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Real-Time Medical Imaging (1)

• Acquisition of live in vivo image 
data of the human body
– Imaging of dynamic processes

Cardiology (heart), gastroenterology 
(stomach & bowel), nephrology 
(kidney), hepatology (liver), (bladder), 
obstetrics (fetus)

– Interventional imaging
Surgery (e.g., tumor resections, 
neurosurgery, bypass surgery), 
biopsies 
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Real-Time Medical Imaging (2)

• Radiography

– Fluoroscopy
Only 2D projections, ionizing radiation

• Computed Tomography (CT)

– CT Fluoroscopy
low spatial/temporal resolution,
high radiation doses

• Magnetic Resonance Imaging (MRI)

– FLASH (Fast Low Angle Shot) MRI
Only single/few slices, limited availability
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Basic Ultrasound Imaging
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Ultrasound Characteristics

• Non-invasive

• Cheap

• High resolution

– Spatially

– Temporally

• Noise

– Random 

– Speckle
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Common Ultrasound Modes

• 2D Ultrasound
– B-Mode

• 3D Ultrasound
– Static 3D imaging

• 4D Ultrasound
– Dynamic 3D imaging

• Doppler Ultrasound
– Color Doppler: directional
– Power Doppler: non-directional

• Contrast Ultrasound
– Microbubbles-based contrast agents

• Elastography
– Mechanical tissue properties
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Challenges

• Real-time imaging means that no part of the 
visualization pipeline can be considered pre-
processing

– Limited computational budget

– Degree of interaction limited

– Constant changes
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Outline

• Visualization of 3D/4D ultrasound data

• Recent advances in

– Filtering

– Classification

– Illumination

– Fusion and Guidance
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Filtering

• Noisy character of ultrasound imaging makes 
filtering particularly important for 3D 
visualization
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Lowest Variance Filtering

• Remove speckle and 
random noise

• Structure-preserving 
filtering

– Determine local 
structure orientation

– Filter along direction 
of lowest variance

Solteszova el al. 2012: Lowest-Variance Streamlines for Filtering of 3D Ultrasound 11



Local Structure Orientation 

Solteszova el al. 2012: Lowest-Variance Streamlines for Filtering of 3D Ultrasound

• Sample local voxel 
neighborhood on 
on a sphere
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Directional Filtering

• Streamline integration
along direction of
lowest variance

FORWARD

BACKWARD

Solteszova el al. 2012: Lowest-Variance Streamlines for Filtering of 3D Ultrasound 13



Results

Solteszova el al. 2012: Lowest-Variance Streamlines for Filtering of 3D Ultrasound 14



4D Filtering (1)

• Acceptable complexity of filtering method is 
limited by the target frame rate

– Idea: only filter voxels that contribute to the final 
rendered image

– Problem: filtering changes data values and hence 
can affect visibility globally

– Solution: conservatively estimate a voxel’s 
visibility after filtering

15Solteszova el al. 2014: Visibility-Driven Processing of Streaming Volume Data



4D Filtering (2)

• Only a fraction of voxels actually influence the 
final image due to transparency and occlusion

16Solteszova el al. 2014: Visibility-Driven Processing of Streaming Volume Data



Visibility-Driven Filtering

17Solteszova el al. 2014: Visibility-Driven Processing of Streaming Volume Data



Prediction of Filter Behavior

• Opacity of a filtered value of 
minimum and maximum of a 
neighborhood

• Possible for all convolution-
based filters with normalized 
non-negative weights

• Lookup tables for 
conservative visibility mask 
calculation

Solteszova el al. 2014: Visibility-Driven Processing of Streaming Volume Data 18



Results (1)

Solteszova el al. 2014: Visibility-Driven Processing of Streaming Volume Data
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Results (2)

20Solteszova el al. 2014: Visibility-Driven Processing of Streaming Volume Data
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Classification

• Mapping of data values to optical properties 
(usually color and opacity)

• Several challenges

– Low dynamic range

– Significant amount of noise and speckle

– Varying intensities for the same tissue

– Fuzzy boundaries
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Variational Classification

• Simultaneous denoising and opacity 
assignment

• Variational approach based on isovalue and 
gradient

Fattal and Lischinski 2001: Variational Classification for Visualization of 3D Ultrasound Data 23



Scale Space Filtering

• Automatic adjustment of the global opacity 
transfer function based on scale-space 
filtering
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Hönigmann et al. 2003: Adaptive Design of a Global Opacity Transfer Function for 
Direct Volume Rendering of Ultrasound Data



Predicate-based Classification

• Problem: classification of 3D 
ultrasound data for volume 
visualization
– Standard 1D transfer functions 

don’t work well for ultrasound

– Additional attribute dimensions 
can help, but classification space 
becomes difficult to navigate

• Approach: define a set of point 
predicates which can be 
combined via logical operations

25Schulte zu Berge et al. 2014: Predicate-based Focus-and-Context Visualization for 3D Ultrasound



Predicate Library

• Set of different local and non-local predicates 
𝑃 = (𝑓𝑃: 𝑋 → 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒 , 𝜅𝑃, 𝛿𝑃)
– 𝜅𝑃 is an importance factor

– 𝛿𝑃 is the color modulation

• Examples of possible predicates
– Range-based predicates

– Direction-based predicates

– Signal-to-Noise ratio predicate

– Vesselness predicate

– Confidence predicate

– Label predicate

26Schulte zu Berge et al. 2014: Predicate-based Focus-and-Context Visualization for 3D Ultrasound



Predicate Setup

• Simple widget to assign importances and 
colors

• Combination of predicates with Boolean 
operations (and, or, not) 

27Schulte zu Berge et al. 2014: Predicate-based Focus-and-Context Visualization for 3D Ultrasound



Visual Mapping

• Importance-driven layered compositing, cf. 
[Viola et al. 2004, Rautek et al. 2007]

• High-importance layers receive higher visibility 
(depth relationships can be overridden)

• Predicates only affect hue and opacity, 
luminance comes from data values

28Schulte zu Berge et al. 2014: Predicate-based Focus-and-Context Visualization for 3D Ultrasound



Predicate Histogram

• Sketch-based interface 
for predicate setup

• User draws positive
and negative sketch

• Importance of each 
predicate is modulated  
accordingly

29Schulte zu Berge et al. 2014: Predicate-based Focus-and-Context Visualization for 3D Ultrasound



Results (1)

• Shoulder dataset: combines visualization of 
bone and muscle tissue

30Schulte zu Berge et al. 2014: Predicate-based Focus-and-Context Visualization for 3D Ultrasound



Results (2)

• Path of the carotid artery is shown in red

31Schulte zu Berge et al. 2014: Predicate-based Focus-and-Context Visualization for 3D Ultrasound



Results (3)

• Achilles tendon is shown in red

32Schulte zu Berge et al. 2014: Predicate-based Focus-and-Context Visualization for 3D Ultrasound



RENDERING

Recent Developments in Ultrasound Visualization



Volume Rendering (1)

34
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Volume Rendering (2)
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Local Volume Illumination

• Only a function of gradient direction and light 
source parameters

– Volumetric absorption between light source and 
sample point is ignored  no shadows

– Multiple scattering is ignored  no color bleeding 
effects
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Light Propagation in Tissue

• Human skin (and tissue in general) is 
translucent

– Red penetrates deeper than blue and green light

– Light scatters predominantly in forward direction

– Light propagation tends to become isotropic after 
multiple scattering events
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Fetoscopic Illumination Model
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Varchola 2012: Live Fetoscopic Visualization of 4D Ultrasound Data



Fetoscopic Illumination Model
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Varchola 2012: Live Fetoscopic Visualization of 4D Ultrasound Data



Direct Lighting (1)

Light is attenuated along its way through the 
volume
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Direct Lighting (2)

41Kniss et al. 2003: A Model for Volume Lighting and Modeling



Light Source Extent (1)
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hard shadows soft shadows



Light Source Extent (2)
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Soft Shadows

44Patel et al. 2013: Instant Convolution Shadows for Volumetric Detail Mapping



Kernel Size (1)
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Kernel Size (2)
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Fetoscopic Illumination Model
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Varchola 2012: Live Fetoscopic Visualization of 4D Ultrasound Data



Indirect Lighting (1)

Light is scattered multiple times before it 
reaches the eye
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Indirect Lighting (2)

49Kniss et al. 2003: A Model for Volume Lighting and Modeling



Chromatic Light Attenuation
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Forward Scattering (1)
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rendering without scattering rendering with scattering



Forward Scattering (2)
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Fetoscopic Illumination Model
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Varchola 2012: Live Fetoscopic Visualization of 4D Ultrasound Data



Front and Back Lighting
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Light positioned in front Light positioned behind the scene



Local Ambient Occlusion (1)

• Evaluate the average 
visibility of each point

– Perform sampling in a 
small spherical 
neighborhood

– Modulate ambient 
illumination
intensity by the result
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Local Ambient Occlusion (2)
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Fetoscopic Illumination Model
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Varchola 2012: Live Fetoscopic Visualization of 4D Ultrasound Data



Specular Highlights
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Fetoscopic Illumination Model
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Varchola 2012: Live Fetoscopic Visualization of 4D Ultrasound Data



Implementation

• GPU-based implementation using DirectX

– Available as HDlive in GE’s latest generation of 
ultrasound machines (Voluson E8 / Expert)

– Interactive performance of 15-20 fps limited by 
data acquisition
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Results (1)
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conventional rendering fetoscopic rendering



Results (2)
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conventional rendering fetoscopic rendering



Results (3)

63

conventional rendering fetoscopic rendering



Results (4)
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fetoscopic renderingconventional rendering



Results (5)
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photograph acquired with fetoscope
[A Child is Born, Nilson and Hamberger]

fetoscopic rendering
[Picture of the Month, Ultrasound in 

Obstetrics & Gynecology 38(5)]



Benefits

• Approximates realistic 
illumination in real-time

• Robust against noise 
and artifacts

• Better 3D perception 
may have diagnostic 
benefits

• Currently investigating 
other application 
scenarios (e.g., cardiac)

66

cleft lip: better visibility of border and 
separation

down syndrome: inclanation of palpepral
fissures



Cardiac Ultrasound
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Fusion and Guidance

• Fusion: combine multiple modalities to 
improve diagnostic value

– Registered CT/MRI scans, blood flow, etc.

• Guidance: augment images with additional 
information

– Orientation and navigation aids, etc.
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B-Mode/Doppler Fusion

• Integrated visualization of B-Mode and 
Doppler data

• Non-photorealistic silhouette rendering for 
reduced visual clutter

70Petersch et al. 2007: Blood Flow in Its Context: Combining 3D B-Mode and Color Doppler Ultrasonic Data



Vector Flow Imaging Visualization

• Vector Flow 
Imaging provides 
3D velocity 
information

– Pathlets-based 
visualization

– Pathline 
integration on the 
GPU

Angelelli et al. 2014: Live ultrasound-based particle visualization of blood flow in the heart 71



Anatomical Context

72Burns et al. 2007: Feature Emphasis and Contextual Cutaways for Multimodal Medical Visualization

• Tracked 2D probe 
registered with 
pre-interventional 
CT scan

• Cutways for 
unoccluded 
depiction of the 
ultrasound slice



Guidance in Liver Examinations

Jennifer N. Gentry

Viola et al. 2008: Illustrated Ultrasound for Multimodal Data Interpretation of Liver Examinations

• Couinaud segmentation: 
divides the liver into 
different sections 
dependent on the blood 
vessels

• Registration to a liver model
for real-time Couinaud
overlays during the scan
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Cardiac Ultrasound Guidance

• Real-time augmentation of the ultrasound 
slice using an animated heart model

74Ford et al. 2012: HeartPad: Real-Time Visual Guidance for Cardiac Ultrasound
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Conclusions (1)

• Selection of recent approaches for improved 
visualization of ultrasound data

• Importance of 4D ultrasound as a cheap and 
effective imaging modality is ever-increasing

• Technological advances (e.g. beamforming) 
offer continuous improvements in frame rate 
and image resolution

• Live 4D data is still very challenging and many 
problems remain unsolved
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Conclusions (2)

• Technical challenges
– Real-time filtering, segmentation, registration, 

rendering, …

• Visualization challenges
– Integration of anatomy and physiology

(more after the break)

– Visualization of high-speed processes

– Interaction with real-time visualizations

– Quantitative visualization

– Collaborative visualization
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Thank you for your attention!
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