From Static to Dynamic Visualization of Real-Time Imaging Data

Stefan Bruckner

Department of Informatics University of Bergen UNIVERSITETET I BERGEN

Real-Time Medical Imaging (1)

- Acquisition of live in vivo image data of the human body
 - Imaging of dynamic processes
 Cardiology (heart), gastroenterology
 (stomach & bowel), nephrology
 (kidney), hepatology (liver), (bladder),
 obstetrics (fetus)
 - Interventional imaging
 Surgery (e.g., tumor resections, neurosurgery, bypass surgery), biopsies

Real-Time Medical Imaging (2)

- Radiography
 - Fluoroscopy

Only 2D projections, ionizing radiation

- Computed Tomography (CT)
 - CT Fluoroscopy

low spatial/temporal resolution, high radiation doses

- Magnetic Resonance Imaging (MRI)
 - FLASH (Fast Low Angle Shot) MRI Only single/few slices, limited availability

Basic Ultrasound Imaging

Ultrasound Characteristics

- Non-invasive
- Cheap
- High resolution
 - Spatially
 - Temporally
- Noise
 - Random
 - Speckle

Common Ultrasound Modes

- 2D Ultrasound
 - B-Mode
- 3D Ultrasound
 - Static 3D imaging
- 4D Ultrasound
 - Dynamic 3D imaging
- Doppler Ultrasound
 - Color Doppler: directional
 - Power Doppler: non-directional
- Contrast Ultrasound
 - Microbubbles-based contrast agents
- Elastography
 - Mechanical tissue properties

Challenges

- Real-time imaging means that no part of the visualization pipeline can be considered pre-processing
 - Limited computational budget
 - Degree of interaction limited
 - Constant changes

Outline

- Visualization of 3D/4D ultrasound data
- Recent advances in
 - Filtering
 - Classification
 - Illumination
 - Fusion and Guidance

From Static to Dynamic Visualization of Real-Time Imaging Data

FILTERING

Filtering

 Noisy character of ultrasound imaging makes filtering particularly important for 3D visualization

Lowest Variance Filtering

- Remove speckle and random noise
- Structure-preserving filtering
 - Determine local structure orientation
 - Filter along direction of lowest variance

Local Structure Orientation

 Sample local voxel neighborhood on on a sphere

Directional Filtering

 Streamline integration along direction of lowest variance FORWARD ----BACKWARD

Results

Solteszova el al. 2012: Lowest-Variance Streamlines for Filtering of 3D Ultrasound

4D Filtering (1)

- Acceptable complexity of filtering method is limited by the target frame rate
 - Idea: only filter voxels that contribute to the final rendered image
 - Problem: filtering changes data values and hence can affect visibility globally
 - Solution: conservatively estimate a voxel's visibility after filtering

4D Filtering (2)

• Only a fraction of voxels actually influence the final image due to transparency and occlusion

Visibility-Driven Filtering

Prediction of Filter Behavior

- Opacity of a filtered value of minimum and maximum of a neighborhood
- Possible for all convolutionbased filters with normalized non-negative weights
- calculation

 Lookup tables for conservative visibility mask

Results (1)

Results (2)

Solteszova el al. 2014: Visibility-Driven Processing of Streaming Volume Data

From Static to Dynamic
Visualization of Real-Time Imaging Data

CLASSIFICATION

Classification

- Mapping of data values to optical properties (usually color and opacity)
- Several challenges
 - Low dynamic range
 - Significant amount of noise and speckle
 - Varying intensities for the same tissue
 - Fuzzy boundaries

Variational Classification

- Simultaneous denoising and opacity assignment
- Variational approach based on isovalue and gradient

Scale Space Filtering

 Automatic adjustment of the global opacity transfer function based on scale-space filtering

Hönigmann et al. 2003: Adaptive Design of a Global Opacity Transfer Function for Direct Volume Rendering of Ultrasound Data

Predicate-based Classification

- Problem: classification of 3D ultrasound data for volume visualization
 - Standard 1D transfer functions don't work well for ultrasound
 - Additional attribute dimensions can help, but classification space becomes difficult to navigate
- Approach: define a set of point predicates which can be combined via logical operations

Predicate Library

- Set of different local and non-local predicates $P = (f_P: X \rightarrow \{true, false\}, \kappa_P, \delta_P)$
 - $-\kappa_P$ is an importance factor
 - $-\delta_P$ is the color modulation
- Examples of possible predicates
 - Range-based predicates
 - Direction-based predicates
 - Signal-to-Noise ratio predicate
 - Vesselness predicate
 - Confidence predicate
 - Label predicate

Predicate Setup

- Simple widget to assign importances and colors
- Combination of predicates with Boolean operations (and, or, not)

Schulte zu Berge et al. 2014: Predicate-based Focus-and-Context Visualization for 3D Ultrasound

Visual Mapping

- Importance-driven layered compositing, cf. [Viola et al. 2004, Rautek et al. 2007]
- High-importance layers receive higher visibility (depth relationships can be overridden)
- Predicates only affect hue and opacity, luminance comes from data values

Predicate Histogram

- Sketch-based interface for predicate setup
- User draws positive and negative sketch
- Importance of each predicate is modulated accordingly

(a) Original Predicate Histogram

(c) Predicate Histogram After Applying Scribbles

Results (1)

 Shoulder dataset: combines visualization of bone and muscle tissue

Results (2)

• Path of the carotid artery is shown in red

Results (3)

• Achilles tendon is shown in red

Recent Developments in Ultrasound Visualization

RENDERING

Volume Rendering (1)

Volume Rendering (2)

Local Volume Illumination

- Only a function of gradient direction and light source parameters
 - Volumetric absorption between light source and sample point is ignored \rightarrow no shadows
 - Multiple scattering is ignored \rightarrow no color bleeding effects

conventional

rendering

fetoscopic image
Light Propagation in Tissue

- Human skin (and tissue in general) is translucent
 - Red penetrates deeper than blue and green light
 - Light scatters predominantly in forward direction
 - Light propagation tends to become isotropic after multiple scattering events

Fetoscopic Illumination Model

Varchola 2012: Live Fetoscopic Visualization of 4D Ultrasound Data

Fetoscopic Illumination Model

Direct Lighting (1)

Light is attenuated along its way through the volume

Direct Lighting (2)

Light Source Extent (1)

hard shadows

soft shadows

Light Source Extent (2)

Soft Shadows

Kernel Size (1)

shadow softness - low

shadow softness - medium

shadow softness - high

Kernel Size (2)

shadow softness - low

shadow softness - medium

shadow softness - high

Fetoscopic Illumination Model

Varchola 2012: Live Fetoscopic Visualization of 4D Ultrasound Data

Indirect Lighting (1)

Light is scattered multiple times before it reaches the eye

Forward Scattering (1)

rendering without scattering

rendering with scattering

Forward Scattering (2)

Fetoscopic Illumination Model

Front and Back Lighting

Light positioned in front

Light positioned behind the scene

Local Ambient Occlusion (1)

- Evaluate the average visibility of each point
 - Perform sampling in a small spherical neighborhood
 - Modulate ambient illumination intensity by the result

Local Ambient Occlusion (2)

Fetoscopic Illumination Model

Varchola 2012: Live Fetoscopic Visualization of 4D Ultrasound Data

Specular Highlights

Fetoscopic Illumination Model

Varchola 2012: Live Fetoscopic Visualization of 4D Ultrasound Data

Implementation

- GPU-based implementation using DirectX
 - Available as *HDlive* in GE's latest generation of ultrasound machines (Voluson E8 / Expert)
 - Interactive performance of 15-20 fps limited by data acquisition

Results (1)

conventional rendering

fetoscopic rendering

Results (2)

conventional rendering

fetoscopic rendering

Results (3)

Results (4)

Results (5)

photograph acquired with fetoscope [A Child is Born, Nilson and Hamberger]

fetoscopic rendering [Picture of the Month, Ultrasound in Obstetrics & Gynecology 38(5)]

Benefits

- Approximates realistic illumination in real-time
- Robust against noise and artifacts
- Better 3D perception may have diagnostic benefits
- Currently investigating other application scenarios (e.g., cardiac)

cleft lip: better visibility of border and separation

down syndrome: inclanation of palpepral fissures

Cardiac Ultrasound

From Static to Dynamic
Visualization of Real-Time Imaging Data

FUSION AND GUIDANCE

Fusion and Guidance

- Fusion: combine multiple modalities to improve diagnostic value
 - Registered CT/MRI scans, blood flow, etc.

- Guidance: augment images with additional information
 - Orientation and navigation aids, etc.

B-Mode/Doppler Fusion

- Integrated visualization of B-Mode and Doppler data
- Non-photorealistic silhouette rendering for reduced visual clutter

Vector Flow Imaging Visualization

- Vector Flow
 Imaging provides
 3D velocity
 information
 - Pathlets-based
 visualization
 - Pathline
 integration on the
 GPU

Anatomical Context

- Tracked 2D probe registered with pre-interventional CT scan
- Cutways for unoccluded depiction of the ultrasound slice

Guidance in Liver Examinations

- Couinaud segmentation: divides the liver into different sections dependent on the blood vessels
- Registration to a liver model for real-time Couinaud overlays during the scan

Cardiac Ultrasound Guidance

 Real-time augmentation of the ultrasound slice using an animated heart model

From Static to Dynamic
Visualization of Real-Time Imaging Data

CONCLUSIONS

Conclusions (1)

- Selection of recent approaches for improved visualization of ultrasound data
- Importance of 4D ultrasound as a cheap and effective imaging modality is ever-increasing
- Technological advances (e.g. beamforming) offer continuous improvements in frame rate and image resolution
- Live 4D data is still very challenging and many problems remain unsolved

Conclusions (2)

- Technical challenges
 - Real-time filtering, segmentation, registration, rendering, ...
- Visualization challenges
 - Integration of anatomy and physiology (more after the break)
 - Visualization of high-speed processes
 - Interaction with real-time visualizations
 - Quantitative visualization
 - Collaborative visualization

Thank you for your attention!

Acknowledgements

Veronika Solteszova, Åsmund Birkeland, Paolo Angelelli, Ivan Viola, Alexey Karimov, Andrej Varchola, M. Eduard Gröller, Erik Steen, Gerald Schröcker, Daniel Buckton