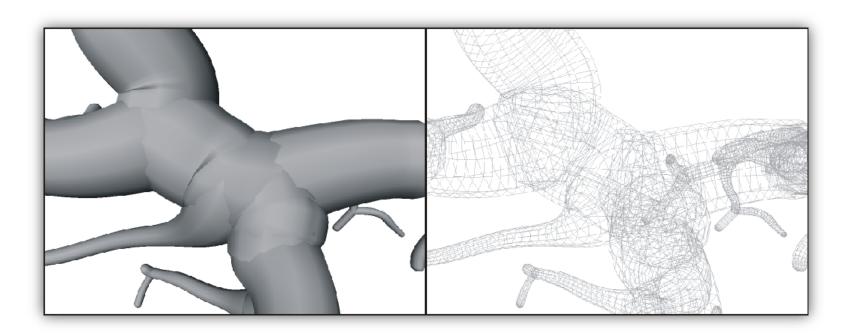
Cylinder Fitting

- Gerig et al., 1993: "Symbolic Description of 3d structures applied to cerebral vessel tree obtained from MR angiography volume data"
- Graph representation (edges, nodes) of the vessel tree for structural analysis, e.g. identification of sub trees
- Representation of the local vessel diameter by means of fitting cylinders along the vessel skeleton
- Ray-tracing of the scene



Truncated Cone Fitting

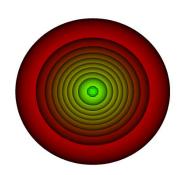
- Hahn et al., 2001: "Visualization and Interaction Techniques for the Exploration of Vascular Structures"
- Filtering: Smoothing of the skeleton and radius (Binominal filter)
- Rendering: Mapping of the model to geometric primitives
 - 1. Concatenation of truncated cones along the skeleton
 - 2. Mapping of truncated cones to polygons



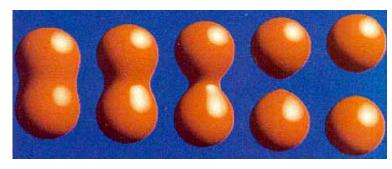
- Left: Cerebral blood vessels (MR-Data: Prof. Terwey, Bremen)
- Middle: Hepatic vein and portal vein of clinical dataset (CT-Data: Prof. Galanski, MH Hannover)
- Right: Corrosion cast of the human liver (Data: Prof. Fasel, Uni Genf)

Truncated Cone Fitting

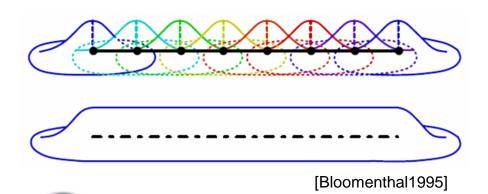
- Discontinuities at branchings become obvious at close-up views
- Inner polygons are constructed and therefore not suitable for virtual angioscopy
- But: A very fast method which has been applied in routine since 2004 (used for planning ~ 3000 interventions)


Subdivision Surfaces

- Felkel et al., 2002: "Surface Reconstruction of the Branching Vessels for Augmented Reality Aided Surgery"
- Computation of reference frame for each skeleton voxel to avoid twisting of the reconstructed vessel
- Visualization in two steps:
 - Construction of a coarse initial mesh by means of quads
 - Iterative refinement of the initial mesh applying Catmull-Clark subdivision surfaces


Convolution Surfaces

- Oeltze and Preim, 2005: "Visualization of Vascular Structures: Method, Validation and Evaluation"
- Application of implicit functions (Zero set F(p)-Iso=0)

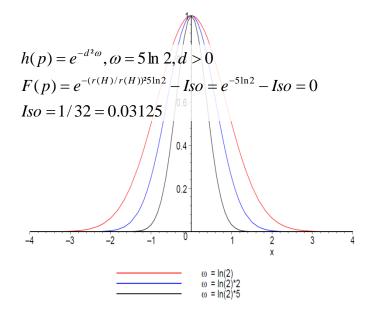

$$F(p) = e^{-\omega x^2}$$

$$\omega = width \ coefficient$$



[Blinn1982]

Convolution Surfaces [Bloomenthal1991]


Convolution of a line segment with a 3D low-pass filter

$$F(p) = \int_{S} h(s-p)ds = (h \otimes S)(p)$$

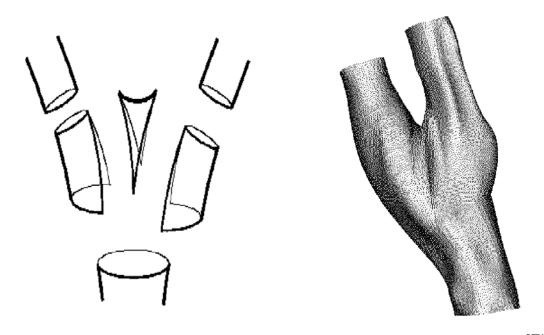
Convolution Surfaces

- Exploration of filter functions
- Selection guided by the following criteria:
 - Correct display of the diameter,
 - Avoid unwanted effects,
 - Fast computation

Blending strength

Unwanted blending

Bulging



- Results:
 - Narrow Gaussian is a good choice
 - For even narrower filter kernels, implicit surface converges against truncated cone visualization

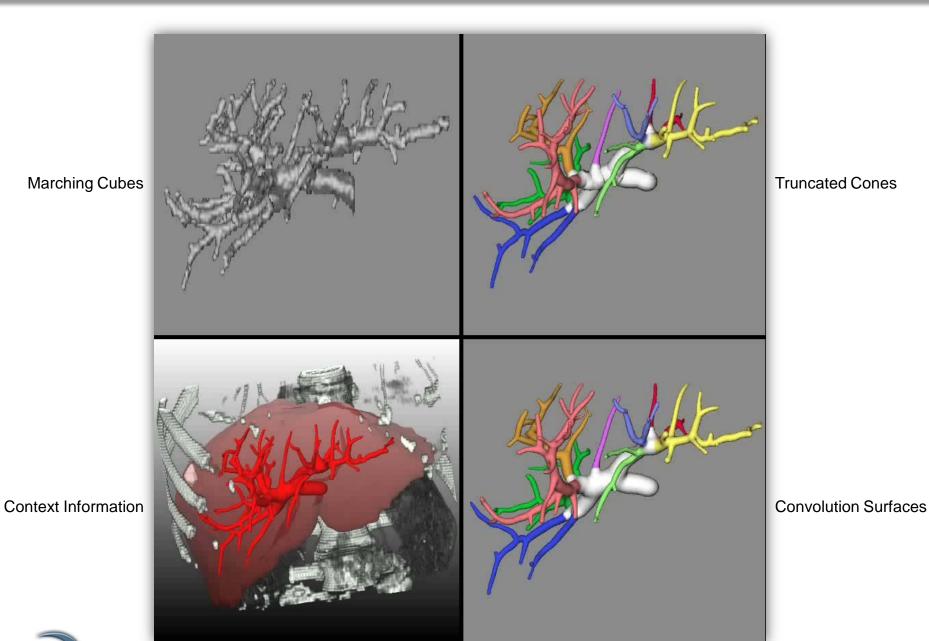
Freeform Surfaces

- Ehricke et al., 1994: "Visualization of vasculature from volume data"
- Spline-curves represent the vessel skeleton
- Voxel ring describes local cross section
- Mean Square Approximation by means of freeform surfaces
- Arbitrary cross-sectional shapes may be reconstructed

[Ehricke1994]

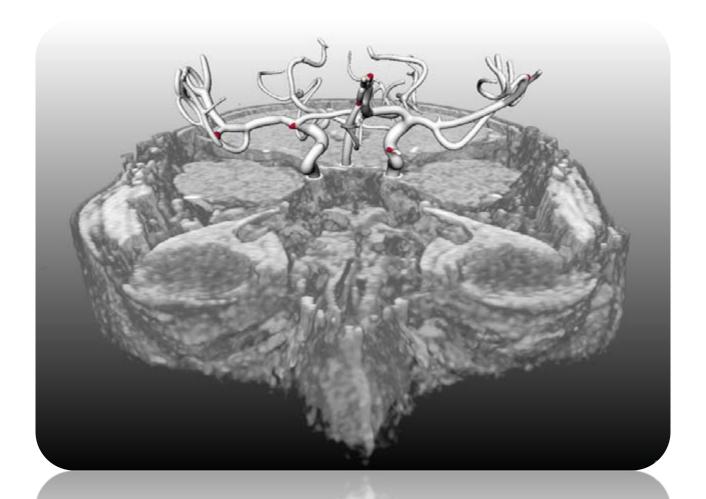
Simplex Meshes

- Bornik et al., 2005: "Reconstruction and Representation of Tubular Structures using Simplex Meshes"
- Simplex Meshes are simply-connected, i.e. each vertex is adjacent to 3 neighboring vertices [Delingette 1999]
- Visualization in two steps:
 - 1. Construction of an initial simplex mesh
 - Concatenation of adjacent approximating circular cross-sections
 - Special treatment of branchings necessary
 - Use mesh as deformable model based on Newtonian law of motion
 - External forces either directed to
 - sampling points defined by original, polygonal cross-sections or
 - to boundary voxels of the segmentation result.
 - Internal regularizing forces
- Arbitrary cross-sectional shapes may be reconstructed

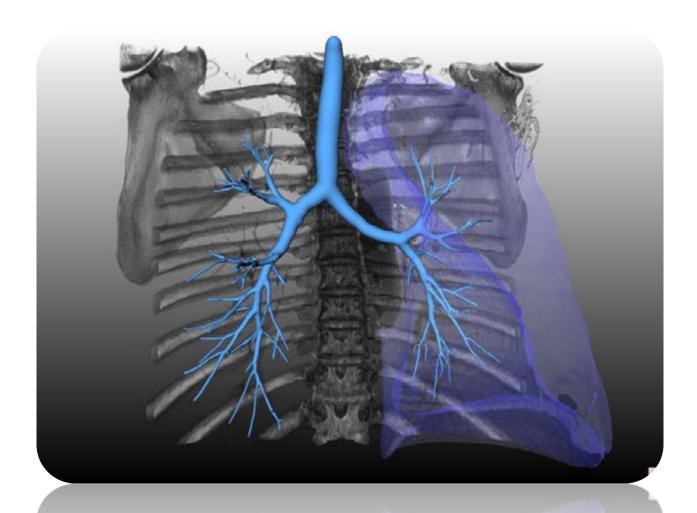


Comparison

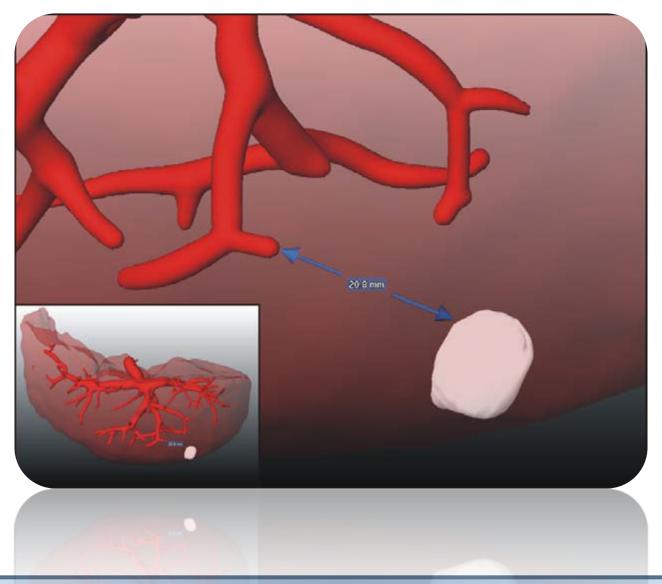
Method	Geometry	d		VYY	1	3		
Gerig1993	Cylinder	no local diminution	no	yes	no	no		
Hahn2001	Truncated cone	yes	no	yes	yes	no		
Felkel2002	Subdivision Surface	yes	yes	yes	no	yes		
Oeltze2004	Convolution Surface	yes	yes	yes	yes	yes		
Reconstruction of arbitrary cross-sectional shapes								
Ehricke1994	Freeform Surfaces	yes*	yes*	no*	no*	yes*		
Bornik2005	Simplex Mesh	yes	yes	yes	yes	yes		

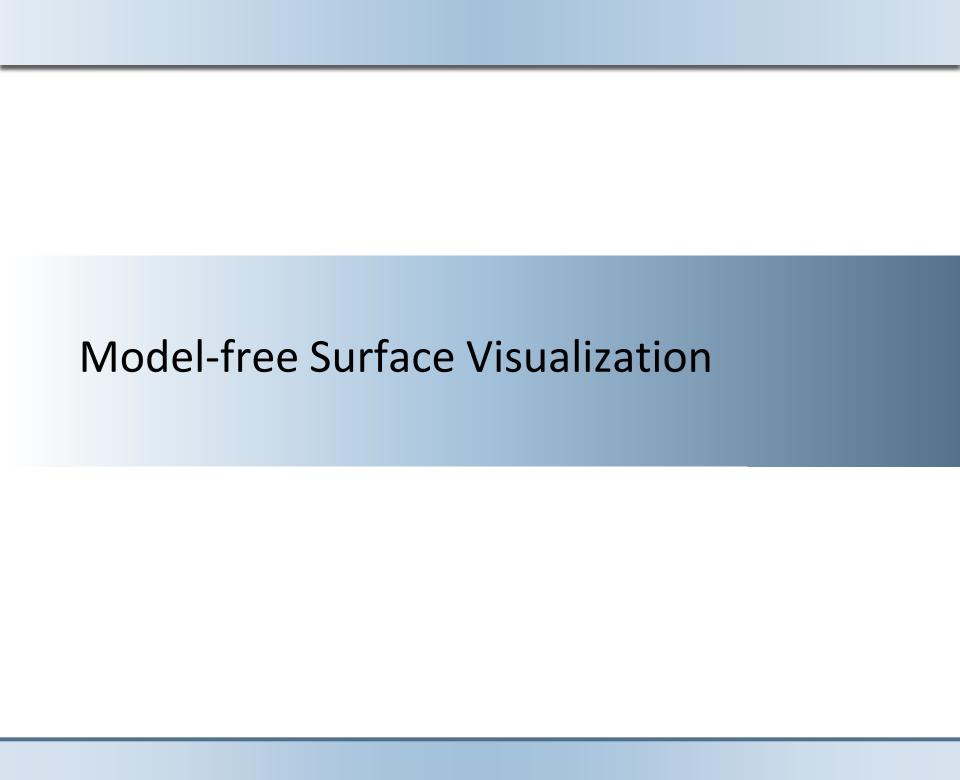

Comparison

Application Scenarios


Analysis of cerebral vasculature

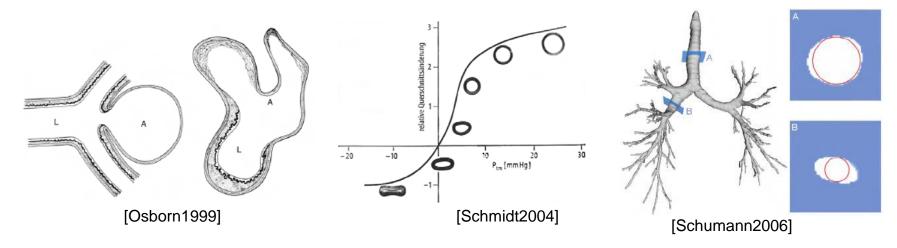
Application Scenarios


Analysis of bronchial tree



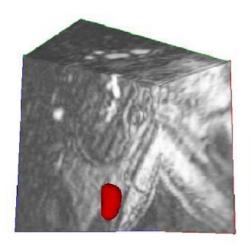
Application Scenarios

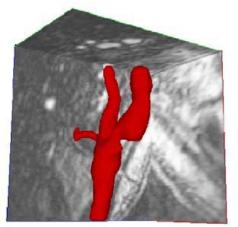
Liver tumor resection

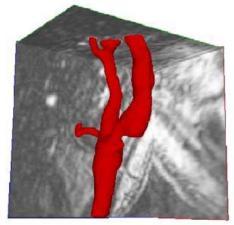


Characterization

- Primary goal: correct representation of cross-sectional shape
- Simplifying model-assumption of circular cross-sections is invalid for pathologic vessel parts, e.g., aneurysms, and also for certain non-pathologic vessels, e.g., the trachea

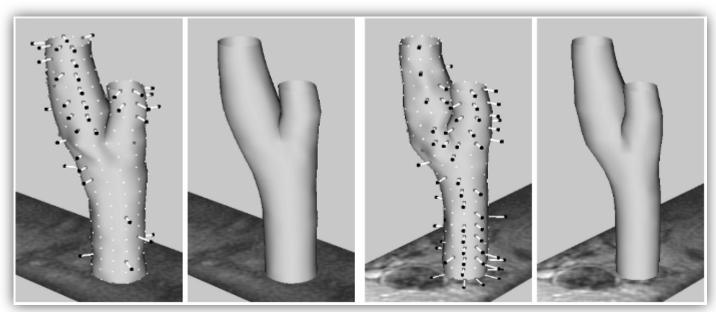



- Model-free approaches are either based on
 - the original data, if segmentation and surface generation are intrinsically tied to each other, or
 - a segmentation mask including the vascular structures.

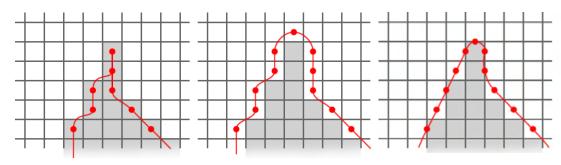


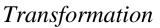
Level-Sets

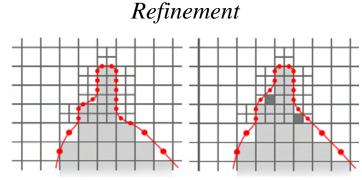
- Deschamps et al., 2002: "Fast surface and tree structure extraction of vascular objects in 3d medical images"
- Surface segmentation of thin, branching structures based on Fast-Marching and Level Set methods
- Algorithm:
 - Inflation of a "long balloon" from user-given starting point
 - Propagation of only one moving front and freezing of other points
 - Definition of a distance-based stopping criterion


[Deschamps2004]

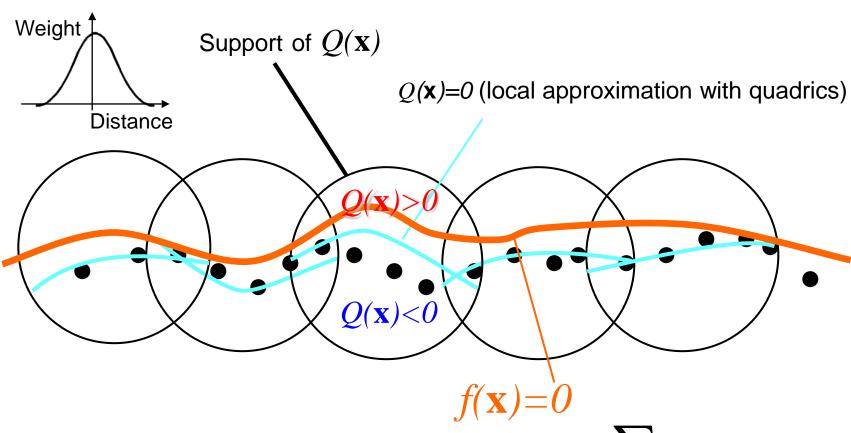
24 /40

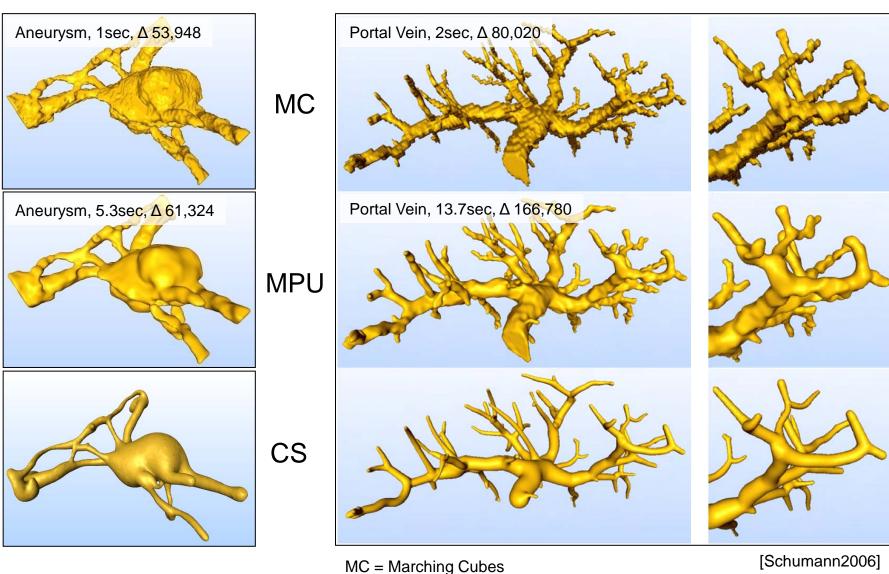

3D Active Shape Models


- Lekadir and Yang, 2006: "Carotid Artery Segmentation Using an Outlier Immune 3D Active Shape Models Framework"
- Construction of the ASM based on a training set
- Computation of tolerance intervals for outlier detection during training stage
- ASM fitting under consideration of the tolerance intervals



- Schumann et al., 2007: "Model-free Surface Visualization of Vascular Trees"
- Idea based on Ohtake et al., 2003: "Multi-level Partition of Unity Implicits"
- Approximation of a point cloud by a surface
- Algorithm:
 - 1. Transforming segmentation mask into point cloud
 - 2. Refinement of point cloud at "stair cases" and very thin vessels
 - 3. Spatial subdivision of the point cloud by an octree
 - 4. Local approximation of the cloud by algebraic surfaces
 - 5. Blending of local approximations results in global approximation



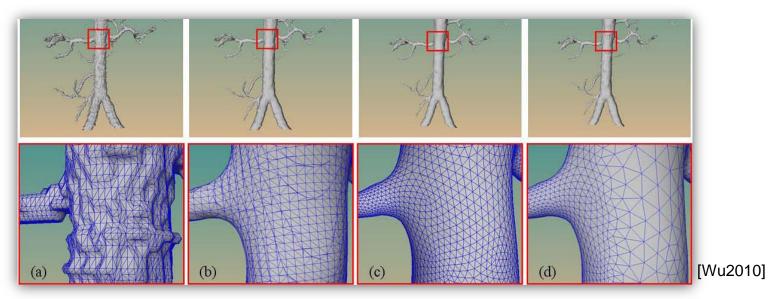


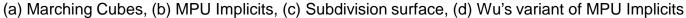
Local approximation and blending

Weighted average of local approximations: $f(\mathbf{x}) = \frac{\sum w_i(\mathbf{x}) Q_i(\mathbf{x})}{\sum w_i(\mathbf{x})}$

[Schumann2006]

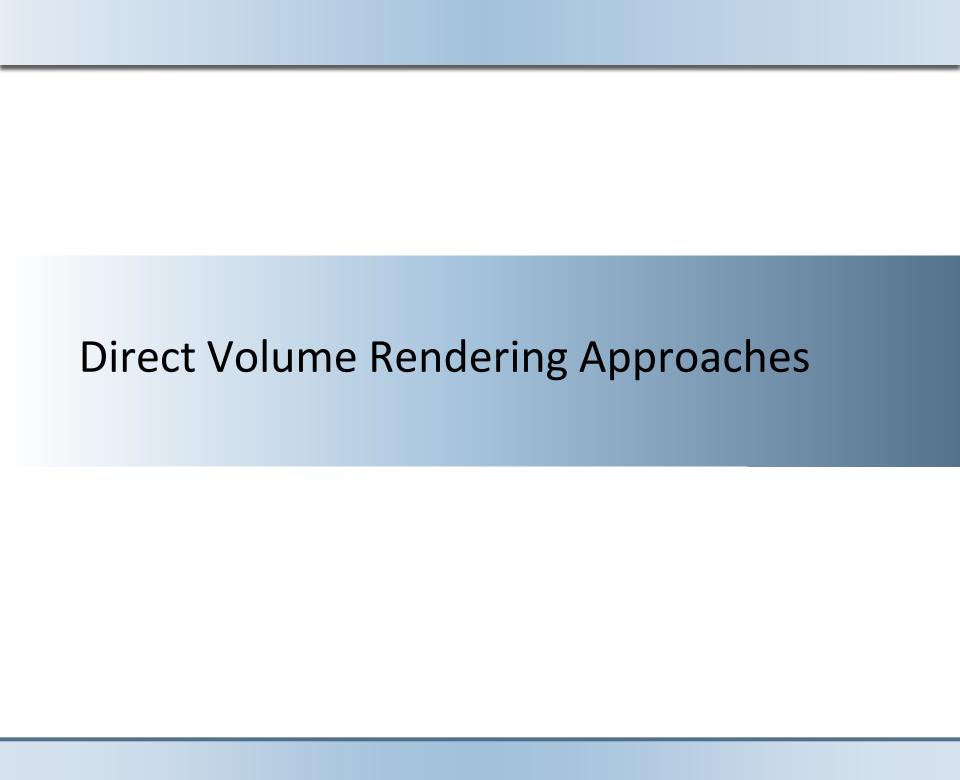
CS = Convolution Surfaces


Surface distances from MC- to MPU-result in voxel diagonals (V_d)


Dataset	Φ	σ	Rms	Median	Max	>V _d /2 [%]
Bronchial Tree	0.17	0.11	0.21	0.16	1.4	0.69
Portal Vein	0.17	0.11	0.2	0.15	0.84	0.82
Cerebral Tree	0.2	0.13	0.24	0.2	1.68	1.7
Aneurysm	0.21	0.16	0.27	0.19	1.9	4.1
Average	0.19	0.13	0.23	0.17	1.46	1.84

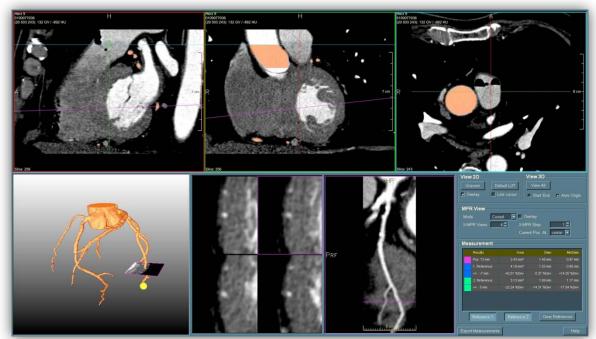
Improvement of Mesh Quality

- Wu et al., 2010: "Scale-Adaptive Surface Modeling of Vascular Structures"
- Guo et al., 2013: "Mesh Quality Oriented 3D Geometric Vascular Modeling Based on Parallel Transport Frame"
- Curvature-dependent generation of mesh yields less triangles and good triangle quality
- Important for, e.g., construction of volume mesh for CFD simulation and simulation-based surgical training and planning



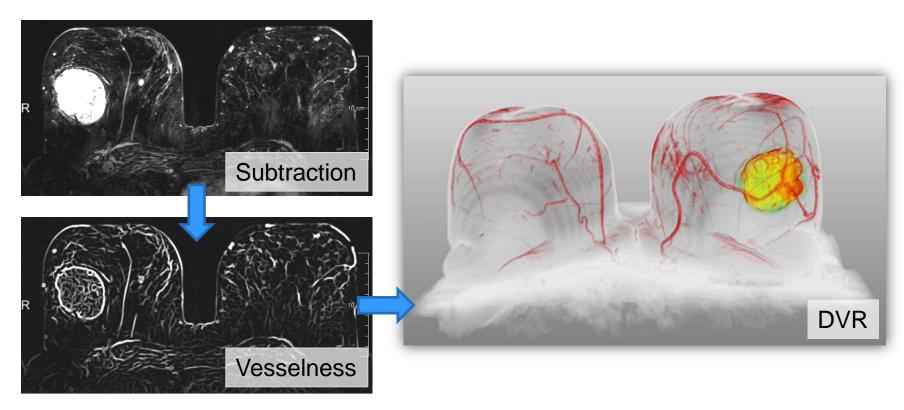
Improvement of Surface Smoothness

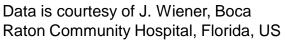
- Hong et al., 2012: "Implicit Reconstruction of Vasculatures Using Bivariate Piecewise Algebraic Splines"
- Sweep surface is created by
 - smoothly interpolating points representing vascular cross sections and
 - integrating these profiles, under consideration of their individual contributions, along the centerline with a *sweeping* technique.
- At branchings, weighting of branches and smooth blending



Characterization

- Direct visualization of contrast-enhanced 3D/4D data
- Requires neither a segmentation nor an analysis of vasculature
- Often prefiltering of the data to further enhance vessels
- Good overview of the entire vasculature in 3D
- Often combined with methods for more detailed inspection of cross-sectional shape and vessel lumen, e.g., MPR and CPR



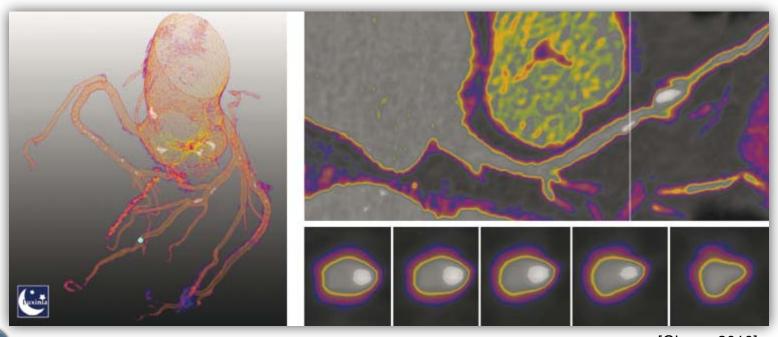


Vessel Enhancement Filtering

- Popular vesselness filter by A. Frangi [Frangi1998]
- Computation of a vesselness measure based on the Eigenvalues of the Hessian (second order local structure of an image)

Non-Parametric Vessel Detection

- Joshi et al., 2008: "Effective Visualization of Complex Vascular Structures Using a Non-Parametric Vessel Detection Method"
- New vesselness measure that performs better at branches
- Based on an intensity profile around each voxel
- Combination of new measure with visualization techniques which improve shape as well as depth cues


Vessel-enhancement and distance color blending

Tone shading

Automatic Transfer Function Specification

- Glaßer et al., 2010: "Automatic Transfer Function Specification for Visual Emphasis of Coronary Artery Plaque"
- Based on coarse segmentation of coronary tree
- Transfer function (TF) is automatically designed such that pathologic changes (plaque) are highlighted
- TF adaptation to each dataset by local histogram analysis

Summary

Prevalent Visualization Approaches

- CPR and MPR well suited for inspecting vascular cross-sections
- SR hampered by image noise and partial volume effect
- MIP and CVP fail to always convey depth information correctly
- Model-based Surface Visualization
 - Communicates topology & morphology, unsuitable for vessel diagnosis
 - Approaches require segmentation and skeletonization of the vessels
- Model-free Surface Visualization
 - Suitable for vessel diagnosis, correct depiction of cross-sections
 - Vessel segmentation and visualization may compose a joint process
- Direct Volume Rendering Approaches
 - Appropriate as an overview visualization
 - Vessel enhancement as a pre-processing step
 - Coupling of a 3D representation with MPR and CPR views

Literature

To get an overview:

- Preim and Botha [2014]: chapter "Visualization of Vascular Structures" in Visual Computing for Medicine Theory, Algorithms, and Applications, 2nd ed., Morgan Kaufmann
- Hong [2014]: "A Survey on the Visualization and Reconstruction of Vasculatures", In: Proc. of SPIE
- Preim and Oeltze [2008]: "3D Visualization of Vasculature: An Overview". Visualization in Medicine and Life Sciences.
- Wu [2013]: "Comparative Study of Surface Modeling Methods for Vascular Structures". Computerized Medical Imaging and Graphics, 37(1).
- Lesage [2009]: "A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes". Medical Image Analysis, 13(6).
- Bühler [2004]: "Geometric Methods for Vessel Visualization and Quantification A Survey". Geometric Modeling for Scientific Visualization, Springer.

For more details:

- Blinn [1982]: "A Generalization of Algebraic Surface Drawing". ACM Trans. on Graphics, 1(3)
- Bloomenthal [1991]: "Convolution Surfaces". Computer Graphics (Proc. of ACM SIGGRAPH), Bd. 25.
- Bloomenthal [1995]: Skeletal Design of Natural Forms. PhD thesis, University of Calgary.
- Bornik [2005]: "Reconstruction and Representation of Tubular Structures using Simplex Meshes". In: Proc. of WSCG (Short Papers).
- Delingette [1999]: "General Object Reconstruction Based on Simplex Meshes". Int. J. Comput. Vision, 32(2).
- Deschamps [2002]: "Fast surface and tree structure extraction of vascular objects in 3d medical images". In: Proc. of Conf. on Curve and Surface Design

Literature

- Ehricke [1994]: "Visualization of vasculature from volume data". Comp. and Graph., 18(3).
- Felkel [2002]: "Surface Reconstruction of the Branching Vessels for Augmented Reality Aided Surgery". BIOSIGNAL, 16.
- Frangi [1998]: "Multiscale Vessel Enhancement Filtering". In: Proc. of Medical Image Computing and Computer-Assisted Intervention". Proc. of MICCAI, Springer, LNS, Vol. 1496
- Gerig [1993]: "Symbolic Description of 3d structures applied to cerebral vessel tree obtained from MR angiography volume data". In: Proc. of Information Processing in Medical Imaging.
- Glaßer [2010]: "Automatic Transfer Function Specification for Visual Emphasis of Coronary Artery Plaque". Computer Graphics Forum, 29(1).
- Guo [2013]: "Mesh Quality Oriented 3D Geometric Vascular Modeling Based on Parallel Transport Frame", Computers in Biology and Medicine, 43(7).
- Hahn [2001]: "Visualization and Interaction Techniques for the Exploration of Vascular Structures". In: Proc. of IEEE Visualization.
- Hong [2012]: "Implicit Reconstruction of Vasculatures Using Bivariate Piecewise Algebraic Splines", IEEE Trans. Med. Imag., 31(3).
- Joshi [2008]: "Effective Visualization of Complex Vascular Structures Using a Non-Parametric Vessel Detection Method". IEEE Trans. Vis. Comput. Graphics, 14(6).
- Kanitsar [2001]: "Computed tomography angiography: a case study of peripheral vessel investigation". In: Proc. of IEEE Visualization.
- Kuehnel [2006]: "New Software Assistants for Cardiovascular Diagnosis". In: Proc. GI-Workshop Softwareassistenten Computerunterstützung für die medizinische Diagnose und Therapieplanung.

Literature

- Lekadir, Yang [2006]: "Carotid Artery Segmentation Using an Outlier Immune 3D Active Shape Models Framework". In: Proc. of MICCAI, Springer, Lecture Notes in Computer Science, Vol. 4190.
- Mazziotti [1997]: Techniques in Liver Surgery. Greenwich Medical Media.
- Oeltze, Preim [2005]: "Visualization of Vascular Structures: Method, Validation and Evaluation". IEEE Trans. on Medical Imaging, 24(4).
- Ohtake [2003]: "Multi-level Partition of Unity Implicits". ACM Trans. on Graphics, 22(3).
- Osborn [1999]: "Diagnostic Cerebral Angiography". Lippincott Williams and Wilkins, 2nd ed.
- Schmidt [2004]: "Physiologie des Menschen mit Pathophysiologie". 29. Auflage. Springer Medizin Verlag.
- Schumann [2006]: Visualisierung baumartiger anatomischer Strukturen mit MPU Implicits. Master Thesis, University of Magdeburg.
- Schumann [2007]: Model-free Surface Visualization of Vascular Trees. In IEEE/Eurographics Symposium on Visualization, Eurographics, 2007
- Selle [2000]: "Mathematical Methods in Medical Image Processing: Analysis of Vascular Structures for Preoperative Planning in Liver Surgery". In: Springer's Special Book for the World Mathematical Year 2000: Mathematics Unlimited 2001 and Beyond.
- Wu [2010]: "Scale-Adaptive Surface Modeling of Vascular Structures", BioMedical Eng OnLine 9:75
- Zuiderveld [1995]: "Visualization of Multimodality Medical Volume Data using Object-Oriented Methods". PhD Thesis, Universität Utrecht.

