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Abstract

Cerebral small vessel disease is known as the most common problem in aging
brains, potentially leading to dementia, stroke, and cognitive decline. However,
relatively little is known about the disease since the in vivo visualization of the
small blood vessels of the brains is challenging. Instead, the occurrences of
different lesions serve as markers for the diagnosis and classification of cerebral
small vessel disease. Its most common subtypes are cerebral amyloid angiopathy
and hypertensive arteriopathy, depending on if the lesions are located in lobar
or deep brain regions. Identifying the subtype can give clinicians important
clues about fitting treatment options. However, many cases of CSVD show mixed
patterns that cannot be easily classified.

To support the further investigation of the lesion load patterns, this work presents
an interactive visual application to investigate the lesion loads of a single patient
or a cohort of patients. Furthermore, two sub-cohorts can be compared to vi-
sualize their differences. The application provides different views including the
highlighting of the lesions in the MRI slices, 3D surface models of the lesions,
and an abstract representation of the lesion load distribution using bullseye
plots. While the 3D surface models and MRI slices allow for a detailed analysis of
single lesions, the abstract representation allows for a broad overview and fast
comparison of the lesion distribution.

This work was developed based on data from the WMH Segmentation Challenge
2017 and a clinical CSVD cohort from University Hospital Magdeburg. Using the
Think Aloud method, the developed program was tested and evaluated by three
experts. In this way, further suggestions for additions to the created visualizations
were collected, which can be the subject of future work. Furthermore, the lesion
loads of ten cases of the CSVD cohort were analyzed. The results have been shown
to be consistent with previous studies. It was notable that some patients had
an asymmetric lesion load in the hemispheres. Asymmetry of lesion load could
be expected in rare inflammatory forms of CSVD but has not been thoroughly
investigated yet. By using the presented application in combination with a larger
data set, more insights could be gained about these cases.





1
Introduction and Motivation

1.1 Motivation

A variety of lesions related to the small blood vessels in the brain are re-

ferred to collectively as signs of Cerebral Small Vessel Disease (CSVD).

CSVD is the most common aging brain problem and can lead to stroke,

dementia, and mortality (SHAABAN and MOLAD, 2020). However, with

standard imaging techniques used in clinical practice, it is not possible

to visualize the vessels themselves. Instead, the focus is on lesions re-

lated to CSVD, like white matter hyperintensities, cerebral microbleeds,

and enlarged perivascular spaces (WARDLAW et al., 2013). The localiza-

tion of these lesions is important for medication decisions, e.g., the use

of antithrombotic agents which can prevent stroke but at the same time

increase the risk of bleeding (WANG et al., 2014).

Based on brain magnetic resonance imaging (MRI) scans, the lesions are

often classified in the two most common CSVD subtypes: cerebral amy-

loid angiopathy (CAA) which appears only in lobar and hypertensive arte-

riopathy (HA) which appears mostly in deep gray matter. However, about

40% of participants showed lobar as well as deep lesions, and therefore,

cannot be assigned to one of the two groups (PASI et al., 2017; SMITH et al.,

2010). Further studies investigated these mixed cases with regard to their

tendencies towards either CAA or HA (PASI et al., 2017; SCHEUMANN et al.,

2020; TSAI et al., 2019). These studies are based on the analysis of the dis-

tribution of the lesions as well as demographics, clinical and genetic data.

1
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1.2 Aim of this Thesis

This thesis aims to develop an application for an interactive visual analy-

sis of lesion load in the brains of patients with CSVD. With regard to the

division into CAA, HA, and mixed groups, the anatomical location of the

lesions is of particular interest. This includes the relative location to each

other as well as to the cortex. Lesions that occur lobar indicate CAA cases,

whereas lesions in deep regions are associated with HA. In mixed cases,

lesions occur both deep and lobar. The focus of this thesis will be on the

three lesion types white matter hyperintensities (WMH), enlarged perivas-

cular spaces (ePVS), and cerebral microbleeds (CMB).

The developed methods should present the lesion loads of single patients

and cohorts in an explorable way. Furthermore, visualizations for the com-

parison of two cohorts will be developed. For this purpose, the lesions

must be presented in the spatial context of the brain and individual sub-

structures.

Due to the complexity of the data the cohort representation can quickly

become confusing due to the high number of lesions and the general com-

plexity of the brain’s morphology. Therefore, more abstract representa-

tions of the brain and its substructures should be developed and evalu-

ated.

Finally, the methods and visualizations will be integrated into an al-

ready existing visual analytics framework of the working group "MedDigit

Medicine and Digitization" at the Department of Neurology (KNEU). The

framework provides views from information visualization, such as Scatter

Plots and Parallel Coordinates, which are suitable for non-image data as

well as attributes derived from image data. The integration will allow a

joint visual analysis of image and non-image data from patient cohorts.

To use the application efficiently, strategies for the definition of patient

groups are developed.
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1.3 Contributions of this Thesis

The following list describes the contributions of this thesis:

• Development of an integrated interactive visual analytics platform

for the analysis of brain lesions: The presented application provides

an integrated interactive approach for the visual analysis of brain le-

sions. Since the visual representations of the image data were inte-

grated into an already existing framework for the statistical analysis

of clinical data, the final tool allows a joint analysis of clinical and

image data for a single patient, a cohort, or the comparison of two

subcohorts. This opens up new possibilities in the research of brain

diseases since neurologists are often lacking appropriate tools to an-

alyze cohort data with respect to the image data.

• Development of a 3D visualization of individual cohorts and com-

parison of subcohorts: For the representation of the three-dimen-

sional image data and lesion load, a combination of image slices, 3D

visualizations, and interaction techniques were developed. Further

details are provided on-demand by selecting the 3D lesions.

• Linking abstract visualizations with volumetric image data: An ab-

stract 2D visualization using Bullseye plots allows for a more broader

comparison of the lesion loads distribution in single patients and

cohorts. The visualizations are linked to support an efficient explo-

ration of the provided data. Selecting brain regions in the Bullseye

plot highlights the corresponding brain regions in the image slices

and 3D representation, which allows for a quick identification of re-

lated lesions. All visualizations support comparative views which

highlight differences in the distribution of the lesion load among se-

lected cohorts.

1.4 Structure of this Thesis

For an improved overview, the structure of the content of the thesis is de-

scribed in more detail. In the following chapter medical and technical ba-

sics are described, which are essential for the understanding of the thesis

topic. Related publications will be presented and the work on the project



4 CHAPTER 1. INTRODUCTION AND MOTIVATION

will be described, with a focus on the conception and implementation of

the visualizations and the user interface as well as the processing of the

data. This is followed by a description of the evaluation and its results. In

the last chapter, the results of my work are summarized and possible fur-

ther developments are discussed.

• Chapter 2 describes the fundamentals on which this work is based,

focusing on medical and technical basics, as well as definitions of

terms.

• Chapter 3 deals with related work and studies. The focus is mainly

on the analysis of CSVD and the application of visual analytics in

health care.

• Chapter 4 describes the underlying data sets and the methods used.

In particular, the processing and visualization of the data are de-

scribed. Furthermore, the structure of the user interface and the

quantitative data to be extracted are discussed.

• Chapter 5 discusses the results of the qualitative and quantitative

analysis. Furthermore, the evaluation of the results by an expert is

described.

• Chapter 6 summarizes the work and concludes with a discussion of

open questions and possibilities for further development.



2
Medical and Technical Fundamentals

This chapter contains definitions and methods that are fundamental to

understand this thesis. At the beginning, the different types and character-

istics of cerebral small vessel disease are discussed. Hereafter, an overview

of the detection and segmentation of the described lesions is presented.

The chapter concludes with the analysis of CSVD.

2.1 Fundamentals of Cerebral Small Vessel Disease

Cerebral small vessel disease refers to the sporadic occurrences of differ-

ent lesions. It is the most common aging brain problem and can cause

stroke, dementia, and mortality (SHAABAN and MOLAD, 2020). However,

due to the inaccessibility of the small brain vessels in vivo, many aspects

of the disease remain unclear.

The most common subtypes of CSVD are cerebral amyloid angiopathy

(CAA) and hypertensive arteriopathy (HA) (CHARIDIMOU et al., 2015). Pa-

tients are diagnosed with CAA if their lesions are only located in lobar

regions of the brain, while HA is associated mainly with deep gray mat-

ter lesions. In advanced cases of HA, the lesions can also appear in lo-

bar regions. In 1995 the Boston criteria were introduced and modified

in 2010, providing guidelines for the diagnosis of CAA (GREENBERG and

CHARIDIMOU, 2018). However, it is unclear how to proceed in case of

mixed deep and lobar lesions. In different studies, about 40% of the par-

ticipants showed mixed characteristics of both CAA and HA (PASI et al.,

2017; SMITH et al., 2010). Further studies tried to investigate these mixed

cases, based on the analysis of the lesion location, demographics as well

as clinical and genetic data (SCHEUMANN et al., 2020; TSAI et al., 2019).

5



6 CHAPTER 2. MEDICAL AND TECHNICAL FUNDAMENTALS

Figure 2.1: A schematic depiction of the different lesion types white matter
hyperintensities (WMH), cerebral microbleeds (CMB) and enlarged perivascular
spaces (ePVS) and their basic visual characteristics in different MRI techniques.
The graphic is adapted from WARDLAW et al. (2013) and WEIDAUER et al. (2020).

The goal of these studies is to assign the mixed cases to one of the well-

known subtypes CAA and HA, since the subtype has a strong influence on

the treatment decision, e.g. the use of antithrombotic agents which can

prevent stroke but at the same time increase the risk of bleeding (WANG

et al., 2014).

In 2013, a collaborative work from several international researchers was

published with the goal to standardize the research of CSVD under the ti-

tle STRIVE (STandards for ReportIng Vascular changes on nEuroimaging)

(WARDLAW et al., 2013). They defined six lesion types associated with

CSVD: recent small subcortical infarct, lacune of presumed vascular ori-

gin, white matter hyperintensity of presumed vascular origin, perivascular

space, cerebral microbleed, and brain atrophy. Due to the provided data,

this work focuses on three of the named lesion types which are therefore

described in more detail, see Figure 2.1.

• White Matter Hyperintensities (WMH) refers to bright white spots

of varying size that can be observed in T2-weighted or fluid-atten-

uated inversion recovery (FLAIR) images when using MRI. They are

caused by damaged white matter and associated with stroke, cogni-

tive decline, and dementia (LIN et al., 2017). Since WMH can also be

caused by diseases such as multiple sclerosis, often the term white

matter hyperintensity of presumed vascular origin is used to specifi-

cally refer to WMHs associated with CSVD (DEBETTE and MARKUS,

2010).
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• Enlarged Perivascular Spaces (ePVS) are associated with hyperten-

sion and stroke (POTTER et al., 2013). Perivascular spaces are fluid-

filled spaces around certain blood vessels of the central nervous sys-

tem. They are visible in T2-weighted and FLAIR images, their shape

being either punctual or linear depending on the orientation of the

image slices. They can be distinguished from other similar types of

lesions, such as lacunes, by their small size, which is usually less than

3 mm in diameter but can also be up to 2 cm for giant perivascular

spaces (WARDLAW et al., 2013).

• Cerebral Microbleeds (CMB) can be visualized using T2*-weighted

magnetic resonance imaging. The amount of CMBs that can be de-

tected is depending on different MRI characteristics as well as image

post-processing (GREENBERG et al., 2009), their size varying between

2 mm and 10 mm in most cases. They are associated with surround-

ing tissue damage and therefore cognitive dysfunction and demen-

tia (POELS et al., 2012).

While the three named lesion types are associated with CSVD, their con-

crete pathogenesis remains unclear (LIN et al., 2017). The location of

the lesions, whether they are more lobar or deep, also influences the im-

pact on the motor and cognitive abilities of the affected individuals, as

well as treatment decisions based on the classification into CAA and HA

(CHARIDIMOU et al., 2015; POELS et al., 2012). Furthermore, the occur-

rences of the lesion types correlate with each other as can be seen in

different studies (CHOWDHURY et al., 2011; DOUVEN et al., 2018; POTTER

et al., 2013). Therefore, the analysis of multiple lesion types associated

with CSVD with respect to their co-occurrences can not only lead to new

insight about their correlation but also allow a more precise investigation

of the cerebral small vessel disease.

2.2 Visualization in Medicine

Medical visualizations are widely used nowadays and help with diagnosis,

treatment planning, and navigation during surgical interventions (PREIM

and BOTHA, 2014b). Even though the small cerebral vessels can not be vi-

sualized with standard imaging techniques used in clinical routine, MRI
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brain scans are used to analyze the lesions associated with CSVD. There

are different ways to visualize volumetric medical image data the two ma-

jor rendering modes being direct and indirect volume visualization.

However, because medical volume data is often complex and suffers from

self-occlusion, neurologists often choose to view the single volume slices

instead of generated 3D representations. For investigating a cohort that

consists of more than a few cases this approach is not feasible. To over-

come this problem, more abstract 2D representations of the data are used.

They trade a loss of information for reduced complexity.

2.2.1 Direct Volume Rendering

In direct volume rendering (DVR), three-dimensional objects are repre-

sented by grids with corresponding values at the nodes. Many medical

imaging methods, e.g. computer tomography and MRI, directly provide

such volumes, mostly in the form of slice images. Each value is virtually

mapped to physical quantities that describe the emission, absorption,

and in some methods also the scattering of light at that point. The vol-

ume rendering pipeline specifies the operations and the order they are

performed in to generate the 3D image. It often consists of the three

steps sampling, classification and illumination and compositing, but DVR

techniques differ in the performed operations and their order (PREIM and

BOTHA, 2014a). During the volume rendering pipeline, the data set can be

traversed either front-to-back or back-to-front. Front-to-back methods

are performed pixel by pixel, while back-to-front methods are performed

voxel by voxel and each cell is projected onto the image. The mapping is

usually done by a transfer function (LJUNG et al., 2016).

The advantage of direct volume rendering is the immediate access to the

data and the resulting flexibility. This way, isosurfaces can be displayed

without having to extract a geometric representation in advance. Further-

more, several isosurfaces can also be layered on top of each other or the

volume can be visualized completely without taking surfaces into account.

Nevertheless, hardware-accelerated and software-optimized algorithms

have been introduced that allow direct volume rendering in real-time (RO-

DRÍGUEZ et al., 2014).
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There are three main categories of DVR techniques:

• Image-based algorithms correspond to ray casting or ray tracing.

Here, the contribution of the entire volume to the final color is de-

termined for each pixel of the resulting image. This is done with

the help of a ray that is laid through the individual pixels and sam-

pled at discrete points. Ray casting is often performed front-to-back

to allow accelerations, such as empty space skipping (WANG et al.,

2012).

• Object-based methods calculate the contribution of each volume el-

ement to the final image, starting at a single voxel and proceeding

iteratively. A popular example is the splatting method, which cal-

culates the footprint of each sample after it is "thrown" on the view

plane (WESTOVER, 1990). The accumulation can be done back-to-

front, guaranteeing correct visibility of the elements or front-to-back,

which is faster due to acceleration techniques like the early elimina-

tion of hidden splats (NEOPHYTOU and MUELLER, 2005).

• Texture-based methods exploit the general optimization of graph-

ics hardware for 2D textures (KRUGER and WESTERMANN, 2003). A

well-known method is slicing (LACROUTE and LEVOY, 1994). The tex-

tures of the volume that should be displayed are placed next to each

other as parallel planes. The volume is traversed in a back-to-front

manner and cross-sections between the volume and the planes are

calculated. There are two types of texture-based volume rendering,

2D texture mapping and 3D texture mapping (ENGEL et al., 2006). In

3D texture mapping, the slice planes are oriented perpendicular to

the viewing direction. An interpolation is performed in order to cal-

culate the values for these planes. 2D texture-mapping aligns the

slice planes parallel to the coordinate planes. It is suited for hard-

ware that is not able to handle 3D textures. Each slice is rendered as

a texture-mapped polygon, containing information about color and

opacity, and then the polygons are drawn from back to front. To al-

low the user to view the volume from all directions, the orientation

of the slice planes is adapted based on the viewing angle.
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2.2.2 Indirect Volume Rendering

Indirect volume visualization requires pre-processing of the data which

can be computationally expensive. This means that a surface extraction

must be performed within the given scalar field, assuming that points be-

longing to a certain structure have the same isovalue. The resulting surface

is then rendered, e.g. using the widely used Phong illumination (PHONG,

1975). This surface is referred to as an isosurface.

The most popular algorithm for extracting surface models is marching

cubes (LORENSEN and CLINE, 1987). The core principle of marching cubes

is to first divide the given voxel model of an object into small cubes and

then march from one cube to the next to determine how the surface of

the object intersects with each cube. Therefore, an isovalue is defined as a

threshold. Then, for each cube, the sampled values of its eight vertices are

compared to the threshold to check whether a surface corresponding to

the isovolume runs through it. The polygons describing the intersection

of the isosurface with the cube are generated using a lookup table that

contains all 256 possible polygon configurations. The exact intersection

point of the polygon with the cube’s edge is then calculated by linearly

interpolating the values of the two corresponding vertices.

The use of isosurfaces leads to a loss of information since the necessary re-

striction to surfaces means a serious reduction of the data (TOMANDL et al.,

2001). If another isosurface is to be represented, preprocessing must take

place again. In conclusion, indirect volume rendering is only applicable

to data that can be classified by isovalues and allows only the visualization

of a surface and not of the entire volume.

2.2.3 2D Representations

2D representations can reduce the complexity of medical image data and

support the analysis, especially for larger patient cohorts. Furthermore,

standardized representations like the bullseye plot for cardiovascular

imaging allow a comparison of different studies (CERQUEIRA et al., 2002).

PREIM and BOTHA (2014c) classify 2D representations into projections and

reformations. Projections accumulate or flatten the 3D data directly, while
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reformations sample the data before flattening it. Based on their core prin-

ciples, a further subdivision is made into the following three groups:

• Anatomical unfolding describes the process of unfolding a surface

of an anatomical structure onto the view plane. The geometry de-

pends solely on the anatomy and only measured data is used.

• Anatomical planar reformations/projections result in a flattened

geometry that is anatomically-guided meaning that it contains only

samples from the original data. The missing data points are recon-

structed, e.g. by interpolation.

• Map projections include all techniques that project 3D shapes onto

a 2D plane like it is done to map the globe to a geographic map.

The 2D representations differ in terms of distortion and the use of inter-

polated values. When deciding for a 2D representation these properties

have to be carefully considered since distortions and interpolated values

can lead to false conclusions. A survey of flattening-based medical visual-

ization techniques has been performed by KREISER et al. (2018).

2.3 Registration of Medical Image Data

For the integration or voxel-wise comparison of multiple images, it is nec-

essary to transfer them into a common coordinate system. This can be

achieved by registering the images. Registration is the process of aligning

different images of the same scene or similar objects (HAJNAL and HILL,

2001). One or more object images can be registered to a reference image.

Therefore, a transformation is sought that deforms the object images, so

that corresponding points are in the same place as they are in the reference

image and the images become as similar as possible. In medical applica-

tions, registration is often used to match the data of different patients or to

align images of the same patient that were taken from different positions

or at different times (BEUTHIEN, 2014). Most registration algorithms con-

sist of a transformation model, a correspondence basis, an optimization

technique, and an interpolation method (GHOLIPOUR et al., 2007). Based

on the algorithm used, the order of these steps can vary.
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2.3.1 MNI Space and Talairach Space

The field of image registration is very large and many different techniques

exist. In neurology, registration is often used to align brain imaging data in

a common space (EVANS et al., 2012). Therefore, a set of standard spaces

were developed to allow the comparison of the data between different

studies. The two most popular standard spaces are the MNI space and

the Talairach space (EVANS et al., 1993; TALAIRACH J, 1988). The Talairach

space was created using only one brain, the so-called Talairach Brain, of

a post mortem 60-year old woman while the first MNI space, was cre-

ated by the Montreal Neurological Institute (MNI) using the average of 305

MRI scans and is therefore called MNI305. The MNI space has been es-

tablished as an international standard by the International Consortium of

Brain Mapping (ICBM). The current standard is the MNI-ICBM152, which

is based on 152 brain scans that are registered to MNI305 space (MAZZ-

IOTTA et al., 2001a,b). The newest versions are the MNI-ICBM152 Nonlin-

ear atlases (FONOV et al., 2009, 2011). It is a standard MRI template brain

based on the ICBM data and has a high spatial resolution as well as signal-

to-noise ratio.

Even though the MNI/ICBM templates are originally based on the Ta-

lairach brain, they differ in size and shape, which has to be considered

when comparing studies that used different spaces or when using maps

such as the Brodmann areas. The Brodmann areas are based on the Ta-

lairach atlas, therefore a direct transfer of the coordinates of the MNI tem-

plate to the Brodmann areas can lead to significant errors (BRETT et al.,

2002).

2.3.2 Brain Atlases

To divide the registered brain data into different regions, brain atlases are

used. They define individual brain regions and serve as a mask that can

be applied to registered brain scans. Therefore, they are often used to es-

timate disease-specific changes of brain regions in clinical cohorts and to

compare these cohorts to healthy patients (MANERA et al., 2020).

The Mindboggle-101 is the largest data set of publicly accessible, manu-

ally labeled human brain images, consisting of 101 entries (KLEIN et al.,
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2017; KLEIN and TOURVILLE, 2012). It was created to serve as a brain atlas

for labeling other brains as well as test and training data for the research

on automated registration and labeling algorithms. The Cerebrum Atlas

(CerebrA) for the state-of-the-art MNI-ICBM152 template was also based

on the Mindboggle-101 data (MANERA et al., 2020).

There are two main approaches for cortical labeling, i.e., volume-based

and surface-based. During volume-based labeling, the volume data is tra-

versed slice by slice, and the brain regions are marked on each slice (SHAT-

TUCK et al., 2008). Surface-based approaches use inflated or flattened

surface meshes instead like it is done for the Mindboggle-101 data (DE-

STRIEUX et al., 2010).

In addition to cortical brain atlases, atlases for subcortical structures also

exist (YOUSEFI et al., 2012). There are many different brain atlases devel-

oped for individual purposes, e.g. the analysis of brain activity, gray matter,

or white matter. Therefore, an atlas has to be carefully chosen based on its

properties that have to match the individual research question.

2.4 Detection and Segmentation of Brain Lesions

Brain lesions are still marked individually by an expert in many cases.

This method is not only time-consuming, but it also suffers from inter-

as well as intra-observer variability, making it hard to compare different

cases (BALLERINI et al., 2018). Therefore, automatic approaches to detect

and segment brain lesions are developed.

Different automatic segmentation approaches for white matter hyperin-

tensities have been compared based on the submissions of the WMH seg-

mentation challenge 2019 (KUIJF et al., 2019). The participants were asked

to provide a machine learning solution for the segmentation of WMHs

based on manually segmented training data. There were a total of 20 sub-

missions, the ten highest ranked approaches all used (deep) neural net-

works. Furthermore, all the submissions using ensemble methods per-

formed very well including the first placed. Therefore, it can be said that

deep learning can be a very promising approach for developing software

for the automatic segmentation of WMHs (GHAFOORIAN et al., 2017). Also,

commercial software solutions like mdbrain are following this approach
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to quantify lesions automatically (MEDIAIRE GMBH, 2021). mdbrain is us-

ing a deep neural network, trained with thousands of patients, and can

even compare the data with previous images of the same patient, creating

detailed reports for the user as well as a segmentation of the lesions.

The manual segmentation of cerebral microbleeds is especially time-

consuming due to the morphological complexity and the sheer number of

lesions. It can take 30 minutes for one observer to select all CMBs in one

MRI scan (KUIJF et al., 2019). Therefore, ATEEQ et al. (2018) developed an

automatic approach to detect CMBs by using ensemble-classifiers. They

first identify potential candidates by a simple threshold and size-based

filtering. False positives are then removed by performing a feature ex-

traction and classification of CMBs. For the classification, support vector

machines, Quadratic Discriminant Analysis, and the ensemble classifier

RUSBOOST are used. All classifiers achieved a sensitivity of at least 90%

with Quadratic Discriminant Analysis performing slightly better than the

others. As for WMHs, there are also several approaches using convolu-

tional neural networks to detect CMBs, their sensitivity is ranging from

90% , e.g., DOU et al. (2016) to 99%, e.g., HONG et al. (2018).

Similar to CMBs, enlarged perivascular spaces are rather small lesions.

Therefore, ePVS are also often quantified manually by classifying them

according to severity using a rating scale or by simply counting them

(ADAMS et al., 2013; POTTER et al., 2015). To improve the situation, auto-

matic scoring approaches suited for ePVS have been developed recently.

DUBOST et al. (2019) compared two neural network-based approaches,

one of them estimates the number of ePVS while the other also creates

an attention map suited for detection and segmentation of the lesions.

Attention maps represent the task-related activation in the input layer of

a neural network (JETLEY et al., 2018). They can be used to highlight re-

gions of special interest for the classification task at hand. Both methods

showed similar results to the visual scores acquired by two observers. Neu-

ral networks are also suggested by SUDRE et al. (2019) for the detection of

extremely small objects like ePVS.

Manual detection of lesions is increasingly being replaced by machine

learning methods, in particular neural networks. The studies described

show that neural networks can provide good results in the detection and

segmentation of even extremely small lesions and therefore represent a
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reduction in the daily workload of clinicians. While many approaches are

still being researched, commercial applications like mdbrain exist and are

used in clinical routine and research.





3
Related Work

The work presented in this section is intended to show related research

and which findings, as well as problems, have emerged from it. In partic-

ular, work on the topic of visual analytics in health care, analysis of neuro-

logical data, brain visualization techniques, as well as further research on

the cerebral small vessel disease, will be discussed.

3.1 Visual Analytics in Health Care

Medical data is often complex, very large with many missing values and

varying quality. Therefore, visual analytics is suited for this application

field, since the combined approach of automated data analysis and inter-

active visualizations allows for a very detailed and individual exploration

and analysis of the data (KEIM et al., 2010, 2006). The principle is based on

the four components data, models, visualization, and knowledge, see Fig-

ure 3.1. Data describes the input data, that can be transformed for further

processing by the model or mapping to a visual representation. The model

performs an automated data analysis based on parameters adapted by the

user by interacting with the visualization. Therefore, user-steered changes

in the visualization trigger the (re)calculation of the model, which in turn

is followed by an update of the visualization. Based on the interactive ex-

ploration of the data, the user can get new insights and gain knowledge.

Visual analytics uses representations from the field of information visu-

alization, where graphics are used to show trends, patterns, and correla-

tions in, often large, data sets (DOS SANTOS and BRODLIE, 2004). The user

can interact with the data through visual representations, e.g., by hover-

ing or selecting elements. Multiple representations can be linked to allow

17
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Figure 3.1: Depiction of the the visual analytics process by KEIM et al. (2010). It
is characterized by the interaction between the four components data, models,
visualization and knowledge, resulting in the combination of interactive visual
data exploration and automated data analysis.

the user to investigate them at the same time, following the concept of

multiple coordinated views (ROBERTS, 2007). The visual representations

can present an overview over complex data sets as well as focus on de-

tails. Therefore, coordinated multiple views often follow Shneidermann’s

mantra "Overview first, zoom and filter, then details on-demand" (SHNEI-

DERMAN, 1996). In many cases, filtering the data to create a subset selec-

tion is realized by brushing over the corresponding elements. The other

linked views are then automatically updated to show the selected subset.

Therefore, this technique is called brushing and linking (ROBERTS, 2007).

Following the mantra, the user can direct the analysis according to the in-

dividual task (KEIM et al., 2008).

Many graphical user interfaces are based on the model-view-controller

(MVC) pattern, depicted in Figure 3.2 (KRASNER and POPE, 1988). As de-

scribed by TOMINSKI and SCHUMANN (2020) the model consists of the data

and the transformations applied to it. This can include statistical or clas-

sification analysis. The views include the visual representations and addi-

tional information shown to the user. The controller refers to the interac-

tion concepts, e.g., sliders or brushing. When the user performs an interac-

tion, an update request is sent from the controller to the model. After that,
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Figure 3.2: A schematic representation of the model-view-controller pattern from
TOMINSKI and SCHUMANN (2020).

the views are refreshed showing the updated results. The update process

can consist of various different tasks, based on the application and user

input, e.g., updating colors, redo a statistical analysis or cluster analysis.

The visual representations are provided to help the user to form mental

models of data sets that are complex and therefore hard to grasp TOMINSKI

and SCHUMANN (2020). Therefore, it is necessary to follow the human-in-

the-loop approach and provide the user with tools to interactively explore

and adjust the representations, as explained in this section.

Especially when working with medical data, many challenges arise. SHNEI-

DERMAN et al. (2013) formulated seven specific challenges in the develop-

ment of visual analytics applications for health care:

• Offering busy clinicians timely information in the right format: In

the busy clinical environment, there is often little time to manually

analyze large amounts of patient data. Therefore, it is essential that

applications summarize the data and present it so that clinicians can

efficiently search for anomalies and important details.

• Moving towards an ecosystem of visual tools: With regard to the

concept of patient-centered medical homes and the increasing

shortage of family care doctors, it becomes more and more impor-

tant to provide visual tools in different languages and for diverse

platforms suitable for expert and non-expert users.

• Facilitating team decision making: Applications should support

team decisions and the needs of many different professions, such as

physicians from different disciplines, patients, and nursing staff.
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• Characterizing and understanding similarity: When faced with dif-

ficult cases or rare diseases, many physicians have to refer to related

publications to gain more knowledge about possible treatments.

This process should be supported by applications that can browse

medical literature sources to search for related cases.

• Visualizing comparative relationships: Comparative visualizations

are essential to study the differences and similarities between differ-

ent cohorts. This enables the evaluation of treatment methods as

well as the evaluation of cause-effect relationships.

• Presenting risk and uncertainty: In medicine many treatments and

medications have a low risk of complications and side effects. Inter-

active visualizations have a great potential to present these uncer-

tainties in a comprehensive way.

• Evaluation: Errors made in the development of medical applica-

tions can have fatal consequences and poor visual designs could

result in misunderstandings and inappropriate choices. Therefore,

a detailed evaluation under realistic conditions as well as adapting

the application according to the feedback from experts is necessary.

Despite these challenges, visual analytics has great potential to improve

clinical routine and medical research. JÖNSSON et al. (2019) describe in

their study how visual analytics can help in investigating diseases with un-

known cause based on the irritable bowel syndrome which is assumingly

related to one or more of the following: physical properties in the gut,

central mechanisms in the brain, and psychological factors. They com-

bine the analysis of a large range of different measurements from stool

samples to MRI data to support scientific reasoning and hypothesis for-

mulation. Visual analytics can also be beneficial for monitoring patient

data in clinical routine. BADE et al. (2004) present an application to visual-

ize high-dimensional and time-oriented data of patients in intensive care

units. The application is suited for different users and tasks, especially for

diagnosis and treatment planning. While it was applied to pulmonary em-

bolism in the publication, the concept can also be used for other medical

and non-medical approaches.
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In recent years, mobile as well as web technologies have been increasingly

used for the development of visual analytics platforms. Based on the prin-

ciples of Web 2.0, the terms Medicine 2.0 and Health 2.0 were introduced,

describing web-based and mobile applications for patients as well as pro-

fessionals (EYSENBACH, 2008; HESSE et al., 2010). Health 2.0 consists of the

three main application and research fields personal health, public health,

and clinical health (SHNEIDERMAN et al., 2013). Personal health focuses on

the patient as a user for devices that allow monitoring the own health sta-

tus and are intended for self-care (MEYER et al., 2016). On the other hand,

public health refers to large databases that are often used by statisticians

to investigate new trends and hypotheses on a large and often national

scale. A survey about visual analytics in public health has been done by

PREIM and LAWONN (2019). Clinical health describes the application field

of professionals working in the medical sector. Systems in this area should

help in diagnoses and treatment decision processes as well as allowing

to investigate patient cohorts for research purposes. Due to the increas-

ing amount of data, it can be difficult for physicians to get an overview of

the clinical data of one patient, let alone a cohort. Thus, visual analytics

in clinical health can provide a time-efficient solution for generating an

overview of patient data as well as offering the possibility to analyze spe-

cific aspects in more detail. These opportunities and research challenges

are further discussed in the work of CABAN and GOTZ (2015).

3.1.1 Medical Web Applications

In recent years, web applications for medical analysis, as proposed in the

concepts of Health 2.0, are gaining more and more popularity as the re-

quired technology is becoming more mobile, affordable, and powerful,

e.g., tablets, laptops, and cell phones. Technologies like WebGL allow the

easy representation and manipulation of 3D data in common browsers.

Web-based applications open up new opportunities in science and re-

search since they make applications widely available on the web and

for collaborative work. Furthermore, they do not require complex setup

processes. Since almost every computer has at least one common web

browser installed, many devices meet the requirements regardless of their

system specifications or operating system. Implementing the application

as part of a client-server structure integrates well with the visual analyt-
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ics process. While the client can handle the visualization and interaction

interface, the server can take care of the modeling tasks which are more

demanding in terms of processing power. Since the visual exploration

of one calculated model takes time, a single server can support multiple

clients instead of idling between the requests.

The project VICTORIA is a web-based application aiming at generating

ground truth data for the ostium reconstruction of cerebral aneurysms

(BEHRENDT et al., 2020). Five clinical cases can be segmented on the as-

sociated website. The ground truth data can then be generated from the

resulting data. Due to the easy accessibility of the application by hosting

it on a website, data can be collected from many different participants, re-

gardless of their location and technical equipment.

HUTH et al. (2016) developed an interactive 3D viewer to analyze different

brain regions with regards to brain activation based on semantics, see Fig-

ure 3.3c. The activity in different brain regions was measured for several

subjects listening to different stories. Afterwards, each pixel on the surface

model of the brain was colored based on the meaning of the words in the

stories that caused the highest brain activity at this point. The tool allows

to manipulate the 3D mesh by flattening and unfolding it.

The X Toolkit (XTK) is a WebGL-based toolkit developed for JavaScript

with the aim to provide a simple API for the generation of medical visu-

alizations, especially in neuroscience, in the web browser (HAEHN et al.,

2014). Several other toolkits exist but they are highly specified on par-

ticular anatomical structures (DA CRUZ et al., 2014; RUDOLPH, 2011).

XTK is used for different applications, among them AneuryskWeb and

Slice:Drop. AneuryskWeb allows the interactive visualization of the data of

the Aneurysk database on a web page (ANEURISK-TEAM, 2012). Slice:Drop

is a tool that can be hosted on a web page and allows the rendering and

collaborative analysis of medical image data of many different formats,

see Figure 3.3a (HAEHN, 2013). The data can be shared between different

devices and multiple linked browsers can all manipulate the view to allow

a cooperative analysis involving multiple users.
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(a) The web application Slice:Drop from HAEHN (2013), visualizing a MRI scan using
slices and DVR as well as a 3D surface model of the brain fibers.

(b) The application VisualNeuro by JÖNSSON et al. (2020) offers a workflow that combines
statistical analysis with interactive visual exploration.

(c) Visualizations of principal components of voxel-
wise semantic models using 3D surface models and
flattened representations of the cortex.(HUTH et al.,
2016).

(d) Visualization of group-level
seed-to-voxel connectivity
measures from the toolbox
Conn (WHITFIELD-GABRIELI

and NIETO-CASTANON, 2012).

Figure 3.3: Exemplary brain visualizations from recent related work.



24 CHAPTER 3. RELATED WORK

3.2 Analysis and Visualization of Neurological Data

In the field of neurology, investigations are based on clinical measurement

as well as brain scans (SIULY and ZHANG, 2016). The main focus of most

applications is on a statistical analysis of this data like it is done by statis-

tical parameter mapping (PENNY et al., 2007) or the connectivity toolbox

Conn (WHITFIELD-GABRIELI and NIETO-CASTANON, 2012). While many

other applications are focusing on the visualization of the results of statis-

tical analysis only, Conn also includes the image data of the brain scans al-

lowing the user to investigate relations between the clinical measurements

and affected brain regions, see Figure 3.3d.

Another advanced tool is FreeSurfer (FISCHL, 2012). FreeSurfer offers a

wide range of possible processing steps to view and transform brain data

as well as the statistical analysis of the data. However, FreeSurfer is oper-

ated by using the command line, which makes it not suited for being used

directly by physicians. Furthermore, most of the mentioned tools have

long processing times which makes it very time consuming to analyze the

data in an iterative way.

In turn, JÖNSSON et al. (2020) developed VisualNeuro, an application that

allows an interactive analysis of clinical and scan data in real-time, see

Figure 3.3b. VisualNeuro offers multiple linked views to select sub-cohorts

and perform a statistical analysis of their data. Additionally, the image

data is also included as 2D slices and a 3D model to show the user the

correlation of spatial and clinical data as well as group differences between

two sub-cohorts.

When developing these tools, analysts are not only confronted with the

problems of combining clinical and imaging data but also with the dif-

ferent data types, clinical data consists of as well as missing data. Based

on the dual analysis framework Brushing Dimensions from TURKAY et al.

(2011), an application for the integrated dual analysis of quantitative and

qualitative high-dimensional data was developed by MULLER et al. (2021).

The application allows a combined statistical analysis of quantitative and

qualitative data, while many other tools handle this data separately since

many descriptive statistics are not suited for both data types. It was devel-

oped using the same clinical CSVD cohort, as used in this work.
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3.2.1 Brain Visualization Techniques

Medical imaging is a key aspect in diagnosis and treatment planning. The

resulting volume data can depict anatomical structures as well as other

modalities like brain function. Over time larger databases of medical im-

age data are acquired and can be used for cohort studies. As discussed

in the first part of Section 3.2, it is necessary to include image data in ap-

plications that are used for the investigation of neurological diseases with

regards to the location of lesions.

Often medical volume data is observed by going through the scan of a spe-

cific patient slice by slice. This process can be very time-consuming and

is not fitted for the analysis of cohorts. Since the original data is three-

dimensional, the most natural representation would be 3D views gener-

ated either by indirect or direct volume rendering, see Section 2.2. This

also allows the inspection of the data from arbitrary directions. However,

medical data is highly complex and suffers from self-occlusion. Never-

theless, it can be seen in Figure 3.3 that 2D slices, 3D models or a com-

bination of both are used in many tools mentioned in Sections 3.1.1 and

3.2 (FISCHL, 2012; HAEHN, 2013; HUTH et al., 2016; JÖNSSON et al., 2020;

WHITFIELD-GABRIELI and NIETO-CASTANON, 2012).

The brain is the geometrically most complex structure of the human body,

therefore many studies use brain flattening to unfold the cortex onto a 2D

plane to reduce complexity and occlusions (KREISER et al., 2018). There

are different methods for flattening the brain, e.g., transform the brain into

a sphere, circle, or plane. This can be applied to the whole brain surface as

well as cortical sub-structures. In an approach to project the cortical sur-

face of the brain onto a 2D plane GOEBEL (2000) first inflate the 3D model

of the brain and then cut it into several pieces. The pieces can then be pro-

jected onto the plane and metric distortions are minimized in a final step.

In contrast, HINDS et al. (2008) focus on projecting a specific sub-surface,

the primary visual cortex, onto a 2D plane. Therefore, they first extracted

the target structure by manually segmenting it in the data slices. On the

resulting mesh, pairwise geodesic distances between all vertices were cal-

culated. After that, the planar representation was generated by preserving

the shortest distance for each pair while forbidding edge crossings, result-

ing in a quasi-isometric flattening of the sub-surface. Either way the re-



26 CHAPTER 3. RELATED WORK

Figure 3.4: A 2D illustrative brain visualization from the cerebroVis toolbox show-
ing the POGZ gene expression in the brain at three developmental time points
(BAHL et al., 2016)

.

sults can be misleading not only due to the emerging distortions but also

because points that are originally close together on the original brain sur-

face can be far apart on the flattened result since the surface of the brain

is strongly curved (WANDELL et al., 2000). Furthermore, brain flattening is

only applicable if the focus of the analysis is on the cerebral cortex, since

deeper structures can not be represented with these techniques, see Fig-

ure 3.3c.

As an alternative, 2D illustrations of the brain can be used. The different

regions in the illustration are color-coded based on scalar values. The

toolbox cerebroViz maps spatiotemporal brain data to color-coded vector

graphics of the brain, see Figure 3.4 (BAHL et al., 2016). They illustrate

the brain from different angles, providing, e.g. sagittal and exterior views.

Even though these 2D visualizations do not suffer from self-occlusion,

they also do not provide any depth information. Therefore, many individ-

ual illustrations of different cross-sections through the brain are needed

to visualize information that is located in different depths.

More abstract diagrams from the field of information visualization are

used to depict data in different brain regions in one plot. In a study from

ROTH et al. (2014) bar charts with error bars were used to plot the brain

activity per region. While all the data can be seen without any overlap, it

is not possible to intuitively know which bar represents which brain re-
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gion. Another approach is to not focus on brain regions but other data,

e.g., lesions. Based on derived features from WMH lesions, like volume,

shape features, and intensity profiles, JUNG et al. (2021) used the t-SNE

algorithm to plot this data in a two-dimensional scatter plot. While the

locations of the lesions themselves are not depicted in the plot, clusters of

similar lesions can be easily recognized.

SUDRE et al. (2018) suggested a bullseye visualization that is more abstract

but still considers the morphology of the brain. In medical visualizations,

bullseye plots (BEP) are commonly used for the visualization of the heart,

e.g., depicting infarcted myocardial tissue or perfusion data (OELTZE et al.,

2006; TERMEER et al., 2007). The brain was divided into different lobes,

each lobe being represented by one segment in the BEP. The lobes are fur-

ther divided based on their distance to the ventricles. Each of the distance-

based sections is represented in the BEP as one ring. The resulting cells in

the BEP are then color-coded based on the WMH lesion load. The seg-

ments of the BEP are roughly arranged based on the position of the re-

spective lobes in the brain, depicting the left and right brain structures in

separate segments. The rings are showing the depth, thus the inner ring

is representing the regions closest to the ventricles. The same representa-

tion was used by BRUGULAT-SERRAT et al. (2019) to depict the correlation

between cognition and WMH lesions.

3.3 Research on Cerebral Small Vessel Disease

As described in Section 2.1, the concrete pathogenesis of the lesions asso-

ciated with CSVD is still unclear. Since the small cerebral vessels cannot

be depicted by current image modalities, the studies on CSVD rely on the

presence of these lesions and their features (LIN et al., 2017). WARDLAW

et al. (2013) introduced the standards for reporting vascular changes on

neuroimaging, an approach to standardize research on CSVD and define

the six lesion types associated with CSVD, see Section 2.1.

Furthermore, patients diagnosed with CSVD are typically assigned to one

of the two common subgroups CAA and HA (CHARIDIMOU et al., 2015).

Patients with CAA have strictly lobar lesions while the lesions of patients

with HA are mostly deep. A popular approach for identifying CAA is the

Boston criteria (GREENBERG and CHARIDIMOU, 2018). In the study of
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SCHEUMANN et al. (2020) CAA was associated with multiple subcortical

WMH spots as well as severe ePVS and ePVS predominance patterns in

the centrum semiovale, while HA showed more WMHs in the peri-basal

ganglia and severe ePVS in the basal ganglia. Concerning clinical data,

patients with CAA tended to have a higher age than those with HA and

arterial hypertension and diabetes mellitus were less frequent compared

to mixed cases.

Belonging to one of the groups also influences medication and treatment

decisions (WANG et al., 2014). Multiple studies show an association be-

tween patients using aspirin and the occurrence of lobar CMBs, which are

associated with CAA (VERNOOIJ, 2009; WANG et al., 2014). In a study of

WILSON et al. (2016) strictly deep CMBs (HA) showed a slightly lower risk

of ischemic stroke while strictly lobar CMBs (CAA) have a higher risk of

intracerebral hemorrhage. Therefore, for patients with CSVD the use of

antithrombotic agents, which can prevent stroke but at the same time in-

crease the risk of hemorrhage, has to be carefully evaluated.

Patients can also have a combination of lobar and deep lesions, mak-

ing treatment decisions more difficult for clinicians, e.g., mixed cases

show a rather high risk of both, ischemic stroke and intracerebral hem-

orrhage. (SMITH et al., 2010; WILSON et al., 2016). Mixed cases can be

either a co-occurrence of both CAA and HA or an advanced stage of HA

which can also include lobar lesions (PASI et al., 2017). Studies investi-

gating these mixed cases try to classify the co-occurrences more precisely

to be either mixed CAA or mixed HA based on their similarities in image

and clinical data to the two main groups (SCHEUMANN et al., 2020; TSAI

et al., 2019). In those studies, the mixed group showed more cerebellar

CMBs and a higher frequency of anterior subcortical WMHs compared

to CAA and more deep as well as cerebellar CMBs and higher occurrence

of severe ePVS in the centrum semiovale compared to HA. In the work

of SCHEUMANN et al. (2020), one-third of the patients with mixed cases

showed ePVS predominance patterns and were therefore classified as

mixed CAA. The other patients were classified as mixed HA. Furthermore,

mixed CAA cases tended to have more lobar CMBs and less frequently

WMHs located in the peri-basal ganglia.

A detailed description of CSVD, its causes, diagnosis, prevention, and treat-

ment can be found in the book of PANTONI and GORELICK (2014).
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3.4 Summary and Requirements

Due to the inability to visualize the smaller brain vessels that are affected

by the cerebral small vessel disease with current standard imaging tech-

niques, detection, analysis, and treatment decisions of the disease are

based on CSVD-related lesions. While the parthenogenesis of these le-

sions remains unclear their localization is associated with specific symp-

toms and treatment outcomes. Therefore, CSVD cases are generally clas-

sified into the two subgroups cerebral amyloid angiopathy (CAA) and

hypertensive arteriopathy (HA), based on whether the lesions are lobar

or deep. However, many patients show lobar as well as deep lesions and

are categorized as mixed-cases, leading to open questions concerning

treatment decisions.

From the preceding discussion of the studies and consultations with Ste-

fanie Schreiber, who is a senior neurologist at the University Hospital in

Magdeburg, the following requirements result for this work:

• Localization of the different lesion types: The lesion types WMH,

CMB, and ePVS should be visualized with respect to their anatomical

localization. The localization of the lesions to each other as well as

to the cortex is of interest.

• Visualization of variable cohort sizes and counts: The application

should be able to visualize the lesions of one patient, a cohort of pa-

tients as well as a comparison of two cohorts.

• Abstract visualization: To allow a comparison of larger cohorts with-

out occlusions that typically appear in 3D visualizations an abstract

2D representation of the brain and its substructures should be cre-

ated. The 2D representation should visualize the distribution of the

lesions instead of depicting each lesion explicitly.





4
Interactive Visual Analysis of Lesion

Loads

In this chapter, an overview of the implemented application is given. At

the beginning, the software used and the underlying data sets are dis-

cussed. This is followed by detailed descriptions of the development of

the visualizations and the processing of the data. In addition, the prob-

lems encountered during the implementation and possible solutions are

discussed.

4.1 Underlying Data Sets

The application was mainly developed using the data set of the WMH Seg-

mentation Challenge (KUIJF et al., 2019) which consists of image data ac-

quired in different hospitals in the Netherlands and Singapore. A total of

60 subjects are included providing T1-weighted and FLAIR images as well

as manual segmentation results of the WMHs. For the final development

and evaluation of the application the working group Medicine and Digital-

ization (MedDigit) at the Department of Neurology (KNEU) in cooperation

with Prof. Stefanie Schreiber from the University Hospital of Magdeburg

provided the following data acquired during clinical routine:

• MRI data from a clinical cohort of patients with CSVD,

• ePVS segmentation results of the cohort,

• WMH segmentation results of the cohort,

• CMB segmentation results of the cohort,

• Clinical data of the patients of the cohort.

31
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Figure 4.1: A schematic depiction of the preprocessing steps. The MRI scans are
segmented by experts, the segmentation result for each lesion type is saved as a
separate binary map. The MRI data, as well as the segmentation results, are then
registered to the MNI-ICBM152 template.

For the cohort, either T1-weighted, T2-weighted, T2*-weighted or FLAIR

images were available. Based on these, the WMH, CMB, and ePVS lesions

were segmented semi-automatically by experts. In a study of LESJAK et al.

(2017) the intra- and inter-rater variability of manual and semi-automatic

segmentations of three experts were compared. The mean dice coeffi-

cients for the intra-rater variability was 0.85 for the manual and 0.92 for the

semi-automatic approach. The mean inter-rater variability of the manual

and the semi-automatic approach were 0.82 and 0.89, respectively. There-

fore, semi-automatic approaches seem to reduce the intra- and inter-rater

variability. For this work, a fully automated approach was not feasible, as

most of the clinical data is of low quality and causes false segmentation

results that have to be corrected by an expert. The image data were regis-

tered to the MNI ICBM 2009c Nonlinear Asymmetric template (COLLINS

et al., 1999; FONOV et al., 2009, 2011) to allow the accumulation of lesions

of multiple patients forming a sub-cohort, see Figure 4.1.

Due to the extensive preprocessing required, only a total of ten patients

from the CSVD cohort were used for the final development stage and

evaluation. In addition to the MRI data and the segmentation results of

the sub-cohort, a CSV file with clinical data and the subdivision into the

groups CAA, HA, mixed CAA, and mixed HA according to SCHEUMANN

et al. (2020) was provided.
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4.2 Software

The application was implemented using a combination of JavaScript and

Python 3.7 to build an interactive client-server web environment, see Fig-

ure 4.2. It was integrated into an already existing visual analytics frame-

work of the working group MedDigit which is based on JavaScript, D3.js,

and Python (MULLER et al., 2021). By using JavaScript, no additional soft-

ware needs to be installed on the PC, as the program can be executed in

the web browser, which allows an easy use in clinical practice. The whole

application is running locally, meaning there is no network traffic. As a

result, the patients’ data is not leaving the currently used computer, ensur-

ing data privacy.

Furthermore, the JavaScript libraries D3.js, XTK, and THREE.js were used

for generating the visual representations. D3.js is a library for creating in-

teractive data visualizations for the web. Therefore, it generates graphi-

cal elements from numerical values using web standards like CSS, HTML,

and Scalable Vector Graphics (SVG) which are supported by common web

browsers. XTK is a toolkit developed for scientific visualization in the web,

as described in Section 3.1.1. It is based on WebGL and is mostly used for

2D and 3D visualizations in neuroscience. Like XTK, THREE.js is mainly

based on WebGL. THREE.js allows a quick and easy creation of 3D models,

textures, scenes, and lighting.

For the parcellation of the brain, the open-source software FreeSurfer was

used (FISCHL, 2012). The FreeSurfer output was then processed with the

bullseye pipeline from SANROMA (2019) which is further discussed in Sec-

tion 4.4.4.

4.3 Visualizations and User Interface Components

In this section, the different visualizations and components of the user in-

terface (UI) are described. To allow for a parallel analysis of clinical routine

data and image data the application was transformed into a two screen so-

lution, showing the initial user interface on the left screen and the exten-

sion developed in this work on the right screen. An overview of the UI is

shown in Figure 4.2.
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(a) The complete two screen application.

(b) The left screen showing the initial framework.

(c) The right screen showing the extension of the framework.

Figure 4.2: A schematic depiction of the final UI. The left screen shows the
original framework from MULLER et al. (2021) (A) while the right screen shows
the extension developed in this work (B).
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A The left screen is showing the initial framework, which performs a

statistical analysis of clinical data loaded from a CSV file. It is divided

into three plots, each plot is placed in a separate box with varying

frame color, see Figure 4.2b.

A.1 A plot showing the statistical measures coefficient of unalike-

ability (x-axis) and relative frequency of missing values (y-axis).

A.2 The parallel coordinates plot depicts each row of the imported

CSV file as a dimension. Each row represents one patient and

is drawn as a line in the plot. The user can select a subset of

patients by brushing over one or more axes. The selection is

depicted on the right and can be adjusted there. Afterwards, the

statistical plots A.1 and A.3 are automatically updated.

A.3 The plot is depicting the possibility of correlations. Sorted by

data type, it is the normalized aggregation of the deviations of

all descriptive statistical measures.

B The right screen is showing the extension of the initial framework

which was developed in this work, see Figure 4.2c. The screen is

divided into the visualizations of the image data, the abstract rep-

resentation of the lesion load, and interaction possibilities for the

selection of one or more subsets. While the plots on the left screen

update automatically after choosing a subset of patients, the right

screen is only updated on demand by pressing the respective button.

Generating and importing the image data needs more computation

time and is therefore not suited for an automated update after each

subset selection.

B.1 The buttons used to start the calculation of the visualizations

on the right screen are placed in a box with a frame color sim-

ilar to the parallel coordinates plot to indicate that both boxes

are used to select and display patient subsets. The user can se-

lect a single subset and display it or compare it to all data sets

including or excluding the selected subset. A subset can also be

saved to define a second individual subset afterwards and com-

pare both selections.

B.2 For each lesion type the amount of patients in the selected sub-

set that do not have this lesion is displayed. Therefore, the user
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can evaluate how many data sets are forming the accumulated

lesion visualizations.

B.3 On the right side of the screen the image data is displayed as

2D slices, 3D surface models, or optional using DVR. An ori-

entation gizmo supports the 3D rotation of the models and a

menu allows several interaction techniques, which are further

described in Section 4.3.2 .

B.4 Abstract representations of the lesion load of the selected sub-

group are depicted as bullseye plots. They are further discussed

in sections 4.3.3 and 4.4.4. For WMH the proportional volume

of the lesion to the brain region is shown, while for CMB and

ePVS the count of individual lesions per region is counted. To

explain the abstract visualization to the user, a legend is dis-

played in the upper left corner.

The views B.3 and B.4 from Figure 4.2c are modified based on the selec-

tion of the user. The application supports a total of three different views,

the inspection of a single patient, a cohort, and the comparison of two se-

lected patients or groups. In the following sections, the visual analytics

workflow (see Section 4.3.1) is described. The visual components of the UI

are described in more detail (see Section 4.3.2 and 4.3.3), followed by the

generation of the visual representations (see Section 4.4). At the end of this

chapter, the proposed representations will be discussed and compared to

alternative visualization styles, see Section 4.5.

4.3.1 Visual Analytics Concept and Workflow

The user starts the application, by running the python server and opening

the HTML file in a browser window. Afterwards the data can be explored

by selecting an individual subset in the parallel coordinates plot. The ap-

plication is based on the brushing and linking approach (SHNEIDERMAN,

1996), therefore, a selection of a subset of patients in the parallel coordi-

nates plot automatically leads to an adjustment in the other plots. The

selection is performed by brushing over a subset of data entries on one or

more axes.

Due to the higher processing time for the visualization of the volume data

on the right, the BEPs, as well as the visualization of the volume data, are
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Figure 4.3: A schematic depiction of the application and internal workflow. The
application can be divided into the three components: data, backend, and fron-
tend. The fourth component is the user who interacts with the frontend, which
leads to further data processing in the backend.

only updated on-demand. For this purpose, different buttons provide var-

ious selection options. Either one selected subset, consisting of a single

patient or a cohort, can be visualized, or two subsets can be compared.

Additional buttons allow a comparative visualization of the subsets either

with the whole cohort including the selected subset or the whole cohort

excluding the selected subset. To compare a selected subset with another

individually selected subset, the user can first save a selection and then se-

lect another group. The saved selection will be shown in area B.1 and can

be deleted by a press on the respective button.

The application is based on the visualization mantra as described in Sec-

tion 3.1: "Overview first, zoom and filter, then details on-demand" (SHNEI-

DERMAN, 1996). Therefore, after deciding on a subset of patients, the vol-

ume data can be inspected on the right side. Different interaction tech-

niques are available to adjust and filter the visualization. They are further

described in section 4.3.2. To analyze the lesion load of the selected sub-

set, the user can interact with the BEPs. By clicking in a cell of one of the
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plots, the corresponding brain region is highlighted in the 3D as well as 2D

representations of the volume data.

The application follows the visual analytics principle from KEIM et al.

(2010) as described in Section 3.1, consisting of the four components Data

(blue), Models (green), Visualization (red) and Knowledge (yellow). Fig-

ure 4.3 depicts the components of the tool developed in this work. It can

be seen, that the components fit in the described visual analytics princi-

ple. The data is represented by the clinical and image data of the CSVD

cohort as well as data derived from it. The models are implemented in

the Python backend and process, aggregate, and create data. The results

are sent to the JavaScript frontend which includes the visualizations the

data is mapped on. Due to interaction with the visualizations, causing

the recalculation of the models, the user (in this case a domain expert)

can gain knowledge. This principle is also very similar to the model-view-

controller pattern, which is described in Section 3.1 as well. The user can

manipulate the data through the controller, which consists of the interac-

tive elements in the UI, e.g. sliders and buttons. This causes the model to

update and recalculate the data. Afterwards, the view, including all visual

representations, is refreshed and the results can be observed by the user.

After this brief overview of the whole prototype, the following sections will

focus on the frontend (see Sections 4.3.2 and 4.3.3) as well as the backend

(see Section 4.4) components which have been proposed as part of this

work.

4.3.2 3D Volume and 2D Slice Views

The image data, being the brain and the segmented lesions, are displayed

in 2D as axial, sagittal, and coronal slice images and in 3D using indirect

and optionally also direct volume rendering, see Figure 4.4. The views are

implemented using the XTK toolkit and their basic functionality has been

derived from the application Slice:Drop (HAEHN, 2013; HAEHN et al., 2014).

Slice:Drop includes a lot of the functionality needed for the application

presented in this work, such as the integrated visualization of slice images,

segmentation maps, 3D models, and DVR.

On the bottom, the slice images are displayed. The segmented lesions are

highlighted in different colors. A detailed discussion why colors were used
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Figure 4.4: The visualization of the volume data of a single patient in 2D and 3D.
The different lesions are color-coded based on their type. Overlapping lesions are
highlighted with separate colors on the slices. A legend is displayed on the left
side. The orientation gizmo in the upper right corner supports the 3D rotation.

instead of textures is done in Section ??. If multiple lesion types overlap,

the corresponding regions are colored in a different hue, since in the 2D

images, overlaps cannot be analyzed by hiding specific lesions. Further-

more, simply mixing the colors of two or three lesion types to show an

overlap would distort the impression of color scales used to encode the le-

sion load. The user can scroll through the slices using the mouse wheel or

the slider on top of each image and adapt the window function by clicking

in the image and move the mouse. Up and down movements increase or

decrease the brightness by lowering and raising the window level, respec-

tively. Moving the mouse to the left shrinks the window size and increases

the contrast in the image while moving the mouse to the right expands the

window width and decreases the contrast. This is the interaction typically

provided by other applications that allow the exploration of medical image

data and therefore familiar to experts in this field.

In the center, the 3D visualizations are displayed. Here, the user can

choose to either show the slices in 3D, to see their current position in the

volume, or to visualize the whole volume using DVR instead. By using

DVR, no surface model of the brain is needed. Furthermore, by extracting
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a surface model many details are lost. DVR, on the other hand, offers the

possibility to visualize arbitrary details of the original MRI scan by adjust-

ing different parameters, like the transparency and gray value thresholds.

The 3D slices have frames of the same colors as the corresponding slid-

ers for the 2D slices to build a visual bridge between them. The rotation

widget from JANKOWIAK (2020) is displayed in the upper right corner to

support the 3D rotation of the objects. By clicking on it, the user can ro-

tate the objects in the 3D view so that the selected dimension is parallel to

the view plane.

Similar to the 2D slices, the lesions in the 3D view are color-coded based

on the lesion type. On the left side of the visualization, a legend with the

color scales is shown. The color scale is adaptive to the size of the selected

subset, see Figure 4.5. When selecting one patient, swatches depicting a

single color per lesion type or a combination of lesion types are shown.

For the visualization of a cohort, the swatches of singular lesion types are

replaced by a discrete color bar. The min and max values of the color bars

depend on the current data’s range. The color depicts how many patients

have the same lesion type in identical voxel locations. Each lesion type is

represented by a unique color scale, to ease their distinction, i.e. orange

(WMH), purple (CMB), and green (ePVS).

If two subsets are selected to generate a comparative view, diverging color-

scales are used. They depict the lesion load dominance of the subset com-

parison. One subset dominates the other in case more of the included

patients have a lesion at the highlighted position. The number difference

in patient count describes the amount of dominance of one set over the

other. A detailed explanation of the dominance calculation is given in Sec-

tion 4.4.2. Due to the amount of colors needed, used color scales include

hue ranges that are hard to distinguish, e.g., orange and red. The diver-

gent color scales pink-green (WMH), red-blue (CMB), and purple-orange

(ePVS) were used. To select colors and color scales with the best possible

contrast, ColorBrewer was used (HARROWER and BREWER, 2003). Color-

Brewer is a web tool for selecting colors for maps that are easy to distin-

guish.

Introducing many colors per color scale increases the visual clutter and

makes it hard to interpret the resulting image. For this reason, all color

scales implement automatic binning in case the lesion maps include a
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Figure 4.5: The used color scales depend on the user selection. If a single patient
is selected, each lesion type in the slices, as well as the 3D lesions, are mapped
to a single color. In case the user selects a cohort, the lesion load (in this case
the number of patients that have a lesion at the same voxel position) is colored
by a discrete color scale. A diverging color scale is used for the comparison of
two selections. Each of the two selections can either be a single patient or a
cohort. The diverging color scale shows the lesion load dominance, meaning the
surplus of patients showing a lesion at the same voxel position in one subset in
comparison to the number of patients in the other subset. The bullseye plots
use continuous color scales to depict the lesion load for the selection of a single
patient, a cohort, or the comparison of two selections.
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large number of unique values. For each subset and lesion type, a maxi-

mum of six equally sized bins is produced. If more than six shades of the

same color are used, it becomes hard for the user to distinguish them.

If the user is unsure about a specific lesion type, clicking on a 3D model

of a lesion will provide further information. The pop-up tooltip shows not

only the type but also the volume of the selected lesion. Multiple tooltips

can be opened to highlight and compare selected lesions. Corresponding

meshes will turn yellow when being hovered and remain dark yellow once

the user clicks on them. In case the user rotates the scene, all selections

will be rescinded and their respective tooltips will be closed. This prevents

the tooltips and meshes from being obscured or mismatched. Display-

ing detailed information on demand for individual lesions simplifies their

comparison. Furthermore, the different lesion types can be filtered based

on their lesion load or completely hidden to reduce visual clutter in the 3D

scene.

A menu at the top left corner displays several opportunities for interaction,

see Figure 4.2c. The menu was created using Guify (COLE, 2019) and offers

the following interaction possibilities:

• 3D Slices or DVR Dropdown: The user can choose to visualize the

volume data either as 3D slices or with DVR using a dropdown menu.

• Toggle Lesion Map: A toggle button is used to show and hide the

lesion map that highlights the lesion locations in the 2D slides.

• Volume Opacity Slider: The opacity of the 3D slices and the DVR can

be adjusted by a slider.

• DVR Threshold Range Slider: The upper and lower threshold of the

gray values that are to be displayed in the DVR can be assigned using

a range slider.

• Brain Surface Model Opacity Slider: The user can employ a slider

to adjust the opacity of the surface model. While the surface model

allows a localization of included lesions, it can also conceal relevant

information. Modifying its opacity allows to adapt the visualization

to the user’s preference.
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• Lesion Load Threshold Sliders: One slider per lesion type allows to

show or hide the lesion surface models with a specific lesion load in

the 3D view. This allows the user to focus on lesion loads in a certain

range, which can be important during the analysis of larger cohorts.

The 2D, as well as 3D views, provide the user with well-known visualiza-

tions and a detailed anatomical context. However, the high level of de-

tail can cause visual clutter which makes it hard to recognize individual le-

sions and patterns, especially in the accumulated cohort views. Therefore,

a simplified visualization of the lesion load was included in the software

and will be discussed in the following section.

4.3.3 Abstract Visualization of the Lesion Load

The abstract representation of the lesion load as bullseye plots presents

an overview of the lesion distribution of a single patient as well as of a co-

hort, see Figure 4.6 The parcellation of the brain and representation of the

lesion load as bullseye plots were introduced by SUDRE et al. (2018). The

BEPs are divided into lobes and shells. The lobes refer to widely known

brain regions: frontal (Front), parietal (Par), temporal (Temp), occipital

(Occ) for each hemisphere as well as one joined region consisting of the

basal ganglia, intratentorial regions, and thalami (BGIT). The shells pro-

vide information about the depth of the lesions. The inner ring of the BEP

is depicting the shell closest to the ventricles while the outer ring is closest

to the cortical grey matter. In the application, a legend is used to explain

the parcellation for the user, see Figure 4.7. The parcellation is described

in more detail in Section 4.4.4.

In the study of SUDRE et al. (2018) the BEPs were only used to depict the lo-

cation of WMH, while in this work also CMB and ePVS are visualized with

this method. The BEPs are showing the volume ratio of the brain region

volume and the lesion volume for WMH and the lesion count for CMB and

ePVS. The last two lesion types are so small, that their segmentation often

consists of only a single voxel and the calculated volume ratio for CMB and

ePVS would be extremely small. Therefore, displaying their lesion count is

better suited for the quantification of the lesion load.

To create a visual connection of the different graphical representations of

the lesions and the lesion loads, the color scale of the BEPs is based on the
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(a) BEP depicting the
WMH Lesion load of a
single patient.

(b) BEPs depicting the me-
dian and IQR of the WMH
lesion load of a cohort.

(c) BEP depicting the
WMH lesion load domi-
nance of two subsets.

Figure 4.6: Depending on the selection, different BEPs are displayed in the UI. (a)
One BEP displays the lesion load of a single patient, while (b) two BEPs depict the
median and the interquartile range (IQR) of the lesion load of a cohort. When two
cohorts are compared, (c) a BEP showing the lesion load dominance is generated
additionally.

same hues as the color scales used for the 3D and 2D lesions in the volume

data, see Figure 4.5. In contrast to the color scales used for the volume

data, the BEPs use continuous color scales since they do not represent the

number of patients with overlapping lesion areas but their median lesion

load per segment.

In the plots, not only the lesion load itself but also other parameters can

be displayed, see Figure 4.6. When the user selects a cohort, the mean

and the IQR are depicted in two separate BEPs per lesion type. The use of

these measures was approved by a neurologist with more than ten years

of expertise in the field of cerebral vascular diseases. She stated that the

plots allow getting a better impression on the lesion loads distribution over

the selected subset of patients. For the comparison of two selections, the

mean and IQR for each subset are depicted. Additionally, the lesion load

dominance is visualized.

Like in the representation of the 3D and 2D lesions, the BEPs also visual-

ize the lesion dominance when comparing two selections. For each sub-

set, the median is determined. The dominance then indicates how much

larger the median of one group is compared to the other. Therefore, the le-

sion load dominance plot highlights the differences between the two sub-

sets.
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(a) Hovering over the legend for the lobes.

(b) Hovering over the legend for the shells.

Figure 4.7: To explain the bullseye parcellation to the user, a legend for the lobes
and shells was created. By hovering over the images, a schematic representation
of the brain regions is displayed in color and a tooltip with further information
opens.
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Figure 4.8: After the outer shell of the frontal lobe was selected, the respective
brain region is shown as 3D surface model as well as white highlight in the slice
images.

To better integrate bullseye plots and volume visualization, the plots were

made interactive. Hovering individual cells displays the exact numerical

value in a tooltip while clicking on a cell highlights the corresponding

brain region in the volume visualization, see Figure 4.8. This allows for a

quick identification of lesions contributing to the lesion load of this seg-

ment. An arbitrary number of cells can be selected. Only surface models

of the selected brain regions are displayed in the 3D view, instead of the

entire brain. In the slice images, the corresponding regions are highlighted

in white.

4.4 Data Processing

This section describes the processing of the data which is performed in

the python backend to generate the visual representations. It includes the

import of the data as well as its aggregation which is performed to generate

the volume visualizations as well as the bullseye plots.
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4.4.1 Import of the Data

The segmentation results of the lesions are stored as separate binary maps

for each patient and lesion type. It is saved as a three-dimensional volume

with the same size as the registered MRI data, being 256 x 256 x 256 voxels

with a spacing of 1 in each dimension. Each voxel where a lesion was de-

tected has a value of 1 while the other voxels have a value of 0. Both, MRI

data and segmentation results are saved in the NIfTI file format. To read

the NIfTI data files, the Python toolkit SimpleITK was used.

Since XTK is limited to processing a single segmentation map per volume,

the segmentation maps are aggregated into a combined segmentation

map before being sent to the frontend. Segmentation maps are aggre-

gated by creating a new segmentation map that assigns unique values

to the occurrence or overlap of lesion types. The following values were

assigned: (0) no lesion, (1) WMH, (2) CMB, (3) ePVS for non-overlapping

lesions and (4) WMH and CMB, (5) WMH and CMB, (6) CMB and ePVS, (7)

WMH and CMB and ePVS for overlapping occurrences.

Afterwards, the meshes of the lesions are being created using marching

cubes, as described in Section 4.4.3. To synchronize the colorization of

meshes and the lesions of the segmentation map a colortable that maps

the occurrence of each label in the segmentation map to a unique color

will be stored as a CSV file.

4.4.2 Accumulation of Lesion Data for the Cohort Creation

To accumulate the lesions for the analysis of a patient cohort, the segmen-

tation results of all patients are summed up, which can be performed as a

simple matrix operation, see Figure 4.9. The result is a three-dimensional

matrix per lesion type, the entries encode the number of patients who

have a lesion at the respective voxel position. Based on this data, the 2D

and 3D representations of the lesions are created.

Once again the segmentation maps for all three lesion types are combined

into a single map. In contrast to the combination of a single patient’s seg-

mentation maps, each map can consist of values larger than 1. To aggre-

gate the maps, the maximum value for each map is determined in the first

step. Lets consider maxwmh , maxcmb , and maxepv s to be the maximum
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(a) Schematic represen-
tation of the segmenta-
tion results of one patient
saved as binary matrix.
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(b) Schematic representa-
tion of the segmentation
results of another patient
saved as binary matrix.
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(c) The result of the ac-
cumulation of the lesion
loads of both patients by
calculating the sum.

Figure 4.9: Schematic depiction how the segmented lesions of a selected cohort
are aggregated to generate the visualizations of the 2D and 3D lesions. The
segmentation results are stored in 3D matrices which are summed up to calculate
the patient count at each voxel position.

value of the respective lesion type map. The combined aggregated lesion-

map maps wmh lesions to the range [1,maxwmh], followed up the cmb

lesions to the range [maxwmh +1,maxwmh +maxcmb] and epvs lesions to

[maxwmh +maxcmb +1,maxwmh +maxcmb +maxepv s].

As described in Section 4.3.2, a discrete color scale with a maximum of

six different colors is used for the depiction of the lesion load of a cohort

in the volume visualization. If the accumulation of the cohort data leads

to values larger than six, it is necessary to group these values. Therefore,

binning is performed. The application always tries to generate five bins

with each of them holding an equal amount of values. If the number of

different values is not divisible by five, a sixth bin is included containing

the remaining values.

To compare two cohorts the segmentation data for each selection is first

summed up. Afterwards, the results are subtracted to calculate the lesion

load dominance, see Figure 4.10. This way a 3D matrix is created, where

the entries encode how many more patients of one subset have a lesion at

each voxel position. This data is used to generate 3D and 2D representa-

tions of the lesions, showing which cohort is dominant at each voxel posi-

tion as well as how strong the dominance is.
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(a) Schematic representa-
tion of the accumulated le-
sion data of a cohort.
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(b) Schematic representa-
tion of the accumulated le-
sion data of another co-
hort.
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(c) The result after the sub-
traction of the two cohort
data sets, showing the le-
sion load dominance on
each position.

Figure 4.10: Schematic depiction of the creation of the lesion load dominance
data for the 2D and 3D lesion visualizations. The two aggregated lesion data sets
are subtracted to gain the lesion dominance for each position.

The segmentation maps are only used for the visualization of the lesions

as surface models and the highlighting in the volume slices. The lesion

load for the bullseye parcels for each patient is calculated when starting

the application and saved as a binary file, which will be further explained

in Section 4.4.4. When a cohort is selected, the respective binary files are

used to calculate the mean as well as the IQR for each parcel. Similar to the

segmentation results, the results for each lesion type are saved separately.

To generate the dominance plot, the mean of the subsets are subtracted to

extract the lesion load dominance for each brain region.

4.4.3 Creation of Surface Models

For the visualizations of the lesions in 3D, as described in Section 4.3.2,

three-dimensional models of the lesions have to be created. Therefore,

marching cubes was performed on the segmentation maps. Since the seg-

mentations are saved as a binary matrix, an isovalue of 1 can be used to

extract the lesions. Through a connected components analysis, the indi-

vidual models can be extracted separately. They are saved as OBJ files and

imported into the 3D scene.

If a cohort is selected, marching cubes is performed on the aggregated

data. To reduce the computational effort, all lesions with the same lesion
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load are extracted as one model instead of separating each individual le-

sion. Therefore, the 3D matrix is filtered. For each value represented in the

matrix, a temporary binary matrix is created. This way, marching cubes

can be performed with the same isovalue as for single patients. The same

approach is followed in generating the comparison of two cohorts. There-

fore, not the lesions of the two cohorts are visualized in the comparative

visualization, but surface models of the lesion load dominance.

Marching cubes was also used to generate a surface model of the MNI-

ICBM152 template brain which is used for the 3D visualization. The brain

as well as the lesion for each individual patient are saved permanently and

do not have to be recalculated when restarting the application. The sur-

face models of the aggregated lesion loads have to be calculated each time

a new selection is made. Due to the large amount of possible subsets and

combinations, saving all files permanently would require a large amount

of disc space. On the other hand, generating the models at run-time leads

to longer loading times.

4.4.4 Parcellation of the Brain

To create the bullseye representations of the selection as described in Sec-

tion 4.3.3, the brain needs to be parcellated into separate regions. The

parcellation in this work is based on the code of SANROMA (2019) and the

recon-all pipeline of FreeSurfer which are recreating the parcellation pro-

posed by SUDRE et al. (2018).

First, a lobar parcellation is done on the registered image data and the

segmented lesions to divide them into nine lobes using FreeSurfer. The

lobes are the segments of the BEP, the labels are based on their first letters.

Frontal (Front), parietal (Par), temporal (Temp), and occipital (Occ) lobes

are depicted on the left and right sides. The basal ganglia, thalami, and

infratentorial regions (BGIT) were combined in the lower segment.

Second, a concentric parcellation divides the data further into shells,

based on the distance to the ventricles. Therefore, a normalized distance

map is used, interpolating between the cortex and the ventricles. Four

equidistant shells are created for the four corresponding rings of the BEP.

Finally, the bullseye parcellation is created by intersecting the lobes and

shells, the result can be seen in Figure 4.11.
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The parcellation is performed on the MNI-ICBM152 template brain, re-

sulting in a brain atlas, that can be applied to all data that is registered to

the same space. For the generation of the bullseye data, the parcellation is

used on the segmentation maps. The volume (WMH) or the count (CMB

and ePVS) of the lesions inside of each parcel is then calculated and stored

as a binary file for each patient.
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Figure 4.11: The bullseye parcellation mapped to the MNI-ICBM152 template
brain. The first column shows the brain without any annotations. In the second
column, the shells were drawn on the brain image and the third column shows
the position of the different lobes in the brain.
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4.5 Discussion of the Developed Visualizations

In this section, the chosen visualizations for mapping the lesion load are

discussed and compared with alternative representations. Afterwards, the

application as a whole is analyzed with regard to the challenges named in

Section 3.1.

4.5.1 Comparison of Bullseye Plots with Alternative Visualizations

The biggest advantage of the bullseye plot is the large amount of informa-

tion it can present. A total of 36 brain regions are displayed and arranged

inspired by the anatomical location of the lobes in the left and right brain

hemispheres as well as their distance to the ventricles. Therefore, the vi-

sualization is more intuitive and compact than other plots like e.g., bar

charts, heatmaps, or radar charts, see Figure 4.12. To display the same

amount of information in a bar chart, 36 bars are necessary. Due to the

arrangement of the bars next to each other, the anatomical-based posi-

tioning used by the BEPs is being lost. Furthermore, there is no visual

distinction between lobes and shells. This could be improved by group-

ing the bars or using stacked bar charts, see Figures 4.12c and 4.12d. In

stacked bar charts, each bar could represent a lobe while the shells are the

partitions of the bars. However, stacked bar charts are not easy to read and

quickly to misinterpret, since it is hard to compare the different sections

of the bar when they are not aligned at a common baseline (STREIT and

GEHLENBORG, 2014).

Other radial plots could be used instead to display the data in a more com-

pact way than a bar chart. In radar charts, the different axes could be used

to depict the lobes. The shells are represented by rings, similar to the BEP.

However, in radar charts, the data is drawn as a line, which can lead to

visual clutter when displaying many different entries. Alternatively, one

plot has to be drawn for each shell, which would require more space and

reduce intuitivity, see Figure 4.12e. Furthermore, the axes of each plot

should have similar scaling to make the shells comparable. Shells that

have a relatively small lesion load compared to the others are almost not

visible in the plots. Other radial plots, e.g., polar area charts suffer from a

similar problem, see Figure 4.12f. Additionally, polar area charts are eas-

ily misinterpreted due to an inaccurate estimation of the size of one entry
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(a) A bullseye plot depicting WMH lesion
load of a single patient.
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(b) A heatmap depicting WMH lesion load
of a single patient.
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(c) A grouped bar chart depicting WMH le-
sion load of a single patient.
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(d) A stacked bar chart depicting WMH le-
sion load of a single patient.
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(e) Radar charts depicting WMH lesion load of a single patient, where each plot represents
a shell.
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(f) Polar area charts depicting WMH lesion load of a single patient, where each plot
represents a shell.

Figure 4.12: Comparison of (a) a bullseye plot, (b) a heatmap, (c) grouped and (d)
stacked bar charts, (e) radar charts and (f) polar area charts depicting the same
lesion load data of a single patient.
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since the area of each entry is not proportional to the values it represents.

Therefore, the value should only be checked on the corresponding axis,

which in turn makes the surfaces obsolete and distracting for the viewer.

The BEPs can be easily transformed into a heatmap by placing a cut be-

tween two sections and unfolding and transforming the circle into a rect-

angular shape, see Figure 4.12b. This way, the same amount of data can be

displayed in an evenly compact plot. However, the anatomical parallels to

the structure of the brain are mostly lost.

Besides using plots from the field of information visualization, 2D repre-

sentations of the brain are often used to generate an overview of the whole

brain. Therefore, different brain flattening techniques can be used. As de-

scribed in Section 3.2.1, brain flattening is only applicable to the cortex

or individual substructures and cannot depict structures in deeper brain

regions. Furthermore, flattening highly curved surfaces like the brain can

lead to massive distortions. Since the focus of this work is on the distri-

bution of different lesions in the white matter, a flattening of the cortical

surface is not sufficient to depict all the necessary information. In con-

trast, the bullseye representation considers the whole white matter and

can differentiate between deep and lobar regions.

Thus, it meets the criteria of PREIM and BOTHA (2014c) described in Sec-

tion 2.2.3 to be an anatomical planar projection. The data is accumulated

for each brain region and depicted in a planar geometry. In contrast to

reformations, all of the measured values (in this case the lesion load) are

used instead of sampling the data or generating new values due to an in-

terpolation.

The compact and anatomy-related representation allows the user to quick-

ly assess the lesion load in deep as well as lobar regions. The size of the

different parcels is not depending on the scalar values, therefore, the struc-

ture of the plot stays always the same and multiple BEPs can be easily com-

pared.

4.5.2 Comparison of Color-coded and Texture-coded Lesions

As mentioned in Section 4.3.2, the use of three diverging color scales leads

inevitably to the use of rather similar colors. Furthermore, highlighting
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(a) Original color-coded lesions. (b) Original color-coded lesions.

(c) Texture-coded lesions. (d) Texture-coded lesions.

(e) Different textures applied to a 3D WMH lesion.

Figure 4.13: Comparison of (a,b) the color-coded lesion load used in this work
and (c,d) a schematic depiction of how a texture-coded lesion load could look
like. Three different textures were applied on (e) the 3D model of a WMH lesion.
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overlaps of different lesion types with additional colors is almost impossi-

ble.

Apart from color, scalar values can also be encoded using textures. Not

only does this allow even more different values to be encoded, but textures

are also readable for people with limited color vision.

However, the slice images are depicted rather small, which makes textures

hard to distinguish, see Figure 4.13. Furthermore, CMB and ePVS lesions

are very small, so that the user would not be able to recognize the texture.

In addition to this, the 3D models have a very uneven surface. If combined

with a texture, it makes the visualization difficult to interpret and tiring

to look at. To apply textures to the 3D models, they should be smoothed

beforehand. However, this would alter their original shape.

4.5.3 Challenges in Visual Analytics for Health Care

In Section 3.1, SHNEIDERMAN et al. (2013) defined seven challenges in the

development of visual analytics applications for health care. This section

discusses whether and how this work addresses the challenges.

Offering busy clinicians timely information in the right format: The appli-

cation presented in this work can summarize MRI data of multiple pa-

tients in two ways. First, the lesions are aggregated and depicted in the

slice images and as 3D models, providing the user with a high amount

of details. However, the calculation of the aggregated volume data takes

several seconds, which slows down the workflow. On the other hand, the

more abstract visualization of the lesion load as bullseye plots does not

only have a very short processing time but also offers a compact and stan-

dardized overview. It is suited for the analysis of one patient, a cohort as

well as the comparison of multiple patients or cohorts. Overall, the goal of

the application is to support clinical research. Therefore, the setting is not

as time-critical as in clinical routine and longer loading times are tolera-

ble.

Moving towards an ecosystem of visual tools: Due to the implementation

of the application as a client-server structure using Python and JavaScript,

it can be used on many different platforms and only a common browser is
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needed to run it. However, the application is designed to be used with two

16:9 screens. Therefore, the UI cannot be displayed correctly on small de-

vices. Since the aggregation of the volume data is computationally expen-

sive, the backend has to be running on a machine with enough computing

power. The application works with web requests, therefore, the calcula-

tions could be done by a local server that returns the data to be visualized

to the client. Additional UIs for, e.g., mobile devices could be developed

to provide further means of accessing the data and make the visualization

available during clinical practice. Furthermore, the application supports

multiple languages. While currently only English and German translations

are provided, additional languages can be included easily.

Facilitating team decision making: The application works with several vi-

sualizations which differ in their suitability for people from different pro-

fessions. The bullseye plots represent well-known brain regions, that are

familiar to many persons with a medical background. However, the BEPs

might not be well suited for patients, as they are mostly not familiar with

the anatomy of the brain. The visualization of the volume data in 3D and

the 2D slices is easier to understand for non-professionals since they are

less abstract. However, the application was developed for expert users

who are familiar with brain anatomy as well as statistics and most ele-

ments are not intuitive for non-experts. Furthermore, the application can

only be used on one machine at the moment. The underlying architecture

would allow to extend the tool for remote use, as well as cooperative use

by multiple users on different machines.

Characterizing and understanding similarity: The presented application

does not support the import of unformatted text or the automated search

for related information online or offline.

Visualizing comparative relationships: Comparative visualizations are a

strong focus of the developed application. Due to the representation

of the lesion load dominance, differences in the two data sets are high-

lighted. The BEPs additionally allow the side-by-side comparison of two

sub-cohorts. Therefore, differences in the image data of two subsets can

be easily perceived.
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Presenting risk and uncertainty: The focus of the application presented

is less on treatment decisions and their associated risks, but rather on an

understanding of possible patient groups and their commonalities or dif-

ferences. In this context, descriptive statistical values such as IQR are rel-

evant to assess the significance of observed differences. In addition, the

missing data is shown to the user. There are no further depictions of un-

certainties included in the visualization of the image data.

Evaluation: The application was evaluated by three experts from the field

of neurology. However, the focus of this evaluation is on the technical as-

pects of this work. A more in-depth and comprehensive evaluation of the

application, including a larger data set, is necessary in order to guarantee

the application works correctly and maps the data accurately. The evalua-

tion is discussed in detail in the next chapter.





5
Evaluation

This chapter evaluates the developed application for brain lesion analysis.

The following sections present a critical evaluation of the results. The ap-

plication is discussed in the context of an expert study. Therefore, it was

presented to three experts who are working frequently with neurological

data. The focus of the evaluation were the technical aspects of the applica-

tion. In addition, the cohort of ten patients which was described in Section

4.1 was assessed by medical experts.

First, the setup of the evaluation is described. Afterwards, the results of

the discussion of the application and its visualizations followed by a med-

ical assessment of the data set are presented. The chapter closes with a

conclusion that summarizes the evaluation results.

5.1 Evaluation Setup

Data The clinical data described in Section 4.1 were used. It consists

of ten patients diagnosed with CSVD. The WMH, CMB, and ePVS lesions

were segmented and the data registered to a common space. Six of the pa-

tients were classified as CAA, while two have mixed CAA and the other two

mixed HA.

Participants Three experts who are working in the field of neurology were

included in the evaluation. The first expert is a senior neurologist at the de-

partment of neurology at the University Hospital Magdeburg and is doing

active research on the CSVD. She was also involved in the development of

the application. The second expert is a PhD student from the field of neu-

rology. The third expert comes from the field of control engineering and

61
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modeling and is working on quantitative analysis as well as imaging analy-

sis. All of the experts are working in the same department and are familiar

with the CSVD as well as the initial dual analysis framework on which this

application is based on.

Procedure A formative evaluation was conducted to discuss improve-

ment opportunities for the prototype (LEWIS, 2012). Therefore, the appli-

cation was presented to each expert in a separate meeting. The same click

paths were used for each run, which consists of the following actions:

• Selecting a single patient: A single patient was selected. Based on

this selection the general UI was explained as well as the visualiza-

tion of the volume data and the bullseye plots.

• Selection of a sub-cohort: The sub-cohort of patients diagnosed

with CAA were selected and displayed. Based on this, the changes

in the visualization of the volume data and the bullseye plots were

discussed.

• Comparison of two selections: The selected subset of patients with

CAA were compared to a subset of patients with mixed CAA. Again,

the changes in the visualizations were explained.

• Comparison of two selections: The two subsets of patients with

mixed CAA and mixed HA were compared.

For the evaluation, a semi-structured interview was conducted. There-

fore, the so-called Think Aloud method (VAN SOMEREN et al., 1994) was

used. In this method, the participants are asked to speak out loud their

thoughts about the functionalities during the presentation of the applica-

tion, so that these can be recorded. It ensures that participants can pro-

vide detailed feedback on all aspects of the application, as it is not limited

to individual questions chosen by the developer.

In order to obtain targeted feedback on the specific components, the ex-

perts were asked four questions concerning the application:
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Q1: Is the 3D visualization a good addition to the classical 2D slides? Is it

cluttered or crowded in your opinion?

Q2: Are the bullseye plots a good visualization for presenting the lesion

load and how understandable and intuitive are they?

Q3: Apart from the lesion volume ratio for WMH and the lesion count for

CMB and ePVS, are there other parameters that would be interesting

for the analysis of the lesion load?

Q4: Are there any interaction possibilities or functionalities missing?

The two medical experts, being the senior neurologist and the PhD stu-

dent, were furthermore asked to analyze the lesion load of the CAA, mixed

CAA, and mixed HA subsets:

Q5: Does the visualization of the lesion load of CAA and mixed CAA cases

look as expected? Do you see anything of special interest?

Q6: Does the visualization of the lesion load of mixed CAA and mixed HA

cases look as expected? Do you see anything of special interest?

The following sections are structured thematically and address the respec-

tive questions.

5.2 Discussion of the UI Elements and Visualizations

All of the experts were familiar with the original framework and stated that

including image data is a very good extension to the purely statistical anal-

ysis of clinical data. Due to the visual nature of the extension, it is more

intuitive. Therefore, one expert said, that the visualization of the imag-

ing data would also be interesting for physicians in clinical practice, while

the statistical analysis of the metadata is mainly interesting for research

purposes. However, the combination of both is interesting due to the pos-

sibility to create and visualize sub-cohorts based on clinical data, e.g., age.

Furthermore, the experts said, that they do not know a comparable inter-

active tool to visually analyze the image data of patient cohorts yet.

The two experts with a medical background said that the application is

also suited for a longitudinal study of patients with CSVD. Furthermore,
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the principle is also interesting for other diseases and other organs, e.g.,

the heart or the liver. However, for research purposes, a statistical analysis

of the lesion load would be important.

5.2.1 Volume Visualization

The three experts all liked the visualization of the volume data as 3D mod-

els and the highlighting of the lesions in the slice images. Since the visu-

alizations are directly based on the MRI data, it is easy to interpret. Con-

cerning Q1, the experts described the 3D view as interesting and the semi-

transparent brain gives a good anatomical context. It provides a good

overview of the overall lesion load without browsing the slices. The inter-

action techniques are especially helpful to investigate smaller lesions.

The experts also had concrete suggestions for how to improve the volume

visualization:

• Using more saturated colors to highlight a high lesion load in the

cohort view, as these stand out more against the dark background.

• Including separate sliders in the comparative view to show or hide

each of the subsets individually, as well as buttons to toggle the indi-

vidual lesion types in the slice images.

• Looking at the lesion load per region instead of a voxel-wise anal-

ysis might result in more interesting views. Especially for the small

lesions, it is very likely that affected voxels are close together but not

exactly congruent. Nevertheless, these cases should be counted as

overlapping as well.

Concerning the last point, the expert with a more technical background

suggested to first smooth the segmentation maps, aggregate them and fil-

ter the results with a threshold afterwards, to give each lesion voxel a foot-

print, close to the principle of the volume rendering technique splatting as

described in Section 2.2.1 (WESTOVER, 1990). Furthermore, he argued that

the loading times could be reduced by pre-calculating fixed subsets, e.g.

the groups of CAA, HA, mixed CAA and mixed HA. But he also mentioned

that this would reduce the flexibility of the tool to select arbitrary subsets.
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Overall, the threshold filtering of the 3D lesion models reminded the se-

nior neurologist of voxel-based morphometry, an approach where multi-

ple brain images are compared voxel-wise based on quantitative descrip-

tors like, e.g., size, intensity, or shape parameters (ASHBURNER and FRIS-

TON, 2000). A voxel-wise statistical analysis would be beneficial to quantify

the results of the analysis for research.

5.2.2 Abstraction as Bullseye Plots

The bullseye plots were approved and the two experts with a medical

background found this visualization especially interesting. Concerning

Q2, they said that the plot is very easy to understand, but the legend is

necessary to grasp the meaning of the BGIT region as well as the rings of

the plot. All experts thought the legend is explaining the plots well. The

plots have been described as very good for the comparison of different pa-

tients and cohorts. The two experts with a medical background said, that

the plots would also be beneficial as an overview for physicians, providing

a good impression of where to look at in the volume data. Looking at the

plot is way faster to go through the volume slice by slice. The plots are

depicting a reasonable amount of data and anatomical context and none

of the experts had any further suggestions for improving the structure of

the plots. However, one suggestion was made by the experts:

• Offer the possibility to show additional parameters in the bullseye

plot, e.g. p-values of a statistical analysis.

The visualization of the lesion distribution as a bullseye plot was consid-

ered a good alternative to the presentation of numerical values in a table.

Due to the color-coding, it is easier to capture the overall lesion load dis-

tribution and compare different cases.

5.2.3 Proposed Extensions and Modifications

During the evaluation with the experts, they mentioned possible exten-

sions for the developed application. In the following, these suggestions

will be discussed in more detail. First, the parameters to be added to the

analysis process will be described and then other desired functionalities

for the analysis process will be mentioned.
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Additional Parameters Concerning Q3 all experts said, that the parame-

ters used were a good choice for displaying the lesion load. For the further

development of the application, the following additional parameters were

suggested:

• Showing a relative lesion load based on the patient count.

• Fining certain patterns of WMH lesion distribution, e.g., based on

their shape, texture, and size, which might be classified to define sub-

groups of cognitive diseases (GWO et al., 2019). An interesting aspect

of such an analysis for diagnostics is the occurrence of large areal

and small point-shaped WMHs. However, this field is currently only

addressed in research and not yet relevant in clinical routine.

• Visualizing the deformation of specific regions due to the non-

linear registration might be an interesting aspect. Since the shape

of the lesions could be meaningful in terms of classifying disease

patterns, a potential deformation due to registration has to be con-

sidered. Another interesting aspect that could be analyzed is the

symmetry of the lesion load in both hemispheres.

Additional Functionalities Concerning Q4, the experts suggested addi-

tional functionalities that would improve the workflow:

• An option to export images would be good, as the quality of screen-

shots is always depending on the resolution of the current screen.

• Including more atlases would be beneficial to describe affected ar-

eas. Many atlases are more finely resolved than the bullseye parcel-

lation. Moreover, the description by public available atlases makes

the results comparable with other studies. Since the data is already

registered to a common space, respective atlases could be used.

• Including a visualization for similarities for the bullseye plots and

the volume visualizations. For the comparison of the mixed cases, it

is very interesting so see the differences, like it is done in the lesion

load dominance visualizations. On the other hand, when comparing

CAA and mixed CAA or HA and mixed HA, the similarities are more

important.
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5.3 Analyzed Patient Subsets

The two medical experts were asked to give an assessment of the lesion

load distribution of the patients with CAA, mixed CAA and mixed HA. Of

particular interest was whether the distribution of lesions was as expected

and if any abnormalities could be detected.

5.3.1 Comparison of CAA and mixed CAA

The CAA subset includes six patients of which two had no WMH data and

one had no ePVS data. The mixed CAA subset consists of two patients,

both of them had all three lesion types. The experts stated, that the overall

lesion load comparing CAA and mixed CAA was as expected. Particularly

noticeable was the fact that in the presented CAA cases, CMBs appear ex-

clusively in lobar regions, see Figures 5.1 and 5.3a. This pattern is strongly

associated with CAA (CHARIDIMOU et al., 2017; SCHEUMANN et al., 2020).

In the mixed CAA cases, some lesions appear in deeper shells in the frontal

as well as the BGIT region, but the main lesion load for CMB follows the

typical CAA pattern.

5.3.2 Comparison of mixed HA and mixed CAA

The subsets of mixed HA and mixed CAA each consisted of two patients,

while only one of the patients with mixed HA had WMH lesions. The com-

parison of mixed HA and mixed CAA was also as expected by the experts.

Mixed CAA lesions tend to be lobar, whereas mixed HA lesions are more

prevalent in deep regions, see Figure 5.2 and 5.3b. Thus, the mixed CAA

cases are more similar to CAA and mixed HA cases to HA in their lesion

distribution, which matches the findings of SCHEUMANN et al. (2020) who

analyzed the same data set. Typical patterns for HA could be found in the

mixed HA cases, e.g., a higher lesion load of CMB at the frontal regions and

of ePVS at the BGIT region. The patients with mixed CAA had a stronger

lesion load in the occipital regions.

It was noticed that the lesion load in the frontal regions was not symmet-

rically distributed. The experts stated, that in principle a high symmetry

of lesion load in the brain can be expected because it is a systemic disease

affecting the brain in its entirety at certain predilection sites. Asymme-
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try of lesion load could be expected in rare inflammatory forms of CSVD.

Studying the asymmetry could help clinicians to diagnose these variants.

Furthermore, a hemisphere comparison might be useful to investigate

whether a pattern is a resilience factor against CSVD or to investigate the

relationship between CSVD load and vascular patterns of the circle of

Willis.

5.4 Conclusion

All experts stated, that the tool provided very interesting insights. It serves

as a good starting point on which to build further research. The abstrac-

tion of the lesion load as bullseye plots provides a good and intuitive

overview and the concept of it was quickly grasped by the experts. A more

detailed analysis can be performed due to the visualization of the volume

data as 3D models as well as slice images. A statistical analysis of the

lesion load should be included in the future for further research. Addi-

tionally, highlighting not only differences but also similarities would be

very interesting for the investigation of the mixed cases of CAA and HA.

Moreover, the visualizations might also be interesting for clinicians as well

as for longitudinal studies and for different diseases and organs. Thus,

the principle of the presented application is not limited to the presented

use case. One of the experts also noted that the application should be

evaluated using more patient data to also ensure sufficient accuracy of the

application.

Even though only a small number of patients was included in the analysis

of the lesion load, the comparison of the CAA and mixed CAA as well as

mixed HA and mixed CAA cases showed results that are similar to other

studies and hints further insights that need to be investigated using a

larger set of patients. It was noticeable that the lesion load was not sym-

metrical in some cases. This could be interesting for research as well as

diagnostics and should be further investigated.
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Figure 5.1: A comparison of the lesion loads of the patients with CAA (subset 1,
on the left) and mixed CAA (subset 2, on the right).
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Figure 5.2: A comparison of the lesion loads of the patients with mixed HA (subset
1, on the left) and mixed CAA (subset 2, on the right).
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(a) Lesion load dominance plots of the pa-
tients with CAA (subset 1) and mixed CAA
(subset 2).

(b) Lesion load dominance plots of the pa-
tients with mixed HA (subset 1) and mixed
CAA (subset 2).

Figure 5.3: Comparison of the lesion load dominance of the patients with (a) CAA
and mixed CAA as well as (b) mixed HA and mixed CAA.





6
Conclusion

In the presented work, an application for the analysis of CSVD was devel-

oped and integrated into an existing application for the statistical analysis

of clinical cohort data. For this purpose, different views for the exploration

of individual lesions and the overall lesion distribution as well as an inter-

active user interface were provided. The results were evaluated by experts

from the field of neurology. Furthermore, by analyzing a small data set of

patients diagnosed with CSVD, observations about their lesion load distri-

bution could be made.

6.1 Summary

The application allows the analysis of the lesions of one patient, a cohort

of patients as well as the comparison of two cohorts or patients. There-

fore, the lesions are highlighted in the MRI slices and 3D surface models

of the lesions are extracted. This allows the user to investigate the data

in detail and focus on individual lesions. Due to the high level of detail,

the visualization of the volume data is very complex, and especially accu-

mulated visualizations of multiple patients are easily cluttered. Different

interaction techniques allow filtering the data and focus on individual as-

pects. Since the visualizations are modeled based on the MRI data, the

experts find them easy and intuitive to understand. The color scales could

be improved to better highlight a high lesion load. Furthermore, the lesion

load of voxels that are close together should be accumulated to a joined re-

gion to give a more appropriate representation of the lesion load in certain

brain areas.

73
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In order to further support the analysis of the lesion distribution, the le-

sion load in the brain is abstracted and visualized as bullseye plots. The

plots provide a standardized representation for the lesion load in differ-

ent lobar and deep brain regions which is well suited for the comparison

of different subsets. In a comparative visualization, the lesion load dom-

inance highlights the differences between two subsets. The plots were

well received by the experts. For further analysis of lesion distributions,

an equivalent plot for highlighting similarities should also be integrated.

Overall, the visualization proved to be intuitive and well-structured and

therefore suited for providing an overview of the lesion load as well as le-

sion load derived parameters. Especially the symmetry of lesion load is

very well depicted in the plots.

A main point the experts stated during the evaluation was the inclusion of

a statistical analysis of the lesion load. Furthermore, they saw the poten-

tial to use the application to analyze lesion load in a longitudinal study or

adapt it for other diseases and organs. The general principle of an interac-

tive visual analysis of the medical image data was rated as a very promising

approach fur further research as well as for diagnostics in clinical practice.

6.2 Future Work

The presented prototype includes a set of functionalities and visualiza-

tions useful for the exploration of brain lesions. Potential extensions are

discussed in the following.

Integration of additional functionalities and modifications To improve the

interaction with the presented application in the future, additional filter-

ing techniques should be provided. This includes filter options for each

lesion type in the image slices as well as separate filters for both subsets of

the comparative view. Furthermore, the contrast between the colors used

for encoding the lesion load is hard to distinguish. An improvement might

include a user study to find colors with an optimal contrast. An additional

function to export images and views created by the application would be

useful to save interesting findings. The option to include additional brain

atlases would also allow a more standardized description of those findings.

Since all of the data is already registered to the MNI-ICMB152 template, it
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would be logical to include the corresponding Cerebrum Atlas (CerebrA)

as well (MANERA et al., 2020). The atlas divides the brain into 51 regions

per hemisphere and is therefore not only more detailed than the bullseye

parcellation but the standardized parcellation allows to compare the find-

ings to the results of other studies.

Limitations of the current implemetation Not all of the functionalities sug-

gested by the experts during the evaluation can be easily implemented in

the current software. The application was developed using the XTK toolkit

(HAEHN et al., 2014). While the toolkit provides a lot of useful functional-

ities like the rendering of surface models and image slices as well as sup-

port for a wide range of data types, using a library also limits the possible

functions that can be included in the software. In order to overcome these

limitations, a new internal structure for the visualization of volume data

could be developed in the future, which is adapted to the individual re-

quirements of the application. On the other hand, the code of the XTK

library is publicly available and may be extended to better support the ap-

plication.

Improving the lesion load analysis During the analysis of the data sets, the

neurologists noticed, that the lesion load of the patients is not always sym-

metrical. This is currently only said to be the case for rare inflammatory

cases of CSVD (POHL et al., 2016). A further investigation of the symmetry

could be supported by automatically analyzing if the same points in the

left and right hemisphere are affected by the same lesion or lesion load.

Therefore, affected voxels that are close to each other should be grouped,

either by using predefined brain regions like provided by the CerebrA or

by giving each voxel a footprint. This could be done by giving each voxel a

footprint, similar to the principle of splatting (NEOPHYTOU and MUELLER,

2005). A naive approach would be to smooth the segmentation map using

a gaussian filter. Afterwards, the data of multiple patients can be aggre-

gated and low values can be filtered using a threshold. A possible problem

of this approach could be, that the smoothing is performed over multiple

cerebral convolutions. To prevent this, a mask of the brain, like it is al-

ready provided for the MNI-ICBM152 space, can be used to restrain the

smoothing directions. As an alternative, a kernel density estimation could
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be performed on the lesion maps to calculate the probability of having a

lesion at a specific position for a given subset KIM and SCOTT (2012). The

grouping of close voxels would also improve the results of the accumu-

lated lesion load that is currently displayed in the application. Especially

for small lesions, it is unlikely that the respective voxels will be placed at

the exact same position since brains can be shaped very differently. In

addition, there are distortions due to the asymmetric non-linear registra-

tion. Therefore, lesion voxels are often not congruent, but should still be

counted as overlapping.

Smoothing of the surface models Using marching cubes on binary data,

such as the segmentation maps, leads to artificial surfaces with a lot of

staircase artifacts. However, extracting surface models from the original

grayscale images is not possible, since a simple threshold value is not suffi-

cient to extract the lesions. MÖNCH (2014) discussed different approaches

to generate smooth anatomical surfaces. Common smoothing techniques

are not feasible for medical application, since they alter the geometry

leading to inaccuracies. An alternative is context-aware smoothing, which

smooths an object depending on the neighboring structures. However, the

only existing structures are the lesions themselves and the cortical surface.

In most cases, the objects are so close together that hardly any smoothing

would be performed. Furthermore, a set of fixed smoothing parameters is

not suitable for a wide range of objects of different sizes and shapes such

as the lesion models. Visually-guided smoothing, an approach where the

user can decide on the smoothing parameters, might be a better solution.

Due to the huge differences between the lesions, it would be necessary to

apply separate smoothing parameters to, e.g., small and large lesions.

Depiction of distortions The distortions and deformation of the brain re-

gions due to the registration is an interesting parameter, that could be vi-

sualized additionally on-demand. This could be represented by a contin-

uous color scale that can be shown on top of the 2D slice images, similar

to the visualization of HAN (2011). The deformation of the brain regions

is also accompanied by the deformation of the respective lesions. There-

fore, the visualization of the deformation can help to correctly assess the

lesions, which is particularly important for WMH. The shape of WMH le-
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sions is currently investigated in other studies (BLAIR et al., 2020; GWO

et al., 2019). Especially the distribution of large areas of WMH and small

point-shaped lesions can lead to new insights about different sub-groups

of cognitive disease.

Inclusion of statistical analysis The application should be expanded to in-

clude a statistical analysis of the lesion load. In neurology, voxel-based

morphometry is performed to compare different brains based on ex-

tracted parameters like size, shape, or intensity (ASHBURNER and FRISTON,

2000). Therefore, multiple brain images are compared voxel-wise to mea-

sure local differences. This principle could be adapted for the lesion maps

and visualized in the volume visualization of the presented application.

Instead of depicting the patient count, the result would be a statistical

parameter map that highlights significant higher or lower lesion loads of

one subset. Another approach is to color-code statistical parameters in

the volume visualization. JÖNSSON et al. (2020) visualized the spearman

correlation of a brain region and clinical parameters in their application

by coloring the respective regions in the MRI image slices and a 3D repre-

sentation of the brain. Alternatively, the statistical significance of a certain

sub-cohort having a lesion at the same brain region could be visualized.

Again, this could be done voxel-wise, by using the brain regions provided

by an atlas or using the broader parcellation used for the bullseye plots.

Using the latter method, the results could also be directly visualized in a

bullseye plot which might be lead to less clutter than color-coding the vol-

ume visualization. Instead of using many different plots, a refined bullseye

plot could be used to present two parameters (OELTZE et al., 2006). There-

fore, statistical parameters could be included in the plot for each parcel.

The presentation of two parameters in the same plot facilitates the com-

parison. Therefore, this technique might also be well suited to compare

two subsets. If used for the analysis of a longitudinal study, data of the

same patient recorded at different times could be visualized as well.

Clustering of patients with similar lesion load patterns Finding such groups

of patients with a similar lesion distribution is of general interest to verify

existing classifications, categorize a new case into the known classes or

find new intrinsic classes of the data. Therefore, the lesion data could
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be projected in a two-dimensional space by a dimensionality reduction

technique. This could be realized by deriving features from the data that

describe the distribution of lesions in a brain. With these features the di-

mensionality reduction results in a representation with possible clusters

of distribution patterns. JUNG et al. (2021) derived features from WMH

data that describe the individual lesions, such as volume, shape features,

and intensity profiles. They used t-SNE to reduce the dimensionality of

the extracted features and visualize the data in a scatter plot. Following

this approach, an interactive scatter plot, like it has been used by RAIDOU

et al. (2014) could be included in the application. The scatter plot could

then be used as an alternative to the parallel coordinates plot to select and

display subsets. The current application highlights the differences in the

lesion load of two subsets, which is interesting for finding separate groups,

e.g. mixed CAA and mixed HA. On the other hand, to find subsets that

should be assigned to a similar group, it would be important to highlight

their similarities. Furthermore, only three of the six lesion types associ-

ated with CSVD are included in the application. To include more lesion

types, no updates of the API have to be made. Only minor changes in the

frontend and its interaction workflow are necessary to include additional

bullseye plots and legends.

Enhanced evaluation Regardless of the concrete further development of

the application, a more detailed study with more patient data and needs

to be conducted. Furthermore, experts need to be consulted to validate

the results and test for a sufficient accuracy. Therefore, more cases of the

CSVD cohort can be processed and the visual results can be compared to

the study of SCHEUMANN et al. (2020) who used the same data to perform

an analysis of the lesion load distribution. This aspect is also highlighted

in the challenges of SHNEIDERMAN et al. (2013) described in Section 3.1.

The discussion in Section 4.5.3 shows that the application presented in

this work addresses many of the challenges at least in some of their aspects.

The only challenge that is not addressed at all in this work is the Charac-

terizing and understanding similarity. The challenges Presenting risk and

uncertainty, as well as Evaluation, should be given more attention in the

further development of the application. Overall, the application can be

easily extended to meet even more points of the challenges in the future.
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