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Abstract

This thesis presents a visualization tool for rendering three dimensional vascular
surface meshes. A shading pipeline is presented that contains adjustable parameters
in each step to influence the final shading result. Emphasis is placed on user
interactivity, with a variety of shading algorithms and techniques available that
directly affect the resulting renderings starting with the parameters of the lights
placed in the scene such as color and intensity. Furthermore, the ambient, diffuse
and specular reflectance properties of the vessel materials can be adjusted. The
shaders used for the ambient, diffuse and specular terms are separated, allowing the
user to individually combine different techniques for different parts of the lighting
equation. For the shaders, users can manipulate further parameters, such as the
roughness for Cook-Torrance or Oren-Nayar shading. The lit-sphere approach allows
users to choose from different materials which are directly applied through lighting,
providing a wide range of possible shading techniques without any implementation.
Shading is complemented by ambient occlusion to enhance the depth perception.
Transparency in combination with the Fresnel effect keeps vessel borders visible,
while allowing users to inspect the vessel interior. Finally, a vignette effect and other
custom backgrounds can be loaded to enhance the overall presentation of the custom
shading created.





Kurzfassung

Diese Arbeit stellt ein Visualisierungstool vor, das zum Rendern von dreidimension-
alen Gefäß Meshes dient. Es wird eine Shading Pipeline eingeführt, die in jedem
Schritt einstellbare Parameter enthält, welche das Endergebnis beeinflussen. Der
Schwerpunkt der Arbeit liegt auf der Interaktivität durch die Nutzer, denen eine
Vielzahl von Shading-Algorithmen und Techniken zur Verfügung stehen, um auf die
einzelnen Schritte Einfluss zu nehmen beginnend mit den Parameter der in der Szene
platzierten Lichter wie Farbe und Intensität. Des Weiteren können die Umgebungs-,
Diffus- und Spiegelreflexionseigenschaften der Gefäßmaterialien eingestellt werden.
Die einzelnen Komponenten der Lichtberechnung wurden auf einzelne Shader verteilt,
so dass die Terme für die Berechnung des Umgebungs-, Diffusen- und Spekularenteils
aus unterschiedlichen Shadern miteinander kombiniert werden können. Die Shader
können wiederum durch Parameter beeinflusst werden. So kann Cook-Torrance
Shading, wie auch Oren-Nayar Shading, durch die Rauheit des Oberflächenmaterials
angepasst werden. Lit-sphere shading ermöglicht es dem Nutzer, aus verschiedenen
Materialien zu wählen, die über die Position der Lichter platziert werden. Dies
ermöglicht es, viele verschiedene Schattierungstechniken zu verwenden, ohne den
entsprechenden Shader implementieren zu müssen. Ergänzend zu den Beleuch-
tungsmodellen kommen Techniken wie Ambient Occlusion und Transparenz zum
Einsatz. Ambient Occlusion unterstützt die Tiefenwahrnehmung und hilft, Erhöhun-
gen und Vertiefungen besser zu erkennen. Transparenz wird mit dem Fresnel-Effekt
kombiniert. Dieser sorgt dafür, dass Gefäßränder sichtbar bleiben, während Nutzer
das Gefäßinnere inspizieren können. Abschließend können ein Vignetteneffekt und
benutzerdefinierte Hintergründe genutzt werden, um die Darstellung der erstellten
Shadings zu verbessern.
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1. Introduction

The visualization of three dimensional polygonal data plays an important role in
clinical praxis and the analysis of clinical data. A vast amount of ways exist to
render and visualize three dimensional meshes with different shading algorithms and
techniques. This thesis aims at providing a visualization tool containing a balanced
selection of various shading algorithms and techniques, ranging from stylistic to
realistic rendering approaches to interact and analyze the polygonal data chosen by
the users. The tool is supposed to enable users to render and present three dimensional
meshes in multiple different ways, exploring the mesh and gather information. It
mostly aims at the visualization of three dimensional aortic dissection meshes,
which are the main focus of this thesis. To visualize this data, different rendering
techniques are provided. Especially, depth and transparency are important cues for
the understanding of anatomical and topological relationships accustomed to this
data and therefore screen space ambient occlusion (SSAO) and order-independent
transparency (OIT) are implemented in a customizable way.

Goal of this Thesis

The goal of this thesis is to present a software environment which allows users
to display and visualize three dimensional vascular surface meshes. Different means
of visualization were implemented to offer multiple ways to interact and work with
their data. Offering users the possibility to customize the visualization approach
combining diffuse and specular terms of various shading approaches and enabling
them to use occlusion shadows and transparency to support the visualization are the
main goal of this thesis.

The users are provided with a variety of customizable shading an reflectance
models that can be combined with occlusion shadows and transparency. The im-
plemented physically-based models are: Blinn-Phong Shading [36], the Oren-Nayar
reflectance model [33] and the Cook-Torrance reflectance model [8]. Furthermore,
stylistic rendering approaches in the form of toon shading [48] and a more advanced
stylistic shading technique in the form of lit-sphere shading [41] were implemented.
Lit-sphere shading applies light in form of textures, sampled from different spheres,
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to meshes. Extending lit-sphere shading is the lit-sphere extension [45] that uses
the light position in contrast to the view direction to obtain dynamic diffuse and
specular shading. To supply users with different predefined textures, we added a
material gallery.

More advanced techniques, adding occlusion shadows and transparency, were
implemented in the form of SSAO [13] and Weighted Blended OIT [30]. Ambient oc-
clusion enhances the depth perception, while transparency ensures that no important
information is lost due to occlusion. In combination with transparency, we use the
Fresnel effect to highlight vessel boundaries [5]. The parameters of these techniques
can be adjusted in real time to individualize the resulting visualization.

Users can interact (rotation, translation, zoom) with any visualization. To
improve the orientation in space and the positioning of additional lights users are
provided with a view-cube [20] that represents the rendered mesh and additional
light sources. To provide the users with means to highlight generated visualizations,
a vignette effect and the possibility to load custom background images are offered.
The implemented shaders and additional techniques enable users to visualize and
present important aspects of their data sets.

Structure of this Thesis

This thesis is structured in the following way: First, state-of-the-art is described in
chapter 2. This includes an overview of shading algorithms in general, containing both
stylistic and realistic rendering. Furthermore, recent papers in medical visualizations
employing indirect volume visualization techniques are presented.

Next, the implementation of the illumination and reflectance models is explained
in chapter 3, starting with an introduction of the OpenGL rendering pipeline and
continuing on to the implemented shading techniques. Here, Blinn-Phong Shading
(see section 3.2) is used to introduce the different vectors and lighting terms used
to calculate the incident light. Next, toon shading (see section 3.3) is presented
providing a stylistic rendering approach. Afterwards, two lighting models based on
micro facets are introduced in the form of Oren-Nayar shading (see section 3.4) for
the diffuse term and Cook-Torrance shading (see section 3.5) for the specular term.
The next discussed technique is lit-sphere shading (see section 3.6), which provides
another approach for stylistic rendering. A screen space technique to calculate
ambient occlusion is presented in section 3.7 and the implementation of OIT is
explained in section 3.8. The methodology section concludes with a discussion of
how the different implemented techniques are connected. For every technique, we
discuss the theory of the original papers first. Then we present our implementation
and if necessary, additions and omissions in the implementation compared to the
originals are discussed.

In chapter 4, Results and Discussion, renderings combining multiple techniques are
shown. The limitations of the visualization tool are explained and the different steps
to create a visualization are shown. This thesis is closed in chapter 5, Conclusion and
Future Work, with a short summary and promising future avenues of the visualization
tool.



2. State-of-the-art

This chapter provides an overview of approaches developed in recent years for
techniques used in this thesis. First, an introduction to general shading algorithms
and techniques used in the visualization tool is given to provide a basic understanding
of possible shading techniques. In the second part, medical visualization tools
and their implementation utilizing different kinds of the introduced techniques are
presented.

The shading techniques used in this thesis can be roughly split into three cate-
gories:

1. Physically-based bidirectional reflectance distribution functions (BRDF) that are
based on an approximation of real light behaviour on surfaces and surroundings.

2. Stylistic shading approaches used to abstract or simplify parts of the geometry
to emphasize different attributes of the rendered mesh.

3. Techniques that focus on occlusion and transparency.

Every BRDF needs lights to model its diffuse and specular term. Berbaum et
al. [6] find that the accurate perception of a surface depends on the positioning
of the light, with lights opposite of the camera increasing perception by a large
margin. Kahrs et al. [19] go into the advantages of the different types of light:
Ambient light defines the base brightness of shadow areas. A key light is used to
define the brightness, shape and texture of the rendered object. Fill lights add
additional diffuse lighting and can be used to control the contrast of the scene. Back
lights are used to separate objects from the background and are usually placed to
the direct opposite of the camera behind the object. Lee et al. [25] introduce light
collages with geometry-dependent lights, which allow lights to be placed automatically
inside a scene. This is done by segmenting the rendered object, based on curvature,
highlighting convex regions and darkening concave regions. Additional steps are
silhouette enhancement, added through a fall-off formula that depends on the view
and normal vectors. Furthermore, the addition of proximity shadows added by
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computing depth discontinuity curves, which are generated by comparing a pixels
depth to the depth of its neighbors. For every curve a shadow light direction is
created.

Recent approaches in physically-based rendering have been made using neural
networks. Liu et al. [26] use a physically-based rendering network to obtain material
properties, surface normals and illumination values from an input image. The network
then applies a material to the input image using the surface normals and illumination
values from the input image.

Toon or cel shading can be used to guide a viewers focus. Context is shaded in
lower detail using toon or cel shading, while the important aspects of the data are
shaded in a more complex way [37]. Traditional toon shading uses a 1D texture which
maps tone to a surface orientation relative to a light source. This idea is extended
on by Barla et al. [1], which replaces the 1D texture with a 2D texture, which adds
a haze effect to distant objects [24]. The 2D texture is made up of a horizontal axis,
which corresponds to tone, and a vertical axis, which corresponds to tone detail.
An attribute has to be chosen by the developer that controls the tone detail. This
can be, for example, depth or orientation. The approach of Barla and colleagues [1]
was extended by Hao et al. [18]. They introduce a view-dependent attribute that is
based on the orientation and curvature of the surface with respect to the observer.
They use a 2D texture, where the x-component corresponds to curvature and the
y-component determines shading. Van Pelt et al. [48] use cel shading and occluding
contours in their 4D MRI blood flow visualization. Cel shading based on Gooch and
Gooch [16] was used to simplify the surrounding vessel structure, while retaining a
cue for visual depth. Furthermore, superimposed occluding contours based on the
approach of DeCarlo and Rusinkiewicz [10] were employed to highlight the outline of
the anatomical structure.

Ambient occlusion is a shading technique to calculate indirect lighting and
therefore darkening points which are less exposed to light. This enhances depth
perception [22] and helps discovering features such as holes and creases. It was first
developed by the research and development department of Crytek in their CryEngine
2 and was first used in the game Crysis. Groß and Gumhold [17] employed ambient
occlusion and transparency in their rendering approach of line data. Ambient
occlusion is also used in direct volume rendering approaches: Ropinski et al. [38]
realized dynamic ambient occlusion and Dı̀az et al. [11] achieved real-time ambient
occlusion. The SSAO calculation used in this thesis is based on an improved version
of Cryteks approach, but since then multiple new algorithms have been created:
Mantiuk [28] presented Gaze-Dependent SSAO shortening rendering time using the
tracked eye position on the screen. The scene is then only rendered in maximum
graphics quality around the regions the viewer is looking at and gradually reducing
outwards. Park and Baek [34] developed Outline-dependent SSAO that calculates
occlusion in places where it is likely to occur. This is done by detecting dense places
where meshes are close to each other. The outline of the mesh is rendered and if
multiple outlines are drawn on a single pixel the intersection point is stored in a
stencil mask. The generated mask can then be used to compute SSAO by processing
only the regions in the mask. Zhang et al. [51] generated efficient SSAO using a deep
network. They built a data set containing deferred shading buffer data and ground-
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truth ambient occlusion shaded images. Creating a deep neural network based on the
network structure of U-Net [50], they design a Compute Shader Library containing
six parameterized compute shaders to compute the shaded ambient occlusion images.
To increase the accuracy of SSAO Vermeer et al. [49] use a stochastic depth map for
the calculation of their Stochastic-Depth Ambient Occlusion. Their approach takes
geometry into account that is not visible during rendering and is therefore not used
in the computation of the ambient occlusion factor. The algorithm captures multiple
scene layers per pixel and selects random samples from these different layers, rather
than using only samples from the first layer as in horizon-based ambient occlusion
[4].

To blend several transparent objects in OpenGL they have to be sorted according
to depth. To do this manually is a cumbersome task and impossible in scenes with
hundreds of moving objects. A solution to this problem is OIT. The implementation
of OIT in this thesis is based on the approach of McGuire and Bavoil [30], who
alter the composition operator to make it order independent. This is done to avoid
the cost of sorting primitives according to depth. Everitt [14] uses depth peeling to
extract each unique depth in a scene into layers, which are then depth-sorted and
composited. Bavoil and Myers [3] extend depth peeling with dual depth peeling based
on a min-max depth buffer, which peels one layer from the front and one layer from
the back at the same time using different blend equations in the alpha blending for
the front and back peeling. In addition, they introduce a sort-independent method,
replacing the RGBA color in the alpha blending equation with the per-pixel weighted
average over the pixel. Barta and Kovács [2] propose the usage of per-pixel linked
lists. When transparent objects are processed by the fragment shader, it fills a
structure with the properties of the processed fragment. The properties are: surface
radiance, volumetric attenuation, albedo, distance from the camera and orientation of
the fragment. The fragments are then sorted in ascending order of the distance from
the camera and blended accordingly. Maule et al. [29] present an OIT approach using
a dynamic fragment buffer. The buffer enables them to allocate memory in the exact
amount needed for multiple per-pixel layers in each frame. The implementation runs
at a frame rate high enough for the approach to be suitable for real time interaction.
Münstermann et al. [32] calculate transparency based on moments. They use the
logarithm of the transmittance enabling them to accumulate the depth-dependent
function per pixel additively instead of multiplicatively. Using an additive rendering
pass for all transparent surfaces yields moments. These are used to approximate the
original function through moment-based reconstruction algorithms which are used in
a second pass for the composition.

Gasteiger et al. [15] use different visualization techniques to visualize cerebral
aneurysms with embedded blood flow information. Surface meshes are extracted from
segmented clinical image data. Based on the segmentation, the surface morphology
of the aneurysm is reconstructed. This mesh is then used to obtain a computational
grid, on which they perform a computational fluid dynamics simulation to acquire
blood flow data. An adapted surface visualization is needed to decrease the occlusion
of the blood flow information caused by the enclosing surface. Therefore, they
defined the following requirements for their solution: Visibility of internal flow
information, depicting aneurysm features, surface shape, spatial relationships and
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depth cues. They combine ghosted views, line rendering, flow visualization, shadows
and atmospheric attenuation. Ghosted views are based on the Fresnel-reflection
model [39], but in their implementation reflection is replaced by opacity to achieve
more opacity at regions facing away from the viewer and more transparency at regions
facing the viewer. Line rendering in the form of contours and morphological features
is used to convey shape. For their application they implemented the approach of
McGuire and Hughes [31]. Streamlines, glyphs and stream surfaces were used to
visualize blood flow. To increase depth perception, they applied the method of Luft
et al. [27] with a modified computation of the depth buffer values to achieve a
constant depth cue appearance. Atmospheric attenuation is used as a second depth
cue. It is introduced by applying fog to the previous visual representations, which
makes the objects fade into the distance. This supports the viewer in tracing the
flow and focusing on close visual information.

Dı́az-Graćıa and Vázquez [12] visualize human brain fibers with ambient occlusion
and halos. The soft shadows created by ambient occlusion allow spatial features such
as the location and relationship between grouped adjacent fibres to be more clearly
visualised. The halos surrounding the fibers help to improve the understanding of
the shape of the model. The ambient occlusion factor is calculated by comparing
the depth difference between the target pixel and all its neighbors. The halo factor
is calculated in the same way, just using a different depth difference function. In
addition, a distance factor is calculated that darkens fragments that lie deeper in the
scene. The final color is composed using the three factors and Phong shading [36].

Lawonn et al. [23] improve the ghosted view approach by Gasteiger et al. [15].
They modify the vessel opacity of the front faces using the suggestive contour measure.
Additionally, depth blurring is used instead of atmospheric attenuation for a more
natural depth perception. The resulting visualization overcomes the limitations
imposed by the Fresnel effect, which renders regions facing away from the viewer
opaque. Furthermore, they add visual effects in form of cast shadows to improve the
understanding of the spatial relationship between overlapping vessel sections.

Behrendt et al. [5] use Phong shading [36], OIT and the Fresnel effect [39] to
visualize vessels in their blood flow visualization approach. Phong shading is used to
convey the vessel shape. Behrendt and colleagues render the surface semi-transparent
to avoid occluding the flow visualization, where the amount of transparency can
be controlled by the user. The transparency is implemented in the form of OIT
following the approach of Thibieroz [44], which ensures correct image composition
regardless of overlaying transparent fragments. To resolve the arising problem of less
visible lighting effects on transparent surfaces they use their “glass lighting mode”,
which adds a Fresnel effect to the lighting. This approach is similar to the before
mentioned ghosted views of Gasteiger et al. [15]. Therefore, regions with strong
lighting appear more opaque, which highlights the vessel shape and achieves an effect
which is similar to looking through a glass bottle.



3. Methodology

The Visician framework is used as a base to implement the various shading algorithms.
The meshes used are generated from visualization toolkit polygonal data (.vtp). We
used aortic dissection meshes consisting of two flow channels and a flap. First the
.vtp data is loaded into the framework and a three dimensional mesh is generated.
The mesh can be freely rotated and translated in the work space. Depending on
the shader used, up to two light sources are active at the same time, which can be
rotated around the mesh by the user. Based on these prerequisites, all of the shaders
and techniques were implemented in OpenGL and GLSL.

3.1 OpenGL Rendering Pipeline
Three dimensional meshes consist of polygons made up of points in space called

vertices. Each of these vertices has a three dimensional coordinate and a normal
calculated by averaging the surface normals of the faces containing that vertex. These
attributes are stored as an ordered list in a vertex array object (VAO). This is the
first step of the rendering pipeline called vertex specification. The VAO is further
processed in the pipeline, which consists of the steps shown in Fig. 3.1.

The vertex shader processes each vertex and calculates the final position of the
vertex in the scene. Tessellation is an optional step in the pipeline where patches of
vertex data are divided into smaller primitives, which results in a smoother mesh.
The geometry shader computes zero or more output primitives from each incoming
primitive. In addition, the geometry shader can tessellate primitives or convert
them to other types. Vertex post-processing includes primitive assembly, clipping
and face culling. In primitive assembly, primitives are created based on the vertex
data and the primitive type defined by the user. This can be either a point, line or
triangle. Primitives that lie outside the viewing volume are discarded, which is called
clipping. Culling describes the process of not rendering triangles that are occluded
by other geometry. Rasterization converts a primitive into a sequence of fragments.
Rasterization results in at least one fragment being generated for every pixel covered
by the primitive on the screen. The fragment shader processes the fragments created



8 3. Methodology

Figure 3.1: Sequence of steps in the OpenGL rendering pipeline. The pipeline
consists of the steps OpenGL performs to render objects. The steps are vertex
specification, consisting of the vertex shader, tessellation and the geometry shader
followed by vertex post-processing, primitive assembly and rasterisation. After that,
fragment shaders and per-sample operations are used. The steps marked in blue are
programmable. The black outlines mark optional steps.

in the rasterization step and calculates the final color of each fragment. The final
step in the pipeline are per-sample operations, which include the culling test, scissor
test, stencil test and depth test. This thesis mainly focuses on fragment shaders to
implement the different shading techniques.

Shaders are programmable stages of the OpenGL rendering pipeline that run on
a graphics processor. A vertex shader is used to process individual vertices provided
by a VAO. An input vertex consists of different attributes that define, among other
things, the location and orientation of the vertex. For each input vertex, an output
vertex is generated.

Unless otherwise stated, it can be assumed that all of the vertex shaders im-
plemented in this work receive the same inputs. These are given in the form of a
VAO containing a three dimensional vector for each vertex coordinate and a three
dimensional vector for each vertex normal. In addition, a structure is set for the
camera. This structure contains the required matrices (model matrix, view matrix,
projection matrix, normal matrix) to perform the various spatial transformations for
further processing of the vertices. The vertex shader then calculates three outputs:
The position of the output vertex in clip space, the position of the vertex in world
space and the normal of the vertex. The position of the corresponding output vertex
in clip space is calculated by transforming the input coordinates from local space to
clip space using the model-view-projection matrix.

Depending on the implementation, either the position of the vertex in world space
or in eye space is used to calculate lighting in the fragment shader. It is calculated by
transforming the input coordinates of a vertex with the model matrix. To calculate
the output normal of a vertex, the input normal is transformed with the normal
matrix. The world space position and the normal are passed on as inputs to the
fragment shader. In addition, the fragment shader receives different inputs used for
the lighting calculation.
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(a) (b) (c) (d)

Figure 3.2: Contribution of the individual lighting terms to the final composition: (a)
shows the ambient term, (b) the diffuse term and (c) the specular term. (d) shows
the combined color values.

Fragment shaders compute the final color, based on the implemented lighting
model. Lighting models can employ a single fragment shader or use multiple fragment
shaders in combination to add effects such as SSAO or OIT. The inputs can vary,
but all of the implemented fragment shaders receive as inputs the camera, material
layout and light layout. The camera is the same as the vertex shader camera. The
material layout contains the colors of the different light types and a shininess factor,
this is explained in more detail in section 3.2. The light layout contains the position
of the lights, color and intensity.

3.2 Blinn-Phong Shading
Phong lighting [36] consists of three different types of light, which contribute

to the final color of the fragment: ambient, diffuse and specular lighting. The
contribution of each lighting term is shown in Fig. 3.2

The ambient term is a fixed value pa which describes the color and intensity of
light falling uniformly on the surface from all directions. The diffuse term follows
Lambert’s cosine law, which states that the radiance of ideally diffusing surfaces is
directly proportional to the cosine of the angle between the surface normal N and
the light direction vector L. The amount of diffuse reflection d is calculated by:

d = max(0, N · L). (3.1)

The specular term is based on the law of reflection, which states that the exit angle
of a reflected light beam is equal to the entry angle of the incoming light beam. In
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(a) (b) (c) (d)

Figure 3.3: Comparison of specular highlights viewed from high and low viewing
angles. Phong’s approach (a), (c) produces round highlight shapes when viewed from
any angle. Blinn’s approach (b), (d) produces elliptical shapes at low angles relative
to the surface.

case of the surface being a mirror this leads to a highlight, if the angle between the
viewing direction V and the reflected light direction vector R is smaller than a certain
threshold value. The threshold is defined by using a shininess factor c as a power to
the dot product of V and R. The amount of specular reflection s is calculated by:

s = max(0, R · V )c. (3.2)

The calculation of specular reflections was improved by Blinn [7], who showed that
instead of using the dot product of V and R, one can calculate a halfway vector H
that lies midway between the viewing direction and the light direction to calculate
the amount of specular reflection, where:

H =
L+ V

‖L+ V ‖
. (3.3)

To calculate the specular reflection with the halfway vector, the dot product of H
and N is calculated and taken to the power of c:

s = max(0, H · V )c. (3.4)

This changes the specular highlight shape, especially at small viewing angles with
respect to the surface. Conventional Phong highlights always maintain a round shape,
whereas Blinn highlights become elliptical and thus more realistic at smaller viewing
angles, as shown in Fig. 3.3. The vectors for calculating Phong and Blinn-Phong
shading are shown in Fig. 3.4.

To calculate the perceived intensity i and thus the final color of a fragment,
all three types of light are added together. The amount of diffuse reflection d is
multiplied by the proportion of diffuse reflection pd and the amount of specular
reflection s is multiplied by the proportion of specular reflection ps:

i = pa + dpd + sps. (3.5)

The implementation additionally takes into account the light properties. A
lighting factor lf is calculated, which depends on the color of the light lc, the intensity
of the light li and the distance ld of the light from the object:

lf = lc
li
ld
. (3.6)
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Figure 3.4: Vectors used to calculate Phong and Blinn-Phong shading. L: Vector
from the surface the light source. V: Vector from the surface to the viewer. R: Vector
of perfectly reflected light from L. N: Normal vector of the surface. H: Half direction
vector.

(a) (b)

Figure 3.5: Comparison between Blinn-Phong shading (a) and toon shading (b).
Blinn-Phong shading produces smooth transitions between color values, while toon
shading abruptly changes colors.

This factor only affects the diffuse and specular term of equation 3.5:

i = pa + dpdlf + spslf . (3.7)

3.3 Toon Shading
Toon shading is a stylistic rendering approach used to emulate the look of cartoon

art. The shading helps to simplify parts of a visualization while maintaining a cue for
depth and still outlining the morphological structure [48]. Like Blinn-Phong shading,
toon shading consists of three lighting terms. These are calculated with the same
formulas as for Blinn-Phong shading, with the main difference that a fixed value tf
(toon factor) is set for specific ranges of pd. This leads to abrupt transitions between
colors in the final shading compared to Blinn-Phong, which can be seen in Fig. 3.5.
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The diffuse term d is calculated using equation 3.1. Depending on the calculated
dot product, tf is set in the following way:

tf =


0.8, if d ≥ 0.95,

0.5, if d ≥ 0.5,

0.25, if d ≥ 0.25,

0.1, otherwise.

(3.8)

The specular term s is calculated using equation 3.4. If the angle between H and V
exceeds a certain threshold, s is set to the maximum value:

s =

{
1.0, if max(0, H · V ) > 0.99,

0.0, otherwise.
(3.9)

The final color is calculated by:

i = pa + dpdlf tf + spslf , (3.10)

using equation 3.7 and adding the toon factor to the diffuse lighting calculation.

3.4 Oren-Nayar Shading
The diffuse term of the lighting calculation in section 3.2 is based on the Lam-

bertian reflection model [21]. The brightness of Lambertian surfaces is independent
of the viewing direction, which can be seen in the calculation of the diffuse term
in equation 3.1. An emerging problem with this reflection model is that for several
real-world objects, the calculated reflection is not sufficient [33], since the reflection
of light from rough, non-reflective surfaces is more evenly distributed than from shiny
or glossy surfaces. The reflected light in the Lambertian diffuse calculation falls off
too quickly near the edges to imitate these rough surfaces. A solution to this problem
is presented by Oren and Nayar [33].

They use the concept of micro facets to approximate reflected light on rough
surfaces, which was earlier used by Torrance and Sparrow [46] to calculate specular
reflections from rough surfaces. The roughness is modelled in form of V-cavities
at the microscopic level, as shown in Fig. 3.6a. Each facet of each V-cavity has
perfect Lambertian reflection when the facet corresponds to a pixel on screen, but
when multiple facets of multiple cavities are combined, this is no longer true for the
corresponding pixel. Oren and Nayar assume that each facet of a V-cavity da is
small compared to the area dA corresponding to one pixel. Additionally, da is large
compared to the wavelength of the incoming light λ. θa denotes the slope of the
V-cavity facet depending on the global surface normal n̂ in this point and the facet
normal â. This is shown in Fig. 3.6b and is summarized in the following equation:

λ2 << da << dA. (3.11)

Furthermore, the brightness of a pixel changes depending on the angle between the
viewer and the light source. If the angle is small, the viewer sees the brighter of the



3.4. Oren-Nayar Shading 13

(a) (b)

Figure 3.6: (a) shows the difference between one and multiple V-cavities covered by
one pixel. If one facet of a V-cavity corresponds to one pixel on screen, the reflection
can be assumed to be perfect lambertian. If factets of multiple V-cavities contribute
to one pixel on screen, the contributions of each facet to the lighting have to be
approximated. Therefore the contributions of facets on different magnification levels
change. (b) shows the V-cavities model: da is the area of a facet of the cavity. dA is
the area of the surface corresponding to one pixel. â is the normal of the facet. n̂ is
the global surface normal in this point. θa is the angle between â and n̂. Adapted
with permission from Springer Nature: Springer Science and Business Media LLC,
M. Oren and S. Nayar, Generalization of the Lambertian Model and Implications for
Machine Vision, International Journal of Computer Vision, 14(3):227-251, Copyright
1995 by Springer Nature.

two surfaces of the V-cavity, whereas if the angle is large, the viewer sees more of the
darker surface. This is shown in Fig. 3.7. The distribution of surface facets and their
respective slopes is assumed to be Gaussian with mean µ and standard deviation σ.

The original proposal calculated light rays bouncing between adjacent facets of
the V-cavities, called interreflections, to calculate the total radiance of the surface.
This is computationally very expensive, so they proposed a qualitative model that
ignores these interreflections. The qualitative model calculates the amount of diffuse
reflection d in the following way:

dpd =
p

π
E0 cos θi(A+Bmax(0, cosφr − φi) sinα tan β), (3.12)

where p describes the fraction of light reflected by the surface. E0 is the irradiance
of the facet if the direction of the incoming light vector equals the direction of the
facet normal (i.e. at maximum incidence) and θi is the angle between the incoming
light L and the surface normal n̂. φr is the angle between the view direction V and
n̂, φi the angle between L and n̂. α is the maximum of the two angles between V
and n̂ and L and n̂. β is the minimum of the two angles between V and n̂ and L
and n̂. A and B were numerical evaluated by varying surface roughness, the angles
of incidence and reflection and set in the following way:

A = 1.0− 0.5
σ2

σ2 + 0.33
, (3.13)

B = 0.45
σ2

σ2 + 0.09
, (3.14)
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Figure 3.7: Explanation of the brightness perceived by a viewer when viewing a
V-cavity from different angles. The angle δ between the light source and Viewer 1
(red) is large and he or she therefore sees more of the darker part of the cavity, while
the angle γ between viewer 2 (blue) and the light source is small and he or she sees
more of the bright part of the cavity.

where σ is the surface roughness given by the Gaussian distribution. In the final
code p

π
E0 equates to pd, which is given by the diffuse part of the material structure.

cos θi equates to max(N · L). One can observe that if σ = 0, the calculation of the
diffuse term in equation 3.12 resembles default Lambertian diffuse reflection, as seen
in the implementation of the diffuse term in section 3.2 in equation 3.1. Results of
different roughness values can be seen in Fig. 3.8.

3.5 Cook-Torrance Shading
Cook and Torrance [8] use a different approach to calculate the specular term

of the lighting equation. They propose a model to approximate the behaviour of
specular lighting depending on the roughness of a surface. They describe that the
distribution of reflected light in the specular term is dependent on micro facets as
described in section 3.4, using the approach of Torrance [46].

Cook and Torrance assume that only facets (see Fig. 3.6b) whose normal â
points in the direction of H (see equation 3.3) contribute to the specular term of the
reflection from L to V (see equation 3.4). Therefore the specular term is:

s =
F

π

DG

(N · L)(N · V )
, (3.15)

where F is the Fresnel term [43] describing how light is reflected from each facet.
D describes the fraction of facets that are oriented in the direction of H, called
the normal distribution function. G is the geometrical attenuation factor used to
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: Sphere and vessel rendered with different roughness settings for the
Oren-Nayar shading: (a), roughness = 0.0, (b), roughness = 0.5, (c), roughness =
1.0. The ambient and specular term have been set to zero.

describe the shadowing and masking of facets among each other. We approximate F
using Schlick’s [40] approach:

F (θ) = f + (1− f)(1− cos θ)5, (3.16)

where θ is the angle between L and N and f is the reflection coefficient when
N · V = 0. f is calculated from the incident of refraction of the material the light is
travelling through n1 and the incident of refraction of the object n2:

f =

(
n1 − n2

n1 + n2

)2

. (3.17)

We calculate D using the normal distribution function of Trowbridge and Reitz [47]:

D =
σ2

π((N ·H)2(σ2 − 1) + 1)2
, (3.18)

where σ is a factor describing the roughness of the surface. G is calculated using the
approach of Smith [42] taking view direction and light direction into account:

G = G1(L)G1(V ). (3.19)



16 3. Methodology

(a) (b) (c)

(d) (e) (f)

Figure 3.9: Sphere and vessel rendered with different roughness settings for the
Cook-Torrance shading: (a), roughness = 0.1, (b), roughness = 0.3, (c), roughness =
0.5. The ambient and diffuse term have been set to zero.

Using Smith’s approach G1 is for the light direction calculated as:

G1(L) =
2(N · L)

(N · L) +
√
σ2 + (1− σ2)(N · L)2

, (3.20)

and for the view direction respectively:

G1(V ) =
2(N · V )

(N · V ) +
√
σ2 + (1− σ2)(N · V )2

. (3.21)

For different roughness values the results in Fig. 3.9 were obtained.

3.6 Lit-Sphere Shading
Lit-sphere shading is, like toon shading (see section 3.3), a stylistic rendering

approach used to enable users to select a texture and apply the texture to shade
the mesh depending on the camera view and surface normal. It was introduced by
Sloan et al. [41] trying to utilize existing shading studies and extract shadings from
pictures to create an image of a sphere which can be used to shade a model.

We use an improved version of this approach presented by Todo et al. [45] to
calculate the ambient and diffuse term and provide users with different textures
of spheres in a material gallery that can be selected and used for the shading. To
calculate the final color values, the texture is used as a lookup and depending on the
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view space normal NV the coordinates of the according color are obtained. NV is
described by Sloan in the following way:

NV = (NVx , NVy , NVz), (3.22)

where:
NVx = N · Vx, (3.23)

NVy = N · Vy, (3.24)

NVz = N · Vz. (3.25)

Vx, Vy and Vz are the three dimensional view plane vectors and N is the normal
vector. Assuming that the coordinate in the middle of the texture represents the
reflection of light, when N · V = 1.0, falling off to the edges to N · V = 0.0, the
texture coordinates (u, v) are obtained from a texture in OpenGL in the following
way:

(u, v) = (0.5 ·NVx + 0.5, 0.5 ·NVy + 0.5). (3.26)

If NVz < 0, the color is set to a fixed value. The calculation of this shading only
depends on the view and normal vectors and can therefore not be used for shadings
employing dynamic lighting.

We use a front and a back light, which can both be freely rotated around the
mesh by the users. Because of this, the proposal of Sloan is not suitable, but Todo
et al. [45] developed an extension for lit-sphere shading that uses dynamic lighting,
introducing a new space normal representation in form of light space normals.

They define the light space for a given light direction L using three orthogonal
three dimensional vectors L, Lx and Ly. A lightspace normal NL is defined in the
following way:

NL = (NLx , NLy , NLz), (3.27)

where:
NLx = N · Lx, (3.28)

NLy = N · Ly, (3.29)

NLz = N · Lz. (3.30)

The texture coordinates are obtained in the shader by:

(u, v) = (r cos θ + 0.5, r sin θ + 0.5), (3.31)

where r is calculated by:

r =
arccos (NLz)

π
, (3.32)

and θ is given by:

θ = arctan

(
NLY

NLx

)
. (3.33)

To create the light view, one can either manually define it using the static tangent
space or use the provided method by Todo et al. [45]. They state that the manually
created light view produces distorted highlights at the singular point, therefore we
employ the recommended method to implement the light view. This is done by
calculating the angle between the camera view V and the light L and then rotating
the camera view to the light view. The difference can be seen in Fig. 3.10.
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(a) (b)

Figure 3.10: Difference between tangent space and the transformation of camera
view to light view. In (a) the sphere is rendered using the tangent space for the light
view creating distortions at the singular point. In (b) the sphere is rendered using
the transformation of the camera view to light view creating correct highlights.

3.7 Screen Space Ambient Occlusion
SSAO is used to approximate shadows that occur when the scattering of ambient

light is blocked by surrounding geometry. These shadows are part of the ambient
term, where pa is multiplied by the ambient occlusion factor ao that determines how
much of the ambient light is prevented form hitting the fragment that is rendered.
SSAO can be added to the aforementioned shading algorithms by modifying the
ambient term with the calculated occlusion factor. Equation 3.7 is then modified in
the following way:

i = paao + dpdlf + spslf . (3.34)

Ambient occlusion helps with depth perception of the rendered scene and is therefore
a useful addition to grasp the geometry of objects.

To calculate the ambient occlusion factor, the approach of Vries [9] was used.
Based on Cryteks implementation in the CryEngine 2, he describes the method for
the implementation in OpenGL. The base idea is to calculate the ambient occlusion
factor for each fragment by sampling depth values around the according fragment.
The sampling is done by creating a sampling kernel in form of a hemisphere around
the fragment the ao is supposed to be calculated for and sampling the depth of the
surrounding geometry. Samples that have a higher depth (farther away from the
camera) than the fragment the ao is being calculated for are inside of the geometry
and contribute towards the occlusion factor. This is shown in 2D in Fig. 3.11, where
the grey circles show samples inside of the geometry and the white circles show
samples outside of the geometry. To make geometry that is close to the fragment
the ao is being calculated for have a bigger impact than geometry that is farther
away, the sample kernel is filled with the help of a linear interpolation function. This
leads to a high density of sample points in close proximity of the fragment with
the number of samples decreasing the farther away they get. A problem that can
occur, when using the same sample kernel for every fragment, are banding artifacts.
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Figure 3.11: 2D presentation of the sample kernel in form of a hemisphere. The
bigger black circle is the fragment the ambient occlusion factor is being calculated
for. The white dots with black border are samples taken outside of the geometry not
contributing to the occlusion factor and the black dots are inside of the geometry
and therefore contribute to the occlusion factor.

These artifacts can be circumvented by using multiple randomly generated sample
kernels for each individual fragment, but this approach would be to computationally
intensive and therefore Vries suggests to only use one sample kernel and rotate it for
every fragment. This introduces enough randomness to avoid banding effects and
still keep a high performance. This improvement introduces another problem in form
of noise, which can be avoided by blurring the noisy image.

In contrast to former shaders used in this thesis, SSAO is not implemented in a
single vertex and fragment shader. First, a geometry pass is done, where the first
vertex shader transforms the fragment positions and normals to view space. In the
first fragment shader the sample kernel is used to calculate the ao. The kernel is
rotated with the help of a noise texture and transformed from tangent space to view
space using a tangent, bitangent, normal matrix (TBN). With the sample points
transformed to view space, the ambient occlusion factor is calculated by comparing
the fragments depth to all of the sample points depth. If the sample depth is greater
than the fragment depth, the sample contributes to the occlusion factor. Lastly, the
occlusion factor is divided by the number of samples taken to normalize it.

To further tweak the approach, Vries suggests to use a bias which is added to the
sample positions depth during the depth comparison. Testing showed that this can
change the resulting effect tremendously and therefore the bias has been implemented
as a user controllable parameter. Additional changeable variables the radius of the
sample kernel, which determines how much of the surrounding geometry affects
the occlusion factor and the strength of the occlusion by raising the ao to a user
specified power. In the next step, the occlusion factor texture is passed on to the
second fragment shader that blurs the texture and outputs a texture containing the
blurred ao. For SSAO, we had to update shaders with the ability to pass a texture
to them containing the occlusion value for every fragment. The pa then only has to
be multiplied by the ao as seen in equation 3.34. The entire process of combining
the different textures for the final visualization can be seen in Fig. 3.12
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(a) (b)

(c) (d)

Figure 3.12: Process of applying screen space ambient occlusion. First the occlusion
factor is calculated using the sample kernel to sample depth values around the
regarding fragment. The random rotation of the kernel leads to noise (a) which is
blurred in the next step (b). (c) shows the shading of the mesh to which the occlusion
factor of (b) will get added using 3.34 resulting in the final shading (d).

3.8 Order-Independent Transparency
Rendering certain objects transparent inside of a visualization is a key requirement

for visualizing vascular meshes and to achieve deeper understanding of the geometry
in the scene. Important information can be partly or completely obstructed by
opaque structures making it impossible to obtain the information of the occluded
geometry without removing it entirely. This could for example be fluid inside of a
vessel or information visualizing the flow or other properties. To keep the context
of the surrounding vessel and simultaneously obtain the information inside of the
vessel, the outer layer has to be rendered transparently. This is shown in Fig. 3.13.
If the vessel was not rendered transparently the flap would be obstructed entirely.
Although OpenGL provides the possibility of blending, depending on alpha values
that determine how transparent an object is, it is not as simple as drawing the
fragments with their respective alpha values, because the correct color is dependent
on the order of the fragments. To solve this problem, fragments can be sorted
according to their depth and then drawn and blended in the correct order using
per-pixel linked lists [2].

Another approach is to weigh the color of the fragments according to the fragments
depth in the scene as presented by McGuire and Bavoil [30]. The final color Cf of a
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(a) (b) (c)

Figure 3.13: An opaque rendering of the outer vessel wall (a) would obstruct the view
of the fluid and the flap. In (b), the vessel wall and fluid are rendered transparently
so that the user can examine the flap. In (c), the fluid is rendered completely
transparent, with only the outer vessel wall as context for examining the flap.

background surface C0 is based on the surfaces in front of C0 and the scalar coverage
α of those surfaces:

Cf =

∑n
i=1Ci∑n
i=1 αi

(
1−

n∏
i=1

(1− αi)

)
+ C0

n∏
i=1

(1− αi). (3.35)

This operator now exactly computes coverage of the background and therefore
improves the color term. McGuire and Bavoil explain that in equation 3.35, the
surfaces with the highest coverage influence the combined color of the partial coverage
surfaces the most, regardless of depth ordering. To fix this problem, they improved
their original operator from equation 3.35 in the following way:

Cf =

∑n
i=1Ci · w(zi, αi)∑n
i=1 αi · w(zi, αi)

(
1−

n∏
i=1

(1− αi)

)
+ C0

n∏
i=1

(1− αi). (3.36)

This operator adds weights to the colors decreasing with higher depth of the blended
fragment, where z is zero at the center of projection that decreases with higher
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distance from the camera to −∞. The weight function w(zi, αi) has to be chosen
so that it gives surfaces that are close to the camera higher weights. McGuire and
Bavoil present different weight functions. Testing showed that for our use case the
depth complexity and the number of blended layers were too low to detect differences
between the provided weight functions. In addition, we could not find any differences
in execution speed when using different weighting functions, therefore we decided to
use:

w(z, α) = α ·max

[
10−2,min

[
3× 103,

10

10−5 + (|z| /5)2 + (|z| /200)6

]]
. (3.37)

We implement OIT as follows: First, opaque objects are rendered in an opaque
pass with a chosen lighting shader creating a texture containing the respective color
values C0. Next, the transparent objects are rendered with the same shader in a
transparency pass that creates a texture containing the color and transparency values.
To determine the transparency of a fragment, the shaders were updated with the
ability to calculate view dependent transparency based on the Fresnel effect where:

α = 1−max(0, N · V ). (3.38)

This leads to high transparency of the fragment, when the viewer is looking directly
at it falling off, the lower the angle the between the view and normal vector becomes.
After the additional transparency values were calculated, the shader calculates the
impact each fragment has on the final color Cf using equation 3.37. In the last step,
the opaque and transparent textures are blended depending on the alpha values of
the transparent texture using equation 3.36. The different steps are shown in Fig.
3.14.

3.9 Shader Structure
To combine the different shading techniques, especially the combination of different

lighting terms, multiple shaders are used using the output of the previous shaders
as inputs. The shaders are split to avoid redundancy in the code, otherwise every
lighting shader would have to include the code for every other lighting shader to
calculate the respective diffuse and specular terms.

At first the geometry is processed and saved into a fragment buffer object
containing textures for every vertex attribute needed for the calculation of the
various techniques. Those textures are passed to the different shaders in the pipeline
to calculate the different lighting terms. Furthermore, each shader adds its lighting
calculations to the final color texture which is drawn over a screen filling quad in the
last step.

In case of SSAO, the respective shaders explained in section 3.7 are used to
calculate the occlusion factor, which is simply multiplied to the ambient shader
output. OIT effectively doubles the number of shaders, because each lighting term
has to be calculated for the occlusion and transparency pass separately. The blending
of both textures results in another texture containing the final shading which is
drawn on screen. The different modifiable parameters each step contains can be seen
in Fig. 3.15.
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(a) (b) (c)

Figure 3.14: Different visualizations of a human aorta with its branches using
transparency: First the opaque objects are rendered (a) using one of the lighting
shaders in this case the fluid inside of a vessel. Next the transparent objects are
rendered (b) using a lighting shader extended with equation 3.38 and equation 3.37.
Here, the outer layer of the vessel is rendered. In the final step both textures are
blended using equation 3.36, resulting in the final shading (c).
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Figure 3.15: Overview of the different parameters that can be modified in each
pipeline step. Grey boxes mark the main steps in the pipeline. Green boxes mark
the different lighting shaders that can be selected for the specific step, whereby the
light sphere shader is in its own category, as depending on the texture used, ambient,
diffuse and specular terms can be combined as desired. Red boxes with rounded
edges mark parameters that can be modified.



4. Results and Discussion

In this chapter different combinations of techniques are shown and the user customiz-
able values are explained. Additionally, arising problems and limitations are shown
and discussed.

The material colors for the ambient and diffuse term can be specified by the user.
That means using equation 3.5 pa and pd can be set as a three dimensional vector
containing the red, green and blue color values (RGB) making up the color for the
specified material. The default values set by the tool are: 220, 56 and 63.5, resulting
in the pink color used throughout the renderings in this thesis. Additionally, the
specular color ps and shininess factor c (see equation 3.4) of the specular term can
be set. The higher the shininess factor gets, the smaller the angle between H and N
has to be for a specular highlight to be seen. Furthermore, the color lc and intensity
of the lights li can be controlled by the user impacting the diffuse and specular term
(see equation 3.6 and equation 3.7). The distance of the lights ld to the mesh can
not be controlled at this time, but the lights can be rotated freely and independently
of each other around the mesh using quaternions to calculate the rotations to avoid
gimbal lock. The possibility to activate an additional visual aid in the form of a view
cube is provided. The view cube can be toggled and is rendered in another viewport
in the bottom left of the screen. The cube represents the mesh to show its current
orientation and the activated lights are represented by colored spheres. When the
light position is changed, the spheres change their position respectively so that the
user can always check where the lights are positioned in regard to the mesh (see Fig.
4.1).

Oren-Nayar and Cook-Torrance shading are both based on the idea of micro
facets. Therefore, the roughness σ of the surface can be set for both models. The
chosen default value for σ is set to 0.2, providing the subjectively best result for the
rendered mesh. For Cook-Torrance the incident of refraction for the medium the
light is travelling through n1 and the incident of refraction of the object n2 can be
changed. n1 is per default set to 1.0 resembling the index of refraction of air and n2

is set to 2.0 representing the standard value usually used for Cook-Torrance shading.
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(a) (b)

(c) (d)

Figure 4.1: View cube used to show the orientation of the mesh and lights. The
spheres are colored in the same way as the lights and show the corresponding light
position.

For lit-sphere shading, a material gallery (see Fig. 4.2) is added providing textures
which are used for the computation of the final color. Here the material gallery
provides the ability to choose a different texture for the front and back lighting of
the mesh instead of the material color and light color, which are usually used for the
calculation of the final shading. It can also be extended with textures for specular
highlights, which are added to the lighting calculation. Results are shown in Fig. 4.3
and Fig. 4.4.

SSAO is a useful tool to enhance the depth perception of the scene, when it is
tuned correctly. Finding the right tuning can be a difficult task for inexperienced users
which might result in a lot of testing to achieve a satisfactory outcome. Although the
visualization tool provides pre-set values for the number of samples in the sample
kernel, the radius of the sample kernel, the bias and the impact the effect has on the
ambient lighting, these values might not be sufficient for every used mesh.

If the radius of the sample kernel is chosen too small, the ambient occlusion is
not noticeable, but if it is chosen too large, the entire mesh gets darkened and the
ambient occlusion is not noticeable either. The number of samples in the kernel has
a huge impact on the final shading quality. If it is chosen too small the, quality of
the ambient occlusion could look rough, whereas a too large sample size could impact
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Figure 4.2: Screenshot of the material gallery showing the selectable materials for
the lit-sphere shading. The top row sets the material for the front light, whereas the
bottom row sets the material for the back light. The green background indicates which
material is selected. Materials are sampled from spheres, rendered with different
shading approaches from the toolkit.

performance. The bias adds a set value to the depth of the sample the fragment’s
depth is being compared to. Testing showed that with this bias the visually best
results could be achieved. If the bias was set to zero the effect looked very rough
and unfinished. The best results were achieved when the bias was set to be twice as
high as the radius of the sample kernel. The strength of the ambient occlusion factor
is the easiest to tweak, because it only affects the brightness of the effect. Figure 4.5
shows the obtained results for different parameter settings using SSAO with just the
ambient term of Blinn-Phong shading. As shown in Fig. 4.5, SSAO improves the
depth perception tremendously. Nevertheless, the correct settings for SSAO are of
the utmost importance to achieve correct results.

OIT was one of the more complex techniques to get to work properly, causing
problems with the different weight functions and parameters the weighted blended
order-independent transparency approach of McGuire and Bavoil [30] provided. The
results that were achieved with the technique are satisfactory, but further testing
with more complex scenes should be conducted to see if the technique holds up when
more than two meshes are blended together. Testing of different weight functions
w(zi, αi) showed no big differences, leading to the assumption that the complexity of
the scene was too low to discern benefits of one over the others. The Fresnel effect
can be controlled through the edge falloff determining how strong the effect is (i.e.
how fast does the alpha of the fragment being rendered fall of depending on the
angle between V and N). Renderings resulting from different settings for the edge
falloff of the Fresnel effect can be seen in Fig. 4.6.

The diffuse and specular terms of the implemented shading techniques can be
combined without limitations and the parameters specific for the term and selected
shading technique can be changed by the users: First, users can set the color of the
ambient, diffuse and specular light that is reflected by the materials. For the specular
term the shininess factor can be set additionally. Next, the users specify which
shading algorithm to use for the diffuse term and which shading algorithm to use for
the specular term. Then the shader specific parameters have to be set. For example:
the user selected lit-sphere shading for the diffuse term and Cook-Torrance for the
specular term. For lit-sphere shading, the user can select a texture for the front light
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(a) (b)

(c) (d) (e) (f)

Figure 4.3: Textures used in the lit-sphere shading approach. (a) is used as an
ambient and diffuse texture at the same time resulting in the shading of (c). Texture
(b) can be used to add an additional highlight with a special form to the shading,
which is either controlled by the back light or by the front light. In this shading it
was dependent on the front light. The shading just using (b) can be seen in (e). (c)
contains the ambient term of the lighting. The ambient light is applied everywhere,
where the diffuse part is not used (i.e. where the dot product of the normal and light
space normal is negative). The color is determined by using the darkest color of (a).
Combining everything (f) is the result.

and the back light and for Cook-Torrance he or she can specify the roughness of the
surface σ and the refraction indices n1 and n2 (see equation 3.17).

Next, one can choose to activate SSAO and/or OIT. For these techniques he
or she can adjust the values previously explained in this section. To finalize the
visualization and to create individualized screenshots, an additional effect shader can
be activated that surrounds the rendering with a vignette and displays a background
texture loaded by the user. The vignette effect can be controlled through parameters
for softness of the transition between the fore- and background and the radius (see
Fig. 4.7). The background texture can be any portable pixmap (.ppm) image file
loaded by the user through the ”load custom background” button.

A problem that arises when combining different techniques with each other is the
impact each technique has on the final shading. For the default shading algorithms
this can always be controlled through the light and material factors, but lit-sphere
shading sets a different challenge: The materials provided for lit-sphere shading have
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(a)

(b)

Figure 4.4: The texture in (a) was generated from a sphere rendered with ambient
and diffuse Phong shading. Using this texture, the lit sphere shading produces the
results seen in (b) that are very similar to Phong shading.

to be carefully selected to not diminish the effect of the other shading approaches. All
textures to be used with lit-sphere shading have been created using the visualization
tool with default shading parameters set. Therefore, the problem should not occur
while using the provided textures, but if the tool should be extended to support user
generated textures, this should be considered.
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(a) (b)

(c) (d)

Figure 4.5: Mesh of fluid inside of a vessel, rendered with different settings for SSAO
altering the bias and sample kernel radius (b, r) with the strength set to 5.0. The
visualizations are rendered with the following settings: (a): (3.0, 3.0). (b): (3.0, 6.0).
(c): (6.0, 3.0). (d): (6.0, 6.0).
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(a) (b)

(c) (d)

Figure 4.6: Figure displaying the outer vessel wall, rendered transparently using
weighted blended order-independent transparency and the inner fluid rendered with
Blinn-Phong shading. (a) using no Fresnel effect with alpha set to 0.5. In (b) the
edge falloff is set to 0.25. In (c) the edge falloff is set to 0.5. In (d) the edge falloff is
set to 0.75.

(a) (b)

(c)

Figure 4.7: Examples for different radius and softness settings (r, s) for the vignette.
(a): (1.2, 0.9). (b): (1.5, 1.2). (c): (1.8, 1.5). A custom background in form of a
noise texture was set.





5. Conclusion and Future Work

This thesis presented a tool for the visualization of three dimensional surface meshes
focusing on vascular structures. Implemented techniques were designed in a way that
gives users a high degree of freedom and wide range of customizable parameters to
design their own renderings. A high focus was placed on the interactivity through
the multiple ways users can change the properties of every important aspect of the
different shading steps.

A technique to increase depth perception was implemented in the form of SSAO.
Furthermore, OIT is a useful addition if users want to render certain objects transpar-
ent and through this obtain more information about occluded geometry or the interior
of the object. Making it possible to combine every implemented technique with
one another and making almost every parameter of the lighting equation modifiable
without using a shader for every combination has been a challenge, but the resulting
tool is a useful addition to the framework. Future improvements should aim especially
at being compatible and interchangeable with already implemented techniques.

Additions to the visualization tool should further increase the impact users can
have on their renderings. These could be more sophisticated approaches to SSAO or
the implementation of horizon-based ambient occlusion [4] or voxel ambient occlusion
[35].

Since the implemented approach of weighted blended OIT may not be the best one
to render complex scenes with many different transparent objects, other techniques
based on depth peeling or linked lists could be made available for selection so that
users can decide which approach best suits their needs.

The lit-sphere rendering could be improved by allowing users to directly create
their own materials from their created shadings by projecting the shading of their
chosen render settings onto a sphere and saving the created texture directly to the
material gallery. Additionally, the users should be able to load their own materials
from files.

BRDF’s containing approximations for sub-surface scattering would be a useful
addition, especially to render vessel materials more realistically. The implementation
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of a depth-of-field technique would add another stylistic layer to the visualization tool,
that could be toggled and adjusted by users, to further increase the attractiveness of
composited scenes. Furthermore, models using approaches to calculate the impact of
refraction could be implemented to enable the realistic modeling of fluids.

Apart from the implementation of new techniques, the user interface could be
revised to improve the workflow of users. It should support context based selections of
parameters, highlighting which parameter can be used currently and hide parameters
that currently have no effect. In addition, each parameter should have an explanation
and examples of its effect in a window easily accessible by users (i.e. double click,
right click, mouse hover).
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