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Visual Analytics for explainable Deep Learning
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Machine Learning

* Learn from data without explicit
programming

* ML algorithms improve

performance through experience = """
* Learn from data and generalize to |
unseen data Agortns eanceperfomaecs

 Key goal: Create systems thatcan -~
automatically learn patternsand =~
make intelligent decisions



Types of Machine Learning

* Supervised Learning: Learns from labelled training data
 Examples: Classification, Regression
* Used in spam detection, price prediction

* Unsupervised Learning: Finds patterns in unlabelled data
 Examples: Clustering, Dimensionality Reduction
* Used in customer segmentation, anomaly detection

* Reinforcement Learning: Learns through trial and error
* Used in game Al, robotics, autonomous systems



Deep Learning

* Advanced machine learning technique using multi-layered neural
networks

* Mimics human brain's neural structure to process complex data
* Enables automatic feature extraction and learning from raw data



Neural Network Architecture

e Layers: Input, Hidden, Output layers
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Neural Network Architecture

e Layers: Input, Hidden, Output layers
e Neurons: Process and transmit information

* Activation Functions: Introduce non-linearity

* Backpropagation: Learns by adjusting network

weights




Various Deep Learning Techniques



Various Deep Learning Techniques

* Convolutional Neural Networks (CNNs)

* Image and video processing

* Pattern recognition
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U-Net: Convolutional Networks for Biomedical Image Segmentation, https://doi.org/10.48550/arXiv.1505.04597



Various Deep Learning Techniques

* Recurrent Neural Networks (RNNSs)
* Sequential data analysis
* Natural language processing
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Various Deep Learning Techniques

* Transformers
* Advanced language models
* Context understanding
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Attention Is All You Need, https://doi.org/10.48550/arXiv.1706.03762



Training Deep Learning Models

* Large datasets critical for performance

* Requires significant computational power

* Techniques: Transfer Learning, Data Augmentation
* Challenges: Overfitting, Computational Complexity



Why We Need Explainable Al

* |[tis difficult to trust a system whose decisions we don't
understand.

* Lack of transparency can lead to bias and unfair outcomes.
* Explainability is essential for accountability and regulation of Al.
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Overview
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Definitions

* XAl aims to develop machine learning techniques that provide
understandable, trustworthy and explainable rationales for
decisions made by black-box models. [Adadi, Dragoni, Gunning]

* XAl is the class of systems that provide visibility into how an Al
system makes decisions and predictions and executes its actions.

[Rai]

* XAl refers to systems that try to explain how a black-box Al model
produces its outcomes. [Moradi]
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XAl aims to develop machine learning techniques that provide
understandable, trustworthy and explainable rationales for
decisions made by black-box models. [Adadi, Dragoni, Gunning]

* XAl is the class of systems that provide visibility into how an Al
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-> Explain how Black-Box-Models get to their decisions



What is XAl

* XAl refers to techniques that make Al systems more
understandable to humans.

* |t aims to provide insights into how Al systems make decisions
and why they reach conclusions.



Stakeholders / Who needs XAI?

* Data scientists use XAl to debug and improve models.

* Domain experts need to understand the reasoning behind Al's
recommendations.

* Decision-makers rely on XAl to ensure responsible use of Al.
* End users deserve to know how Al affects their lives.



Important Questions

0 WHY ) WHAT ) WHEN

Why would one want to use What data, features, and relationships When in the deep learning
visualization in deep learning? in deep learning can be visualized? process is visualization used?
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Important Questions

B8 WHY ) WHAT

Why would one want to use What data, features, and relationships
visualization in deep learning? in deep learning can be visualized?
Interpretability & Explainability
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Important Questions

WHY ) WHAT ) WHEN

Why would one want to use What data, features, and relationships When in the deep learning
visualization in deep learning? in deep learning can be visualized? process is visualization used?
Interpretability & Explainability
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Techniques Before Model Building

Ensure high-quality data and features to improve model
performance and reliability.

* Improving Data Quality
* Improving Feature Quality



Improving Data Quality - Instance-Level

* Anomaly Detection and Correction:
* Visualising and interacting with data to identify missing values,
e outliers,
* duplicates,
* and out-of-distribution samples.
* i.e. Profiler and OoDAnalyzer

* Provenance Tracking:
* |llustrating the impact of data cleaning and preprocessing steps on data quality.
* i.e. DQProv Explorer

* Privacy Preservation:

* Balancing data utility with privacy concerns during the cleaning process
* i.e. Privacy Exposure Risk Tree and GraphProtector.



Improving Data Quality - Instance-Level

* Anomaly Detection and Correction Example: Profiler

Schema Browser

E Creative Type

E Distributor MPAA Rating v Creative Type v Major Genre v
P . R Contemporary Fiction Drama
i= IMDB Rating PG-13 Historical Fiction Comedy
1 - PG Fantasy Action
;= IMDB Votes Not Rated Science Fiction Adventure
. G Dramatization ‘Thriller/Suspense
B mPaA Rating NC-17 Kids Fiction Horror
E Major Genre Open Factual Romantic Comedy
: Super Hero Musical
H— Production Budget Multiple Creative Types Documentary
Black Comedy
Western
Related Views: Anomalies Concert/Performance
Release Date v Source v
220 Original Screenplay
Anomaly Browser Based on Book/Short Story
- « Based on Real Life Events
Missing (6) o |Remake
MPAA Rating 1911 2010 Based on TV )
Creative Type RS Time (min) ’ gigg grq g\(g;“dcmphlcm BRIl omatoes Rating ‘
Source 2K Based on Game s
Traditional/Legend/Fai...
Major Genre Based on Magazine Article
Di ib 0 Based on Musical/Opera (1]
istributor 0 240 Based on Short Film 0 100
Release Location Production Budget v Spin-Off Worldwide Gross v
3K Based on Factual Book/... 3K
Error (2) Disney Ride
Extreme (7) Compilation
& Based on Toy
Inconsistent (3) 0 300M g Musical Group Movie 0 3B 9

Distributor (Levenshtein)

Source (Levenshtein)

Profiler: integrated statistical analysis and visualization for data quality assessment, https://doi.org/10.1145/2254556.2254659
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Improving Data Quality - Instance-Level

* Provenance Tracking Example: DQProvExplorer
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gling branch text transformations were used, opposed to the blue branch, where
rows were removed.

Inspection of the heights of both branches’ end nodes (see highlighted areas) also
shows that the orange branch contains more entries/rows, which means more infor-
mation has been retained.

Capturing and Visualizing Provenance From DataWrangling, doi: 10.1109/MCG.2019.2941856.
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Improving Data Quality - Instance-Level

* Privacy Preservation Example: GraphProtector
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Improving Data Quality - Label-Level

* Noisy Label Handling:
* Visualising and refining crowdsourced annotations,
* identifying unreliable workers,
* correcting mislabelled instances.
* i.e. Labellnspect and C2A

* Interactive Labelling:

* Efficiently labelling unlabelled data by leveraging techniques like
clustering similar instances and filtering to find items of interest.

* i.e. MediaTable and the SOM-based visualisation by Moehrmann et al..



Improving Data Quality - Label-Level

* Noisy Labl Handling Example: Labellnspect
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An Interactive Method to Improve Crowdsourced Annotations, doi: 10.1109/TVCG.2018.2864843.
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Improving Feature Quality

* Feature Selection:
* Select useful features that contribute most to the prediction.
* i.e. DimStiller and SmartStripes

* Feature Construction:
 Guide the creation of new, more discriminative features.
* i.e. Featurelnsight



Improving Feature Quality

* Feature Selection Example: DimStiller
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DimStiller: Workflows for Dimensional Analysis and Reduction, doi: 10.1109/VAST.2010.5652392.
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Improving Feature Quality

* Feature Construction Example: Featurelnsight
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Featurelnsight: Visual Support forError-Driven Feature Ideation in Text Classification, doi: 10.1109/VAST.2015.7347637.
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Overview — Visual Analytics for Machine

Learning

_______________________________
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Machine Learning Pipeline
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Before Model Building During Model Building After Model Building
Improving Data Quality Model Understanding Understanding Static Data Analysis Results
Improving Feature Quality Model Diagnosis Understanding Dynamic Data Analysis Results

. ~

Model Steering

¥

Visual Analytics for Machine Learning

Fig. 1 An overview of visual analytics research for machine learning.



Techniques During Model Building

Gain deeper understanding of model workings, diagnose training
Issues, and steer model behaviour towards desired outcomes.

* Model Understanding
* Model Diagnosis
 Model Steering



Model Understanding - Parameter Effects

* Understanding Parameter Effects:

* Visualising how model outputs change with variations in parameter
settings.

e i.e. BirdVis



Model Understanding - Parameter Effects

* Understanding Parameter Effects Example: BirdVis
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Model Understanding - Model Behaviours

Network-Centric Methods:
* Exploring model structure,
* visualising neuron activations,
* and interpreting how different parts of the model contribute to the final output.
* j.e. CNNVis for convolutional neural networks and LSTMVis for recurrent neural networks.

Instance-Centric Methods:
* Analysing individual instances and their relationships,
* visualising the representation space learned by the model.
* i.e. Rauberetal.

Hybrid Methods:
* Combining network-centric and instance-centric approaches
* i.e. Summit and ActiVis

Surrogate Model Explanations:
* Using simpler, interpretable models to explain the behaviour of more complex models.
* i.e. RuleMatrix and DeepVID



Model Understanding - Model Behaviours

* Network-Centric Methods Example: CNNVis

el

51
»

14 i
ED D

AELS
% ‘;[1 -_33.‘
' . b Y . 1

|

XX
i

o
i}

(% B IS

Towards Better Analysis of Deep Convolutional Neural Networks, https://doi.org/10.48550/arXiv.1604.07043
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Model Understanding - Model Behaviours

* Instance-Centric Methods Example: Rauber et al.
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Visualizing the Hidden Activity of Artificial Neural Networks, doi: 10.1109/TVCG.2016.2598838.
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Model Understanding - Model Behaviours

* Hybrid Methods Example: Summit
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Model Understanding - Model Behaviours

* Surrogate Model Explanations Example: DeepVID
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Model Diagnosis

* Analysing Training Results:
* Diagnose issues by visualising classifier performance,
* identifying fairness issues,
* exploring potential model vulnerabilities.
* i.e. Squares and FairSight

* Analysing Training Dynamics:
* Monitor the training process,
* detecting anomalies,
* understand the evolution of model behaviour over time.
e i.e. DGMTracker and DQNViz



Model Diagnosis

* Analysing Training Results: Squares
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Model Diagnosis

* Analysing Training Dynamics Example: DGMTracker
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Analyzing the Training Processes of Deep Generative Models, doi: 10.1109/TVCG.2017.2744938.
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Model Steering

* Model Refinement with Human Knowledge:
* Allowing users to interactively refine models by editing prototypes,
* adding constraints,
* correcting outputs.
* i.e. ProtoSteer and ReVision

* Model Selection from Ensembles:
 Comparing and selecting the best model from a set of candidate models.
* i.e. BEAMES and RegressionExplorer



Model Steering

* Model Refinement with Human Knowledge Example: ProtoSteer
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Model Steering

* Model Selection from Ensembles Example: BEAMES
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BEAMES: Interactive Multimodel Steering, Selection, and Inspection for Regression Tasks, doi: 10.1109/MCG.2019.2922592.
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Overview — Visual Analytics for Machine

Learning

Machine Learning Pipeline
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Visual Analytics for Machine Learning

Fig. 1 An overview of visual analytics research for machine learning.




Techniques After Model Building

Help users make sense of model outputs, gain insights from data
analysis results, and evaluate model performance in real-world
contexts.

* Understanding Static Data Analysis Results
* Understanding Dynamic Data Analysis Results



Understanding Static Data Analysis Results

* Textual Data Analysis:
* Visualizing topics, clusters, and relationships extracted from text data

* used techniques:
* topic modelling
* word embedding
* i.e. TopicPanorama, DemographicVis, and cite2vec.

 Other Data Analysis:
* Extending visual analytics to other data types,
* E.g., flow fields and multi-dimensional data,
* used techniques:

* subspace analysis
* pattern matching

* i.e. SMARTexplore



Understanding Static Data Analysis Results

* Textual Data Analysis : DemographicVis
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DemographicVis: Analyzing demographic information based on user generated content, doi: 10.1109/VAST.2015.7347631.
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Understanding Dynamic Data Analysis
Results

* Offline Analysis: Exploring patterns and trends in data over time,
with all data available before analysis.
* Topic Analysis: Visualizing topic evolution using techniques, which often
employing a river metaphor to convey changes over time.
* i.e. ThemeRiver and TextFlow

* Event Analysis: Revealing important sequential patterns in event data,
which leverage techniques like tensor decomposition and stage analysis.
* i.e. EventThread
* Trajectory Analysis: Visualizing and understanding movement patterns,
often using techniques like clustering, pattern mining, and semantic
enrichment.
* i.e. Krugeretal. and Chenetal..



Understanding Dynamic Data Analysis
Results

* Offline Analysis Example: TextFlow

Multidimensional \___.

"structure/layout”

4

'A.a?l.jmlytic

1 !
e rantic

"i;
d 3=

"exploration/analytics" "document/temporal"=—————""

Document

Explore

TextFlow: Towards Better Understanding of Evolving Topics in Text, doi: 10.1109/TVCG.2011.239.
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Understanding Dynamic Data Analysis
Results

* Online Analysis:
* Tackling streaming data where new data arrives continuously.

* Area presents challenges for visualizing evolving patterns and integrating
with real-time analysis algorithms.

* i.e. TopicStream



Understanding Dynamic Data Analysis
Results

* Online Analysis Example: TopicStream
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Online Visual Analytics of Text Streams, doi: 10.1109/TVCG.2015.2509990.
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doubling every 15-20 days in Liberia and every 30-40
days in Slerra Leone. The most dire scenario assumes



Visual-based XAl (vXAI)

* Model usage
* Feature-Based Methods
* Rule-Based Methods
* Propagation-Based Methods
 Case-Based Methods

* Visual Approaches
* Data representation
* Local Explanations
* Global Explanations



Feature-Based Methods

Identifying the Key Factors Driving Al's Decisions

* Methods identifying which input features were most influential in
the model's decision.

 Methods like LIME and SHAP are commonly used for feature-
based explanations.



Rule-Based Methods

Explaining Predictions with IF-THEN Rules

* Techniques expressing the model's logic as a set of human-
readable rules.

* Bayesian Rule Lists (BRL) are often used to generate rule-based
explanations.



Propagation-Based Methods

Tracing Information Flow in Neural Networks

* Techniques analysing how information flows through a network's
layers to identify important features.

* Methods like Saliency Maps, LRP, and Integrated Gradients are
used for propagation-based explanations.



Case-Based Methods

Learning from Similar Past Examples

* Methods finding past cases that are like the current input and
show how the model treated those cases.

* Case-Based Reasoning (CBR) is a common approach for this type
of explanation.



Data representation

* Known visualization techniques for data representation
e Sankey Diagrams
e Scatterplots
* Table based visualizations
* Etc. ->see Visualization lecture and previous lectures in Visual Analytics



Local vs. Global Explanations

Explaining Individual Predictions vs. Model Behaviour

* Local explanations: focus on understanding a specific
prediction.

* Global explanations: aim to provide insights into the overall
model logic and behaviour.



XAl for Responsible Al

* XAl is crucial for ensuring that Al is developed and used
responsibly.

* |t promotes transparency, fairness, accountability, and ethical
considerations in Al.



LIME - Local Interpretable Model-Agnostic
Explanation

* Explains predictions of any classifier
* Learn interpretable model locally around the prediction

* Model understanding depends on
1. Trusting a prediction
2. Trusting a model

/ > sneeze | Y E("S';‘liger -sneeze |
' Y weight )
\ \.\ S s headachely
\V' Vo no fatigue no fatigue
age e
Model Data and Prediction Explanation Human makes decision

[Ribeiro]



LIME - Desired Characteristics for Explainers

* Explanations must be interpretable

* Provide qualitative understanding between the input variables and the
response

* Interpretability depends on the target audience

* To be meaningful an explanation must be locally faithful

* Correspond to how the model behaves in the vicinity of the instance being
predicted

* An Explainer should be model agnostic

* Provide global perspective
* Establishing trust in the model



LIME — Goal

The overall goal of LIME is to identify an interpretable model over
the interpretable representation that is locally faithful to the
classifier.



LIME - Interpretable Representation

Text classification: Image classification:
* Feature: * Feature:
* Word Embedding * Tensor with three color channels
* Interpretable representation: * Interpretable representation:
* Binary vector indicating presence * Binary vector indicating the
or absence of a word “presence” or “absence” of a

super-pixel



LIME - Fidelity-Interpretablility Trade-off

&(x) = arg r;leigﬁ (f, 9, 1) + Q(g)



LIME - Fidelity-Interpretablility Trade-off

&(x) = arg r;leigﬁ (f, 9, 1) + Q(g)

g € G,where (G is a class of potentially interpretable models
* Linear models

e Decision trees



LIME - Fidelity-Interpretablility Trade-off

&(x) = arg r;leigﬁ (f, 9, 1) + Q(g)

Q(g) is a measure of complexity
* Linear model: number of non-zero weights

* Decision trees: depth of the tree



LIME - Fidelity-Interpretablility Trade-off

&(x) = arg r;leigﬁ (f, 9, 1) + Q(g)

f:R% - R, model to be explained

* In classification f(x) is the probability that x belongs to a certain class



LIME - Fidelity-Interpretablility Trade-off

&(x) = arg r;leigﬁ (f, 9, 1) + Q(g)

m,(z), proximity measure between an instance z to x

* To define locality around x



LIME - Fidelity-Interpretablility Trade-off

&(x) = arg r;leigﬁ (f, 9, 1) + Q(g)

L(f,g,m,), measure of unfaithfulness of g in approximating f in
locality defined by T,

* Minimize L(f, g, m,.) while keeping Q(g) low to ensure
Interpretability by humans



LIME - Sampling for Local Exploration

* Black box model f (pink/blue) ’

* Explain single instance (bold red '
plus) with linear model = 5 +’

* Dashedlineis learned locally e T
faithful explanation | .

* NOT GLOBALLY FAITHFUL

[Riberio]



LIME - Superpixels

(a) Original Image | (b) Explaining FElectric guitar (c) Explaining Acoustic guitar  (d) Explaining Labrador
[Riberio]

* Explanation of a single instance using superpixels



SP-LIME - Explaining Models

Explanation of a single prediction is not sufficient to evaluate and
assess trustin the model as a whole

* give global understanding of the model by explaining set of
individual instances

* Use pick step
* task of selecting B instances from X for the user to inspect
* Bisthe budged of the user (time/patience)
* pick a diverse, representative set of explanations to show the user
e construct explanation matrix



SP-LIME — Explanation Matrix — « . « « &

==

® N

1 1

* Columns: features 2 '
* Rows: instances = 1
@ ! I

* Cells contain local importance 9 I
* Global importance I Riberio] == =

* choose I such that features that explain many different instances have
higher importance scores

* Pick problem consists of finding the set of Instances I/ that
achieves the highest coverage



Important Questions

0 WHY ) WHAT ) WHEN

Why would one want to use What data, features, and relationships When in the deep learning
visualization in deep learning? in deep learning can be visualized? process is visualization used?
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@ WHO ) WHERE

Who would use and benefit - How can we visualize deep learning Where has deep learning
from visualizing deep learning? data, features, and relationships? visualization been used?

[Homann]



Important Questions

B8 WHY ) WHAT

Why would one want to use What data, features, and relationships
visualization in deep learning? in deep learning can be visualized?
Interpretability & Explainability

Debugging & Improving Models

Comparing & Selecting Models

Teaching Deep Learning Concepts
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Where has deep learning
visualization been used?



Important Questions

0 WHY

Why would one want to use

visualization in deep learning?

Interpretability & Explainability
Debugging & Improving Models
Comparing & Selecting Models

) WHAT ) WHEN

What data, features, and relationships When in the deep learning

in deep learning can be visualized? process is visualization used?
Computational Graph & Network Architecture

Learned Model Parameters

Individual Computational Units

Teaching Deep Learning Concepts Neurons In High-dimensional Space
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Important Questions

0 WHY

Why would one want to use

visualization in deep learning?

Interpretability & Explainability
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[Homann]
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Important Questions

0 WHY

Why would one want to use
visualization in deep learning?
Interpretability & Explainability
Debugging & Improving Models
Comparing & Selecting Models
Teaching Deep Learning Concepts

@

WHO

[Homann]

Who would use and benefit
from visualizing deep learning?
Model Developers & Builders
Model Users

Non-experts

) WHAT

What data, features, and relationships
in deep learning can be visualized?
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Important Questions

WHY

Why would one want to use
visualization in deep learning?
Interpretability & Explainability
Debugging & Improving Models
Comparing & Selecting Models
Teaching Deep Learning Concepts
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[Homann]

Who would use and benefit
from visualizing deep learning?
Model Developers & Builders
Model Users

Non-experts

) WHAT

What data, features, and relationships
in deep learning can be visualized?
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Important Questions

WHY

Why would one want to use
visualization in deep learning?
Interpretability & Explainability
Debugging & Improving Models
Comparing & Selecting Models
Teaching Deep Learning Concepts
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Who would use and benefit
from visualizing deep learning?
Model Developers & Builders
Model Users

Non-experts
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Future Development - Challenges

e Scalability

* Performance analysis

* Bias in representative examples

* Consensus on common visual approach



Future Development - Opportunities

* Using expert knowledge

* Progressive visual analytics

* Advanced deep learning architectures
* Protection against adversarial attacks



Technical Term

Synonyms

Meaning

Neural Network

Neuron
Weights
Layer

Computational
Graph

Activation
Functions

Activations

Convolutional
Neural Network

Long Short-Term
Memory

Loss Function

Embedding

Recurrent Neural
Network

Generative
Adversarial
Networks

Epoch

Artificial neural net,
net

Computational unit, node
Edges
Hidden layer

Dataflow graph
Transform function
Internal representation

CNN, convnet

LST™M
Objective function,

cost function, error

Encoding

RNN

GAN

Data pass

Biologically-inspired models that form the basis of deep learning; approximate functions dependent
upon a large and unknown amount of inputs consisting of layers of neurons

Building blocks of neural networks, entities that can apply activation functions
The trained and updated parameters in the neural network model that connect neurons to one another

Stacked collection of neurons that attempt to extract features from data; a layer’s input is connected to a
previous layer’s output

Directed graph where nodes represent operations and edges represent data paths; when implementing
neural network models, often times they are represented as these

Functions embedded into each layer of a neural network that enable the network represent complex non-
linear decisions boundaries

Given a trained network one can pass in data and recover the activations at any layer of the network to
obtain its current representation inside the network

Type of neural network composed of convolutional layers that typically assume image data as input;
these layers have depth unlike typical layers that only have width (number of neurons in a layer); they
make use of filters (feature & pattern detectors) to extract spatially invariant representations

Type of neural network, often used in text analysis, that addresses the vanishing gradient problem by
using memory gates to propagate gradients through the network to learn long-range dependencies

Also seen in general ML contexts, defines what success looks like when learning a representation, i.e., a
measure of difference between a neural network’s prediction and ground truth

Representation of input data (e.g., images, text, audio, time series) as vectors of numbers in a high-
dimensional space; oftentimes reduced so data points (i.e., their vectors) can be more easily analyzed
(e.g., compute similarity)

Type of neural network where recurrent connections allow the persistence (or “memory”) of previous
inputs in the network’s internal state which are used to influence the network output

Method to conduct unsupervised learning by pitting a generative network against a discriminative
network; the first network mimics the probability distribution of a training dataset in order to fool the
discriminative network into judging that the generated data instance belongs to the training set

A complete pass through a given dataset; by the end of one epoch, a neural network will have seen every
datum within the dataset once

Homann
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