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Abstract 1.1

The ability to visually explore and compare blood flow data can be a valuable aid
for medical research regarding pathologies of the human vascular system. The use
of explorative visualizations for blood flow can lead to a deeper understanding of the
interrelation of vascular morphology and hemodynamics in general and the effects of
specific pathologies on the vessels in particular. For example, the rupture risk assessment
for cerebral aneurysms requires a detailed understanding of the complex interactions
between vessel wall and underlying blood flow behavior. By comparing flow patterns,
systematic differences and similarities within and between cohorts can be detected to
formulate new medical hypotheses. As an example, such an analysis could support
identifying the difference between changes in vascular hemodynamics as a result of
“healthy” aging and the genesis of a cardiovascular disease.

Blood flow data can be acquired by various techniques. 4D PC-MRI is a non-invasive
imaging modality that allows for the acquisition of in-vivo flow information. Vessels that
are not large enough to be captured adequately by 4D PC-MRI can still be acquired
using angiography techniques, such as CT Angiography, 3D Rotational Subtraction
Angiography or MR Angiography. As these modalities do not record blood flow, compu-
tational fluid dynamics simulations are employed to obtain flow information based vessel
geometries in these cases.

The visualization of the resulting three-dimensional, time-resolved blood flow data is
challenging due to the high amount of occlusion in the spatio-temporal domain. Thus, the
visualization has to be carefully crafted to reduce the occlusion based on the researchers’
specific interests without compromising their orientation and spatial awareness. An
additional problem, especially for simulated data, is the coverage of all existing features
in the datasets domain using integral objects, such as pathlines, as many established
seeding strategies do not guarantee full coverage without investing an unfeasible amount
of computing power. Lastly, new insights into the vascular system cannot only be gained
by exploring single datasets, but also by performing comparisons of multiple datasets
between both patients and healthy volunteers. While a simple juxtaposition may be
feasible for a lower amount of datasets, comparisons within a database of hundreds
or more datasets require specialized metrics as well as interaction and visualization
techniques to effectively support the user in gaining knowledge.

This thesis presents and evaluates techniques to support the effective visual exploration
and comparison of blood flow data with the goal of gaining new insights into the human
vascular system. This encompasses both general visualization and preprocessing methods
(e.g. to improve depth perception), as well as tailored solutions for specific medical
research questions. Our focus is on both blood flow data acquired in-vivo by means
of 4D PC-MRI and using computational fluid dynamics simulations. Although there
are significant differences between measured and simulated blood flow, all techniques
implemented as part of this PhD thesis are integrated into a single framework.
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Zusammenfassung 1.2

Die visuelle Exploration und der Vergleich von Blutflussdaten können ein wertvolles
Werkzeug für die Erforschung des menschlichen kardiovaskulären Systems darstellen. Der
Einsatz von explorativen Visualisierungen für die Darstellung von Blutfluss unterstützt
das Verständnis der Zusammenhänge zwischen Gefäßmorphologie und Hämodynamik im
Allgemeinen sowie dem Einfluss verschiedener Pathologien im Speziellen. Beispielsweise ist
für die Vorhersage von Ruptur-Risiken zerebraler Aneurysmen ein detailliertes Verständnis
der komplexen Beziehung von Gefäßwand und dem Verhalten des darunterliegenden
Blutflusses erforderlich. Durch den Vergleich von Flussmustern können systematische
Unterschiede und Gemeinsamkeiten sowohl in als auch zwischen Kohorten ermittelt
und daraus neue medizinische Hypothesen abgeleitet werden. Beispielsweise könnten
Unterschiede zwischen Veränderungen der Gefäßhämodynamik durch „gesundes” Altern
und der Herausbildung einer kardiovaskulären Pathologie identifiziert werden.

Blutflussdaten können durch verschiedene Techniken akquiriert werden. 4D PC-
MRI ist eine nichtinvasive Bildgebungsmodalität mit der sich in-vivo Flussinformatio-
nen aufnehmen lassen. Gefäße, die für eine Erfassung in 4D PC-MRI Scannern nicht
groß genug sind, können trotzdem durch andere angiographische Techniken wie CT-
Angiographie, 3D Rotationssubtraktionsangiographie sowie MR-Angiographie aufgenom-
men werden. Da diese Bildgebungsmodalitäten den Blutfluss selbst nicht abbilden können,
werden in diesen Fällen die Blutflussinformationen durch Methoden der numerischen
Strömungsmechanik basierend auf der Gefäßgeometrie berechnet.

Die Visualisierung der entstehenden dreidimensionalen und zeitaufgelösten Blutflussin-
formationen ist aufgrund der zahlreichen zeitlichen und räumlichen Überlappungen von
Strukturen herausfordernd. Daher müssen die verwendeten Visualisierungstechniken
basierend auf den Forschungsinteressen des Anwenders so konzipiert werden, dass diese
Überlappungen aufgelöst oder reduziert werden, ohne die Orientierungsfähigkeit oder das
Raumverständnis des Betrachters zu beeinträchtigen. Ein zusätzliches Problem, welches
insbesondere bei simulierten Daten auftritt, ist es eine ausreichende Repräsentation
der Flusseigenschaften durch integrale Objekte, wie Pfadlinien, zu erreichen. Viele
Saat-Strategien können ohne den Einsatz unverhältnismäßig großer Rechenleistung keine
vollständige Abdeckung des Flussfeldes garantieren. Natürlich können neue Erkenntnisse
nicht nur durch die Betrachtung einzelner Datensätze, sondern insbesondere durch den
Vergleich von Patienten und gesunden Probanden erreicht werden. Während eine einfache
Gegenüberstellung für eine kleinere Menge an Datensätzen möglich ist, erfordern große
Datenbanken von hunderten Flussdatensätzen spezifische Metriken sowie Visualisierungs-
und Interaktionstechniken, um den Anwender effizient bei der Hypothesengenerierung zu
unterstützen.

Diese Doktorarbeit präsentiert und evaluiert Techniken, um effektive visuelle Explo-
ration und Vergleiche von Blutflussdaten mit dem Ziel, neue Erkenntnisse über das
menschliche kardiovaskuläre System zu gewinnen, zu ermöglichen. Dies umfasst sowohl
allgemeine Visualisierungs- und Verarbeitungstechniken (beispielsweise um die Tiefen-
wahrnehmung zu verbessern), als auch auf die Beantwortung spezifischer medizinischer
Forschungsfragen zugeschnittene Lösungen. Unser Fokus liegt hierbei auf Blutfluss-
daten, die mittels 4D PC-MRI oder hämodynamischen Simulationen generiert wurden.
Obwohl signifikante Unterschiede zwischen gemessenen und simulierten Blutflussdaten
existieren, wurden die im Rahmen dieser Dissertation implementierten Techniken in
einem gemeinsamen Framework integriert.
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Introduction 1.3

According to the World Health Organization, cardiovascular diseases are the leading
cause of death worldwide [1]. Especially arteriosclerosis and its accompanying diseases,
such as myocardial infarction or thrombosis, may lead to severe complications [2]. Various
cardiovascular pathologies have been related to changes in blood flow patterns [3, 4]. For
example, defects such as a bicuspid aortic valve often cause vortices [5, 6] and increased
wall shear stress [7] within the thoracic aorta. In turn, changes in blood flow patterns
may cause the formation of aneurysms, which are pathologic dilations of the arterial
wall.

Aortic aneurysms can ultimately lead to aortic dissection or rupture, with a reported
risk of rupture of up to 74% for the thoracic aorta [8, 9], depending on the size of the
aneurysm [10]. The rupture of a thoracic aortic aneurysm is almost always fatal [11].
Without treatment, aneurysms of the thoracic aorta with a diameter greater than 6 cm
exhibit a yearly death rate of almost 12% and a five-year survival rate around 55% [10,
12]. Although the surgical repair of aneurysms on the thoracic aorta itself has a mortality
between 3% and 11%, it can significantly improve the long-term survival rate of a
patient [12].

In case of cerebral aneurysms, a rupture may cause an ischemic stroke with often fatal
consequences for the patient. Especially with respect to increased imaging in the clinical
routine, more and more asymptomatical cerebral aneurysms are detected [13]. Since
aneurysm treatment, e.g. endovascular stenting and coiling or neurosurgical clipping,
is accompanied with risks for the patient, clinical research aims to avoid unnecessary
treatment of incidentally found aneurysms and to identify the best possible treatment
with respect to patient-specific anatomy and blood flow behavior. For rupture risk
assessment, several clinical risk factors have been identified, e.g. the patient’s age,
hypertension, aneurysm size and location [14]. Cerebral aneurysms often comprise a
daughter aneurysm, also called a bleb, which is a prominent bulging on the aneurysm.
These blebs are of particular interest, since they have been identified as an additional
factor for increased rupture risk [15, 16]. State-of-the-art rupture risk models combine
morphological parameters characterizing the aneurysm’s shape as well as hemodynamical
parameters extracted from simulated blood flow to provide further information about
the patient-specific risk [17]. The simulated blood flow not only allows for the extraction
of flow patterns, but for the extraction of parameters related to pressure and stress as
well, e.g. the wall shear stress (WSS), describing the friction of the blood flow on the
aneurysm surface, or the oscillatory shear index (OSI), characterizing the variation of
the WSS vector over the course of the heart cycle.

For endovascular treatment support, clinical researchers are strongly interested in
predicting flow characteristics after treatment. Hence, the flow patterns and parameters
provide valuable information about the intra-aneurysmal flow [18]. Implant placement
typically aims at aneurysm occlusion, a redirection of the blood flow causing the aneurysm
as well as a stabilization of the blood supply of the vessel harboring the aneurysm and its
outlets. Virtual implant placement can support the clinician by predicting the resulting
blood flow [19, 20].
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Motivation

The evaluation of blood flow data is increasingly used in medical research to improve
the understanding of vascular diseases as well as for treatment planning. An example is
the placement of vascular implants to treat aneurysms, which strongly depends on the
patient-specific anatomy and hemodynamics. Thus, the visualization of hemodynamic
information can support medical research with respect to the understanding of vascular
diseases and improvements in patient-specific treatment planning. Questions relate to the
interactions between hemodynamic flow patterns, morphological changes and vascular
biology [21].

Commonly, 3D blood flow data visualizations are comprised of either path- or stream-
lines embedded in a surface visualization of the vessel. Unlike other integral lines, such
as streak- or timelines, stream- and pathlines directly represent the movement of blood
through the vessels. Attributes, such as pressure, wall shear stress and flow velocity mag-
nitude, can be mapped to the surface or pathlines using color scales. Often, interesting
flow structures such as vortices are nested within laminar flow, creating visual obstruc-
tions. Having too many pathlines visible at once will increase this effect, while having
too little pathline coverage may cause specific flow characteristics to be underrepresented
in the resulting visualization. Hence, specialized techniques are required to focus on
specific hemodynamic phenomena, such as vortices, in order to alleviate occlusion while
maintaining dense line coverage in areas of interest. These techniques can range from
filtering occluding pathlines to dynamically adding additional pathlines to increase the
pathline coverage for interesting features. In addition to pathlines, the vessel surface
itself provides valuable context information and therefore should not be culled from the
visualization completely.

As a result, the scene contains many intertwined layers of pathlines and surfaces. One
of the more general challenges in visualizing blood flow data is mapping this complex and
highly patient-specific three-dimensional vascular structure onto a two-dimensional screen
while maintaining spatial awareness of the user. Similarly, establishing comparability
between multiple patient-specific variations of the same anatomical region poses a
challenge.

Thesis Structure and Contribution

This thesis addresses the aforementioned challenges and proposes solutions to support
medical researchers. All the techniques developed as part of this PhD thesis are integrated
into a single interactive framework supporting the visual analysis of both measured and
simulated blood flow data. Due to the stark differences between simulated and measured
blood flow regarding acquisition modalities, data format and general data quality, some
of these techniques proposed in this thesis are tailored specifically towards 4D PC-MRI.
However, many general properties are shared between these types of flow data, thus
allowing many of the presented techniques to be applied to both measured and simulated
blood flow data with only minimal adjustments. This thesis is structured as follows:

• Chapter 2 gives a brief overview of the human cardiovascular system and selected
related pathologies. Furthermore, core principles of flow visualization and the
imaging modalities used to acquire the medical images we base our techniques on
are explained.
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• Chapter 3 summarizes existing techniques and approaches to visualize, explore and
analyze blood flow data. It also gives a brief overview of previous work within the
Visualization group on the topic of visualizing hemodynamic data.

• Chapter 4 describes the main contributions of this thesis. At the beginning of each
section, the publications on which the respective section is based on are listed.
Changes that were made to the presented techniques after the publication are also
mentioned there.
Section 4.1 proposes an image processing technique to support the segmentation of
low-contrast 4D PC-MRI datasets. Strongly varying flow velocities in the aorta,
which can appear as a result of stenoses or defects of the aortic valve, negatively
affect the contrast of 4D PC-MRI data. These low-contrast images are often
hard to segment, especially when directional information is discarded for the
segmentation by performing it entirely on magnitude images. Thus, we propose to
use a combination of magnitude and FTLE images, which incorporate directional
information. We were able to show that, in comparison to a solely magnitude-based
segmentation approach, our method requires less manual input and produces more
satisfying results for low-contrast datasets.
Section 4.2 focuses on optimizing the perceptibility of vessels and the inlaying blood
flow. As mentioned previously, blood flow visualizations on a traditional 2D screen
suffer from occlusion and a lack of depth perception. We present a technique to
solve overlaps between vessel wall and pathlines for direct volume rendering, similar
to front-face culling. Based on the current viewing direction, the back side of
vessels is identified. The front side and lumen are culled from the visualization,
exposing pathlines drawn within the vessel.
Additionally, we present a shading technique that increases depth perception for
vascular models without impairing the ability to map hemodynamic parameters
onto the vessel surface. Our approach overlays a pseudo-chromadepth color scale
to encode depth at the edges of the vascular surface and an additional color
scale representing hemodynamic parameters at the center. In a study with 105
participants, we were able to show that our technique increases depth perception
while only slightly impairing the ability to perceive the hemodynamic color scale.
Section 4.3 presents several approaches to support exploration and comparison
of blood flow datasets. Hemodynamic parameters on the vessel surface are often
directly connected to underlying near-wall flow. As our clinical collaborators are
interested in this connection, we developed a technique to interactively select
hemodynamic features on the vessel surface and extract related flow structures
with minimal interaction. In addition to the qualitative assessment of the resulting
flow structures, our prototype allows to quantify them and export the findings
within structured reports.
A common problem in several of our datasets was low pathline density in regions
with low blood flow activity, e.g. blebs, as the pathline integrator had trouble
“reaching” these regions. This situation could partially be alleviated by increasing
the amount of seed points, which would significantly increase computation time
and also produce many redundant pathlines in other regions. Thus, we developed
a seeding strategy based on evolutionary algorithms, which would directly target
specific regions of interest and ensure that flow in these regions was sufficiently
represented by pathlines. We were able to show that our seeding approach was
able to reach a better line coverage than the commonly used uniform seeding with
a lower number of total line integrations.
Commonly, the quantification of hemodynamic parameters for an aneurysm is tied

7
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to the location of its neck region. However, no general consensus exists between
practitioners on how exactly the location of the neck curve is defined. To support
making steps towards such a consensus, we implemented a web-based application
for medical experts to easily draw neck curves based on their own definitions.
Additionally, they are able to deform the resulting ostium to model the original
vessel surface without the aneurysm. The resulting neck curve segmentations are
then stored in a database to be used as ground truth data for ongoing research.
As previously mentioned, finding systematic differences between pathological and
healthy flow is an important part of gaining a better understanding of vascular
pathologies. A simple juxtaposition of datasets is unsuitable due to the complex
vascular structures and patient-specific vessel morphology. Thus, we present an
approach to normalize the spatio-temporal domain of cardiac 4D PC-MRI datasets
and facilitate a comparison using 2D bull’s eye plots. For a more in-depth analysis
of flow differences, a visual comparison of slices at normalized positions is also
possible.

• Chapter 5 concludes this thesis and discusses both possible short- and long-term
research projects in relation to this work, and blood flow visualization in general.

8



2

Background





Medical Background 2.1

This section presents anatomical background information about the human cardiovascular
system in general and selected cardiac and cerebral blood vessels in particular. Relevant
cardiovascular diseases affecting these systems are also introduced.

The Human Cardiovascular System 2.1.1

The cardiovascular system is comprised of blood vessels spanning the entire body,
providing all cells with nutrients and oxygen via the blood stream. There are two
distinct blood circuits that make up the cardiovascular system [23]. The systemic circuit
provides oxygen to the tissue, transferring oxygenated blood from the heart via systemic
arteries through the body. After the oxygen has been passed to the cells within systemic
capillaries, the now de-oxygenated blood travels back to the heart through systemic
veins. From there it enters the pulmonary circuit, where pulmonary arteries transport
the blood to the lung to gather new oxygen within the pulmonary capillaries. The newly
oxygenated blood moves back to the heart via pulmonary veins and once again enters the
systemic circuit [22]. A schematic overview of both circuits can be found in Figure 2.1a.

The central organ of both circuits is the heart (Figure 2.1b), a pump that facilitates
the blood movement. It consists of two sides (left and right), each with two chambers
(atrium and ventricle). The atria are connected to their respective ventricle through
a valve (the tricuspid valve on the right side of the heart, the bicuspid or mitral valve
on the left), preventing blood to flow from the ventricle back into the atrium [23]. The
left ventricle is connected to the aorta, the right ventricle to the pulmonary artery.
Once again, the direction of blood flow is controlled by another set of valves (aortic
semilunar valve and pulmonary semilunar valve). All valves in the heart consist of tree
cusps, with the exception of the mitral valve, which only consists of two. They are not
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in lungs
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of lower body

Right ventricle
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Figure 2.1: Schematic illustration of the human cardiovascular system (a) and heart
(b), showing oxygenated blood in red and de-oxygenated blood in blue [22].

Both images are taken from the OpenStax publication “Anatomy and Physiology”, released under the
Creative Commons Attribution 4.0 license. They were slightly modified to better fit the layout of this thesis.
c©1999–2021, Rice University. URL: https: // openstax. org/ books/ anatomy-and-physiology/ pages/

19-1-heart-anatomy# fig-ch20_ 01_ 03 License: https: // creativecommons. org/ licenses/ by/ 4. 0/ deed
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CHAPTER 2. BACKGROUND

actively controlled by muscles, instead they open and close entirely based on pressure
differences [23].

Each heart cycle consists of two phases, the systolic phase and diastolic phase. During
the systole, both ventricles contract, thus pumping blood out of the heart and into the
aorta (from the left ventricle) and pulmonary artery (from the right ventricle). During
the diastole, both the ventricles and atria relax, allowing new blood to flow into the
atria from the pulmonary veins (into the left atrium) and inferior and superior vena
cava (into the right atrium). Afterwards, the atria contract to pump the blood into their
respective ventricles. From there, the cycle begins anew [22].

As the starting point of the systemic cycle, the aorta is the largest artery in the
human body [24]. Its overall shape somewhat resembles that of a walking cane and it is
commonly subdivided into the aortic trunk (where it is connected to the left ventricle),
followed by ascending aorta, aortic arch and descending aorta. Three major branches
spring from the aortic arc: the brachiocephalic artery, left common carotid artery and left
subclavian artery [22]. The brachiocephalic artery itself branches into the right common
carotid artery and right subclavian artery. Each of the subclavian arteries spawns a
vertebral artery. Both the carotid and vertebral arteries provide the blood supply to the
neck and head, whereas the subclavian arteries supply the chest and arms. The carotid
arteries eventually split into an external carotid artery and internal carotid artery. The
vertebral arteries, on the other hand, merge together and form the basilar artery [22].
An overview of the branching of the aorta can be found in Figure 2.2. Studies have
shown that this branching structure of the aortic arch is present in around 74% of the
western population. A common variant with a prevalence of 20%, often referred to as
bovine arch, has the brachiocephalic artery and left common carotid artery originating
from the same point on the aortic arch [25].

Right common carotid artery

Right vertebral artery

Right subclavian artery

Brachiocephalic artery

Left common carotid artery

Left vertebral artery

Left subclavian artery

Aortic arch

Descending aorta

Ascending aorta

Aortic trunk
Heart

Internal carotid arteries

External carotid arteriesBasilar artery

Figure 2.2: Schematic illustration of the aortic branches.

This figure is based on an image by Edoarado, made available via Wikimedia Commons under the Cre-
ative Commons Attribution-Share Alike 3.0 Unported license. The labels and some of the coloring were modified
to better fit the wording and layout of this thesis. URL: https: // commons. wikimedia. org/ wiki/ File:
Aorta_ scheme_ en. svg License: https: // creativecommons. org/ licenses/ by-sa/ 3. 0/ deed
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Artery Wall
Normal blood flow

(a)

Plaque
Abnormal blood flow

Narrowed artery

(b)

Figure 2.3: Illustration of a normal artery (a) and an artery affected by plaque buildup,
causing the artery to narrow (b) [29].

The images are taken from the NHLBI article on atherosclerosis and are released in the Public Domain.
Slight modifications have been made to the image layout and descriptions.

The internal carotid arteries and the basilar artery supply the brain and eventually lead
into the circulus arteriosus cerebri, often referred to as the “Circle of Willis”. The Circle
of Willis is a vaguely circular vascular structure connecting the internal carotids and
basilar artery and thus creating redundancy for the brain’s blood supply. If the blood
flow from one of the supplying vessels is progressively blocked, e.g. by a stenosis, the
other vessels can compensate this blockage. A sudden and complete occlusion of one of
the vessels, however, can usually not be fully compensated for. The Circle of Willis is a
highly variable structure, as depending on the person, various connecting vessels within
the circle may be reduced in size or missing completely [26].

Cardiovascular Diseases 2.1.2

With social, medical and technological advancements, the typical disease-related causes
of death shift from infectious diseases to degenerative diseases [27]. Today, according to
the World Health Organisation, cardiovascular diseases (CVDs) are the most common
cause of death in most regions, accounting for around 25% of all deaths worldwide [28].
This section describes a selection of common cardiovascular diseases as well as their effect
on hemodynamics.

Pathologic changes in the vessel wall

Changes in the vessel wall may cause the vessel diameter to increase or decrease. Gen-
erally, a narrowing of a blood vessel is called stenosis. A common cause for stenosis is
atherosclerosis, whereas so-called plaques consisting of “fatty deposits, inflammation, cells,
and scar tissue” [30], are deposited within the vessel wall (Figure 2.3). The narrowing
of the vessel may cause blood pressure and flow speed in the affected area to increase.
Furthermore, a more severe narrowing may decrease the amount of blood supplied to
the surrounding tissue or completely stop the blood flow altogether. This can lead to
potentially fatal consequences, such as stroke or myocardial infarction.

An increase in vessel diameter is referred to as an aneurysm. Aneurysms bear a risk
of rupturing, causing potentially fatal internal bleeding. Generally, aneurysms can be
classified as either saccular or fusiform (Figure 2.4). Saccular aneurysms appear as sacs
or pouches on the parent vessel and result from the dilation of only part of the vessel
wall (Figure 2.4a). Fusiform aneurysms, on the other hand, are formed when an entire
section of the vessel wall dilates (Figure 2.4b).
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(a) (b)

Figure 2.4: Sketches of the two main aneurysm types: Saccular aneurysms (a) and
fusiform aneurysms (b) [31].

The images are taken from an open-access paper by Withers et al., which is published under the Cre-
ative Commons Attribution-NonCommercial 1.0 Generic license. Modifications have been made to the image
layout and coloring. c©The Author(s) 2013. License: https: // creativecommons. org/ licenses/ by-nc/ 1. 0

The prevalence and rupture fatality depends strongly on the location of the aneurysm.
Coronary artery aneurysms are most commonly caused by atherosclerosis and bear a
prevalence between 1.5-5% [32]. Thoracic aortic aneurysms, e.g. aneurysms of the aorta
within the thoracic region, are mostly caused by medial degeneration, which weakens the
aortic wall and thus leads to dilation [33]. After reaching a diameter of 6 cm or greater,
the yearly mortality for thoracic aneurysms reaches around 11% [12, 34]. While some
amount of medial degeneration results simply from aging, the process can be accelerated
by hypertension or defects of the aortic valve. Another cause for medial degeneration
is the marfan syndrome, a genetic disorder that affects connective tissue all over the
body [33].

Aneurysms on cerebral vessels show a high prevalence in the western population
(3-5%) [35], while their annual risk of rupture is below 1% [36]. The bleeding caused by
their rupture can have fatal consequences, with 40 - 60 % of the patients dying within the
first 30 days. However, especially in the case of small, asymptomatic cerebral aneurysms,
the mortality rate of the treatment may actually exceed the risk of rupture [37]. In
clinical practice, the most important rupture risk factors are the type of aneurysm (i.e.,
asymptomatic or symptomatic), age, sex, and aneurysm size and position [38]. Further-
more, morphological parameters such as irregular shape, orientation and diameter [39,
40] were correlated with rupture risk. Studies have shown that hemodynamic parameters,
such as changes in pressure or wall shear stress, on the vessel wall, correlate with the
rupture of aneurysms and are therefore vital for risk assessment [41–43]. Thus, the study
of these hemodynamics plays an increasing role in current research [44].

Valve Pathologies

Not only the blood vessels can be affected by diseases, but so can the valves. Their
purpose is to prevent blood from flowing in the wrong direction, for example from the
aorta back into the ventricle. The failure of a valve to properly close (called insufficiency)
causes reverse flow (regurgitation) and thus adversely affects the cardiac function by
reducing the pumping efficiency of the heart. The most common causes for aortic valve
insufficiency are inflammations and dilatation of the aortic root [46].

Similar to vessels, it is also possible for a valve itself to be stenotic, i.e. narrowed,
making it harder for the heart to pump blood through the valve. Such a narrowing is
regarded as a severe stenosis of the aortic valve (also commonly referenced to as aortic
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Figure 2.5: Different types of BAVs in comparison to a tricuspid aortic valve [45].

The image is taken from an open access article by Martin et al., published under the Creative Com-
mons Attribution 4.0 International license. c©2015 by the authors. URL: https: // www. ncbi. nlm. nih. gov/
pmc/ articles/ PMC5438177/ License: https: // creativecommons. org/ licenses/ by/ 4. 0

stenosis or AS) when the opening area of the valve is reduced to less than one fourth of
its original size [47]. At this point, significant hemodynamic changes such as increased
pressure gradients start to appear. In industrialized countries, aortic stenosis mostly
appears as a degenerative disease [48] and thus typically affects older patients (with a
prevalence of 1-2% between the ages of 64 to 74, and 4-5% above 74) [49]. In developing
countries, it mostly results from rheumatic infections [48].

Aortic stenosis can also be congenital [50], with the most common form being a bicuspid
aortic valve, or BAV. With a prevalence of around 1-2%, it is the most common congenital
cardiac defect [51]. In a BAV, two of the three cusps are fused together, usually resulting
in a valve with two differently sized cusps [52]. BAVs are classified into three different
types depending on which of the cusps are fused together (Figure 2.5). Type 1 is the
most common form, accounting for more than 70% of BAV patients, followed by Type 2
(10-20%) and Type 3 (5-10%) [53]. BAVs have been connected to various complications,
such as dilatations of the aortic root [54], stenois in the aortic arch and regurgitation [46,
51]. Even in the case of an initially asymptomatic BAV, the valve is more prone to
degenerative aortic valve disease due to the higher amount of mechanical stress [55].

Stenosed pulmonary
semilunar valve

Aorta malpositioned
over septal wall

Right ventricular
hypertrophy

Ventricular 
septal defect

Figure 2.6: Illustration of the anatomical changes within the heart caused by a
Tetralogy of Fallot [22].

The image was taken from the OpenStax publication “Anatomy and Physiology”, released under
the Creative Commons Attribution 4.0 license. It was cropped and the labels were slightly altered
to be in line with the terminology used in this chapter. c©1999–2021, Rice University. URL:
https: // openstax. org/ books/ anatomy-and-physiology/ pages/ 19-1-heart-anatomy# fig-ch20_ 01_ 09
License: https: // creativecommons. org/ licenses/ by/ 4. 0/ deed
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Pathologies of the Heart

Congestive heart failure (CHF) describes the general inability of the heart to provide
adequate blood supply to the body and can be a result of various cardiovascular diseases.
In many cases, a precursor to CHF is hypertension or coronary heart disease [56]. The
general prevalence of CHF is around 2%, although the prevalence increases with age [57].

The tetralogy of fallot (TOF) is the most common congenital heart disease and consists
of multiple pathologic alterations of the cardiac anatomy. A ventricular septal defect
allows blood to flow directly from the right into the left ventricle (right-to-left shunt). As
a result, some amount of de-oxigenated blood is pumped into the systemic circuit via the
aorta instead of the pulmonary circuit, reducing the overall oxygen level in the systemic
circuit. This effect is increased by a pulmonary stenosis and a malpositioning of the
aorta over the ventricular septal wall instead of the left ventricle. The increased effort
to pump blood through the pulmonary artery leads to an enlargement of the muscles
around the right ventricle (right ventricular hypertrophy). Usually, a TOF is diagnosed
and surgically corrected a few months after birth [58].
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In current research, several cardiovascular pathologies have been related to blood flow
pattern changes [3, 59–61]. This section describes the technical aspects of blood flow data
acquisition, as well as the general concepts and challenges for visualizing the resulting
data.

Cardiac Blood Flow Acquisition using 4D PC-MRI 2.2.1

Magnetic resonance imaging (MRI ) is a widely available, non-invasive imaging modality
used in a variety of different medical applications. Magnetic fields are used for the
image acquisition which, unlike the ionizing radiation used for computer tomography
(CT ) scans, have no known adverse effects on living tissue. The following section aims
at providing a general overview over the physical properties and processes exploited
for the image acquisition. MRI is based on the spin, a rotational movement of atomic
nuclei. Under normal circumstances, the axis of this rotation is arbitrary. When a strong
magnetic field B0 is introduced, the spin axes of the protons within the field align with
the field direction ( ~B0), causing a magnetization proportional to the density of protons
within the tissue and aligned to ~B0 (Figure 2.7) [62]. However, the individual rotational
axes are not perfectly aligned to ~B0 and instead rotate (precess) around it (Figure 2.7a).
The rotation frequency ω0, called Larmor frequency, depends on the type of nuclei and
field strength of B0. In case of a single proton in a magnetic field B0 with a strength of
1 T, it is 42.6 MHz.

By introducing a second magnetic field B1 in the form of a radio frequency (RF) signal,
the magnetization direction ( ~M) can be thrown out of alignment with ~B0 (Figure 2.8).
Specifically, if the field direction ~B1 is perpendicular to ~B0 and rotates around it with a
frequency of ω0, ~M precesses with a Larmor frequency of ω1, based on the field strength
of B1. To illustrate this process, we construct a rotating coordinate system, whereas
the z′ axis is aligned with ~B0 and the x′y′ plane rotates with a frequency of ω0. Before
the introduction of B1, ~M aligns with ~B0 and the z′ axis (Figure 2.8a). As ~B1 is

B0

ω0

(a)

B0

M
z

x

y

(b)

Figure 2.7: Alignment of a proton’s rotation ω0 to the magnetic field B0 (a); overall
magnetization direction M for multiple protons within B0 (b).
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Figure 2.8: Magnetization direction M in the rotation coordinate system x′y′z′ before
(a) and after (b) the introduction of the second magnetic field B1. This results in a
composite rotation of M around z with a frequency of ω0 and around x with a frequency
of ω1 in the static coordinate system xyz.

perpendicular to ~B0 and rotating with the same frequency as our coordinate system,
it appears as a static vector in it. For the sake of demonstration, we will assume that
it aligns with the x′ axis (Figure 2.8b). Due to the influence of B1, ~M now precesses
around the x′ axis of our rotating coordinate system with a frequency of ω1. After a
certain amount of time, depending on ω1, ~M will have rotated by 90 ◦ and reaches the y′
axis. At this point, ~M rotates perpendicular around ~B0 with a frequency of ω1 in the
static coordinate system (Figure 2.8c). Using a coil that resonates with magnetization
perpendicular to ~B0, a current can be induced that is the signal used to construct the
final image. This signal decays over time, as the individual proton spins de-synchronize
or de-phase due to the influence of magnetic fields of other molecules (T2 decay). The
time T2 for this to happen depends on the type of tissue. When B1 is turned off, ~M
realigns with ~B0 within a time T1, which is also dependent on the type of tissue, but
is not directly related to T2. Depending on the tissue the physician wants to examine,
the image acquisition parameters of the MR scanner can be adjusted to produce T1- or
T2-weighted images.

With the previously described methods, we can now detect the presence of different
tissue types based on their respective T1 or T2 time, but for the construction of an
image, additional spatial information is required [62]. To only measure tissue in a
specific slice, a magnetic field with a linear gradient in the same direction as B0 and
increasing in z-direction can be overlayed. This produces a Lamor frequency ω′0 specific
to each slice position, as the frequency is directly dependent on the field strength of
B0. By modulating the rotation speed of B1 to fit a specific ω′0, only protons within
this selected slice resonate with the coil. Multiple slices can be acquired by repeated
measurements for different ω′0 frequencies. A similar process allows selecting specific
positions in x-direction, using an additional gradient field. For selecting a position in
y-direction, a different technique is employed. A third gradient field is introduced, where
the strength increases in y-direction. However, unlike the x and z gradient fields, its
field direction is not aligned to B0 and the z axis, but instead to the y axis. Additionally,
this field is only active for a short time after B1 is turned off. This causes a phase shift
within the precession of protons depending on their y-position. By performing multiple
measurements, the individual measurements for each y-position can be calculated from
the sums of all y-positions. With this procedure, a three-dimensional data volume can
be constructed.

Phase Contrast (PC )-MRI is a specific MRI scan sequence first applied to humans in
the 1980s [63], with the principle being established in 1954 [64]. It allows for the in-vivo
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acquisition of blood flow information in the vascular system [65] and can be applied
to a variety of different vascular structures, including the left and right ventricle and
even various neurovascular regions [66]. In clinical practice, only 2D PC-MRI (which
describes the acquisition of a time-resolved 2D slice) is commonly used [67]. In current
clinical research, however, 4D PC-MRI (time-resolved 3D volumes) plays an increasingly
important role [68]. The image acquisition process is similar to the one previously
described, with the addition of two bipolar gradient fields. These fields are identical in
strength, but have opposite directions (Figure 2.9). Their purpose is to alter the phase
of spinning protons (Figure 2.9a). For static tissue, the phase shift of the first field is
undone by the second field (Figure 2.9a). Moving tissue, however, will retain a certain
amount of phase shift due to changing position between the activation of the first and
second fields (Figure 2.9b). As this shift is proportional to the movement speed, the
speed can be reconstructed from it (Figure 2.9c). This process is referred to as velocity
encoding (Venc). However, if the final phase shift after the application of both gradient
fields exceeds the range [−π, π], the actual speed can no longer be determined reliably
[62]. For example, as phase shift of 200 ◦ is indistinguishable from a phase shift of -120 ◦.

Data acquired using 4D PC-MRI consists of three flow images representing direction
and three magnitude images representing speed for each slice and time step (Figure
2.10). From the flow images, a four-dimensional velocity vector field can be constructed.
The pathlines can be integrated from this field, i.e. using fourth-order Runge-Kutta
(RK4 ) integration [69]. The magnitude images can be used for segmentation purposes, as
they exhibit higher contrast and are less susceptible to noise. The datasets also contain
the patient coordinate matrix, which represents a transformation matrix to translate
voxel coordinates from the dataset into world coordinates, including both position and
orientation of the patient.

The acquisition requires configuring the Venc, denoting the highest expected velocity in
x, y and z-direction. Values between 150 and 200cm/s are commonly used for acquisitions
of the thoracic aorta [66], although the flow velocity in pathological cases may exceed this
range. As mentioned before, if the actual flow velocity exceeds the configured Venc, the

s1
s2

t1

Δφ1(t1)
Δφ2(t1)

G

p

(a)

s1

s2

t2

Δφ1(t2) Δφ2(t2)

G

p

(b)

s1

s2

Δt

Δp1(Δt)=0
Δφ1(Δt)=0

Δp2(Δt)

Δφ2(Δt)

G

p

(c)

Figure 2.9: Effect of two bipolar gradient fields on static (s1) and moving (s2) tissue
particles; the first gradient field (red) shifts the phase of both particles according to their
position p at time t1 (a). When the first field is turned off and the second field (blue)
turned on, the phase shift is fully reversed for s1, but not for s2, as it is subjected to
a different field strength at the new position (b). The movement ∆p of s2 and can be
reconstructed from the time difference ∆t and phase shift ∆ϕ.
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acquired value for the respective direction flips its algebraic sign and the flow therefore
appears as if it were moving in the opposite direction. These artifacts are called phase
wraps and manifest either as white areas surrounded by black or black areas surrounded
by white in individual slice images (Figure 2.11). Increasing the Vencwill prevent these
artifacts, but also lower both the overall image contrast and signal-to-noise ration, thus
increasing the difficulty of segmenting the anatomy and decreasing the accuracy of the
flow data [70]. Cases with areas of both very high (e.g. inflow jets) and low (e.g. parts
of the aortic arch) flow speed, which are often clinically interesting, can therefore pose
problems [71]. Here, the Venchas to be increased in order to prevent phase wrapping
artifacts in certain regions, therefore lowering contrast in others. When not using direct
volume rendering to visualize the data, a surface mesh needs to be constructed from
the image segmentation. As 4D PC-MRI images often suffer from poor contrast due
to the Venc, the segmentation is usually performed on a temporal maximum intensity
projection (TMIP) of the magnitude images [72]. In this TMIP, voxels containing high
flow velocity in any time step (i.e. voxels within the vessel) are highlighted.

(a)

(b)

Figure 2.10: Single slices from the flow (a) and magnitude (b) time-resolved volume
images, representing flow in x, y and z-direction.
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(a) (b) (c)

Figure 2.11: Visible phase wraps in directional flow image slices; both the x and y
slices (a and b) contain phase wraps (red circle), whereas the z slice (c) does not.

Cerebral Blood Flow Acquisition using Hemodynamic
Simulations

2.2.2

Many cerebral vessels are too small to be adequately captured using 4D PC-MRI. Thus,
instead of direct measurement, computational fluid dynamics (CFD) simulations based
on patient-specific vessel geometry are commonly used to acquire cerebral blood flow
data. The base for such a simulation is a patient-specific model of the vessel anatomy
reconstructed from tomographical images [73]. Commonly, CT Angiography (CTA), 3D
Rotational Subtraction Angiography (3D RSA) or MR Angiography (MRA) images are
used for this purpose [74–76].

CTA is an invasive imaging technique, as it subjects the patient to both X-ray radiation
and the administration of a contrast agent. The resulting images reliably indicate the
presence of subarachnoid hemorrhage, which makes them a valuable diagnostic tool.
However, CTA lacks sensitivity to specific regions and vessels, such as the carotid artery
at the skull base [75]. Additionally, the use of contrast agent can be problematic for
patients suffering from impaired renal function [77]. 3D RSA also uses X-rays and a
contrast agent to highlight vessels, which is applied via a catheter. Similar to traditional
Digital Subtraction Angiography (DSA), an image made before the introduction of
the contrast agent is subtracted from an image after the introduction of the contrast
agent. This effectively eliminates surrounding tissue from the image and only leaves
the vessels visible. However, DSA is limited to a single viewing angle that has to be
pre-configured and possibly re-adjusted after the image acquisition. 3D RSA instead
uses a rotating C-arm to acquire multiple images from different angles, which allows for
the reconstruction of a 3D volume [78].

MRA image acquisitions take significantly more time and thus can be problematic
for patients in critical conditions [77]. In non-acute cases, Time-of-Flight MR (ToF
MRA) sequences are often used. A ToF acquisition is based on “fresh” blood flowing
into a region of interest that has already been magnetically “saturated” by a previous
RF impulse. This blood exhibits a stronger response signal than the surrounding tissue,
thus creating a contrast difference [62]. The downside of using ToF MRI is its sensitivity
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to patient movement, which is problematic in case of acute subarachnoid hemorrhage
which may prevent the patient from remaining still [75]. An alternative for ToF MRI is
a contrast-enhanced acquisition (CE MRA), where a contrast agent is admitted to the
blood stream to shorten T1 relaxation times, increasing image contrast and decreasing
acquisition time [62].

From the tomographic image, a 3D surface mesh needs to be extracted. Generally,
the images provide enough contrast for an initial segmentation to be created from
thresholding or region growing [76] with the subsequent application of the Marching
Cubes [79] algorithm (see Figure 2.12). However, this approach requires manual post-
processing to correct artifacts such as holes or melted vessels. Instead, more sophisticated
methods to extract a vessel mesh directly from the image data can be employed, such as
implicit models [80].

(a) (b)

(c) (d)

Figure 2.12: Slice image (a) and volume rendering (b) of a 3D rotational subtraction
angiography (RSA); binary segmentation of the vessel lumen (c) and final surface mesh
(d).

Images courtesy of Sylvia Saalfeld.
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Within the hemodynamic simulation, the blood flow is governed by the Navier-Stokes
equation for momentum conservation [81]. Thus, in addition to the vessel geometry,
the simulation also requires flow measurements at each of the vessel’s inlet and outlet
planes. However, this type of data is typically not acquired in clinical practice. Instead,
analytically described inflow conditions [82] or non patient-specific flow measurements
from a healthy volunteer adapted to the vessel size and location [81] are used. Similarly,
the flow division for the outflow boundaries from the selected vessel tree is based on
their geometry instead of patient-specific measurements. Due to imaging limitation,
very small vessel outlets are ignored for the simulation. However, these small vessels
are assumed to have little influence on the overall intra-aneurysmal flow patterns [82].
For the simulation, vessel walls are commonly assumed to be rigid. This is acceptable
due to the low amount of radial dilatations of cerebral vessels during the heart cycle. A
more complex flow simulation including vessel wall dilatations would require additional
information about local wall properties and thickness as well as intra-arterial pressure,
which is not feasible in clinical practice [82]. Additionally, vessel walls are usually defined
as no-slip boundary, meaning that the flow velocity directly at the boundary is zero.
Similar to 4D PC-MRI flow measurements, the hemodynamic simulation results in a
time-resolved flow field.

Flow Visualization 2.2.3

Flow visualization is an essential part of scientific visualization. It has many application
areas, e.g. the visualization of aerodynamics for the automotive and aircraft industries,
meteorology or oceanography. Flow visualization techniques can be broadly separated
into two groups: direct flow visualization and integration-based flow visualization [83, 84].

Direct flow visualization techniques strive to present a visualization that is as close
to the original data as possible. Common techniques to visualize two-dimensional flow
data include color coding, wherein specific attributes such as velocity are mapped to

(a) (b)

Figure 2.13: Circular (a) and turbulent (b) 2D vector field visualized using LIC [85].

Republished with permission of ACM, from "Imaging vector fields using line integral convolution"; Brian
Cabral, Leith Casey Leedom; c©1993; permission conveyed through Copyright Clearance Center, Inc.
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a color scale. To highlight regions within the data, contouring can also be used. The
flow direction can be visualized using lines or arrow glyphs. These techniques can also
be combined, for example by coloring the arrow glyphs to indicate velocity. Another
common approach to directly visualize a 2D flow field is Line Integral Convolution (LIC ),
whereas an arbitrary texture is locally blurred according to the flow direction of a vector
field (Figure 2.13) [85].

For three-dimensional flow datasets, additional challenges such as occlusion arise. The
visualization of singular slices is an in-between solution to render three-dimensional flow
data. In this case, established techniques for two-dimensional flow visualization may be
used. For a true three-dimensional visualization, volume rendering can be considered as
a extension of two-dimensional color mapping [83]. However, the lack of clear boundaries
between flow structure may make it difficult to find an appropriate opacity mapping.

Additionally, flow data in non-cartesian grids can greatly increase the computational
complexity for volume rendering and may even require a re-sampling of the data. As an
alternative to volume rendering, iso-surfaces can be extracted from the flow field. If the
dataset lacks clear boundaries, rendering iso-surfaces may lead to misinterpretations, as
by nature the surfaces imply a clear boundary even when none actually exists within the
data.

Integration-based flow visualization techniques perform integration on the flow
field and visualize the resulting integral objects [83]. Each integration requires a starting
point (“seed”). An inappropriate seeding strategy may cause critical features within the
flow to be missed or other regions to become cluttered with integral objects [87]. Thus,
a common challenge for integration-based techniques is the selection of seed points, lines
or regions.

The following section gives a brief overview over some commonly used integral objects.

Figure 2.14: Streamlines representing blood flow in the left ventricle at 3 different
points in time (left to right: early diastole, late diastole, ejection phase). A vortex ring
is highlighted using an iso-surface (green) [86].

Reprinted from JACC: Cardiovascular Imaging, Vol 5; P. Sengupta, G. Pedrizzetti, P. Kilner, A. Kher-
advar, T. Ebbers, G. Tonti, A. Fraser, J. Narula: "Emerging Trends in CV Flow Visualization", pp 305–316,
c©2012, with permission from Elsevier.
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Figure 2.15: Stream surface visualization using lighting, textures, silhouettes and
transparency to support the perception of surface orientation and reveal inset features [89].
c©2010 IEEE

Streamlines describe lines that follow the flow direction from a seed point in a single time
step. One can imagine a streamline as the trace of a buoy that is moved by a constant
stream. An example of a streamline-based visualization can be seen in Figure 2.14.
Unlike streamlines, pathlines take time-dependent flow into account. Using the same
analogy as before, a pathline can be seen as the trace of a buoy moved by a stream
that changes over time. A fundamental difference between stream- and pathlines is
that streamlines can never intersect each other (as the same position in the field cannot
have different flow vectors), while pathlines can (as the same position in the field can
have different flow vectors at different points in time). Streak lines are lines connecting
multiple particles seeded at the same point in space, but different points in time. Keeping
with the buoy analogy, imagine dropping multiple buoys one after the other into a
stream from a pier, than taking a photo and connecting all of the buoys with a line.
Similar to streamlines, streak lines also cannot intersect themselves or other streak lines.
The differentiation between streamlines, pathlines and streak lines can only be made
for unsteady, i.e. time-dependent, flows. In steady flows, these three types of lines are
identical [84].

In addition to lines, flow can also be represented by integral surfaces. Stream, path and
streak surfaces are an extension to stream-, path- and streak lines, but instead of seeding
a line from a seed point, a surface is seeded from a seed line [88]. Similar to streamlines,
stream and streak surfaces cannot intersect each other. Since there is no flow passing
through them, they can be used to separate regions of similar flow within a flow field [88].
Using surfaces instead of lines increases the complexity and occlusion in the resulting
visualization, thus benefitting from illustrative rendering techniques (Figure 2.15).

An important concept for the analysis of a two-dimensional flow field are critical points,
i.e. points where the velocity magnitude is zero, as by knowing their type (Figure 2.16),
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Figure 2.16: Types of critical points in 2D [95].
c©2000 IEEE

one can infer the flow behavior around them and by extension the entire topology of
the flow field [90]. Although the concept of topological visualization can be applied to
three-dimensional flow fields, such visualizations are less common due to being more
computationally demanding and having a tendency to quickly becoming cluttered for
complex flow fields [91]. Thus, 3D flow fields are often visualized with specific features
such as vortices in mind. Generally, a vortex can be considered as flow swirling around a
core, however finding an exact mathematical definition of a vortex is challenging [92].
Vortices can be detected either by detecting the vortex region, i.e. the region in which
the swirling flow occurs, or by detecting the vortex core line, i.e. the line that the vortex
swirls around [93]. There exists many approaches for the detection of vortices, yet a
universally reliable method has yet to be found [94].

Hemodynamic Parameters 2.2.4

Regardless if the flow field was measured using 4D PC-MRI or acquired from a hemody-
namic simulation, it can be used to extract a set of additional quantitative hemodynamic
parameters, with some of the most common ones detailed in the following.

• Velocity. For each point in the flow field, the time-dependent velocity ~v represents
the local flow in x, y and z direction, usually denoted in m/s. Velocity is the basis
for each of the other hemodynamic parameters and also used to integrate stream-
and pathlines. In addition to being defined for each point in the flow field, both
velocity and velocity magnitude can also be mapped to pathline points.

• Stroke Volume. The SV measures the amount of blood pumped out of the heart
into the aorta or pulmonary artery. It is usually visualized as a time-dependent
curve over a single heart beat [96].

• Regurgitation Fraction. The RF indicated the amount of blood that flows
back from the aorta or pulmonary artery artery into their respective ventricle.
Although a small amount of regurgitation occurs even within healthy subjects,
higher regurgitation fractions indicate a pathology affecting the aortic or pulmonary
valve.

• Pressure. The pressure p represents the amount of kinetic energy within the
blood flow. The calculation of pressure is a mathematical part of hemodynamic
simulations, thus it is directly available in simulated flow datasets. With measured
flow data from 4D PC-MRI, the direct acquisition of pressure values is not possible.
However, relative pressure maps can be calculated from the velocity field [97].

• Wall Shear Stress. The WSS encodes the stress on the vessel wall exerted
by the tangential blood flow passing by. The directional WSS can be calculated
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from the flow velocity close to the vessel wall. However physicians are often more
interested in the WSS magnitude. Both areas with high and low WSS magnitude
are associated with increased rupture risks of intracranial aneurysms [18, 98]. Due
to the comparatively low resolution and signal-to-noise ratio (SNR), the WSS is
less meaningful for measured 4D PC-MRI data [99]. Since the numeric values of
the WSS are not suitable to compare multiple aneurysms in either the same or
different datasets, the normalized wall shear stress if often used for this purpose.
This value can be calculated by normalizing the WSS magnitude on the aneurysm
surface with the average wall shear stress magnitude on the parent vessel.

• Oscillatory Shear Index. This parameter (OSI ) is related to WSS and quantifies
the alignment of the wall shear stress with the average wall shear stress vector over
time. It is calculated using the instantaneous shear stress vector wss and the cycle
period T , and yields values from 0 (strong alignment) to 0.5 (weak alignment).
High OSI values therefore indicate areas where the wall shear stress direction
changes strongly over time.

OSI = 1
2 ·

1−

∣∣∣∫ T0 wssdt
∣∣∣∫ T

0 |wss|dt

 (2.1)

• Residence Time. This parameter is commonly mapped to pathlines and encodes
the amount of time the flow particle represented by the pathline resides within an
aneurysm. A more general variant of this parameter, turnover time (ToT ), denotes
the time a particle resides within a particular vessel region. Residence and turnover
time are commonly denoted in s.

In addition to these quantitative parameters, physicians are also interested in the
occurrence and characteristic of various qualitative flow patterns.

• Vortices. Vortical or helical flow describes a flow pattern that exhibits a circular
movement around a vortex core line. Generally, the flow within vessels is considered
laminar. Due to the curvature and branching of vessels, some natural vortical
patterns occur even in healthy subjects. For example, slightly helical flow can be
observed within the aortic arch [100]. However, vortical or helical flow patterns
have been linked to various pathological changes of the vessel [101–104].

• Intra-aneurysmal flow. Each aneurysm has its own hemodynamic structure,
based on the position of the aneurysm on the parent vessel [105] and the unique
shape of the aneurysm [106]. For cerebral aneurysms, researchers are often interested
in the inflow jet, which describes a blood stream that enters the aneurysm with
a hight velocity, as well as the impingement zone, which is a region on the vessel
wall that is being directly “hit” by the inflow jet [107].
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4D PC-MRI Preprocessing and
Segmentation

3.1

Segmentation is a fundamental part of many computer-aided diagnosis (CAD) systems,
as the accuracy of results obtained from these systems is directly dependent on the
segmentation quality of the underlying medical data. There is no universally applicable
segmentation technique, as each combination of anatomy, image modality and overall
acquisition goal presents their own unique challenges for a segmentation [108]. Thus, each
application domain within the realm of medical visualization requires specifically tailored
segmentation solutions. Within the domain of vessel visualization, various techniques
have been developed over time to extract and segment the vessel geometry for different
image modalities [109]. In the case of 4D PC-MRI, the acquired data consists of the
time-resolved flow field and magnitude images. Performing a segmentation directly on
these images is challenging due to the overall low contrast, low resolution, artifacts
and non-homogenous brightness of the vessels. This section presents selected image
processing and segmentation techniques that allow extracting the vessel geometry from
4D PC-MRI. The correction of image acquisition artifacts is not withing the scope of
this section, however. A comprehensive overview of artifact correction techniques can be
found within the work of Köhler et al. [72].

Preprocessing

To overcome the issues of low contrast and noise, visualization and segmentation of the
anatomy is often based on the magnitude-based TMIP images. This follows the base
assumption that any voxel containing flow with a high velocity in at least one time
step of the magnitude images during the cardiac cycle is most likely part of the vessel
anatomy [110]. However, the sole reliance on magnitude data discards the directional
flow information present in 4D PC-MRI datasets. Especially when the data exhibits a
low SNR, segmenting only magnitude images can easily lead to segmentation errors [111].
Therefore, various methods have been developed to improve contrast in the segmented
images by incorporating additional or derivative information from the flow images. An
example are phase contrast magnetic resonance angiography (PCMRA) images that
weight the directional velocity images using the magnitude images [112].

Chung et al. [111] proposed the use of Local Phase Coherence (LPC ), which is defined
as the sum of dot products of a voxel’s flow vector with those of the adjacent vectors.
The result is an image highlighting areas with not just high flow velocity, but instead
coherent flow (i.e. flow traveling with roughly the same speed in a similar direction). As
voxels outside of the vessel anatomy contain only random noise, these regions do not
form coherent flow and are therefore suppressed. A similar measure by Solem et al. [113],
the Eigenvalue Coherence (EVC ), incorporates eigenvalues of a local velocity tensor
instead of dot products, which reveals its dominant flow directions. If there is only one
dominant flow direction, the voxel is most likely part of the vessel anatomy. In case no
dominant flow direction exists, the flow is assumed to be the result of random noise and
the voxel can therefore be classified as background. An interesting case is the presence
of two dominant flow directions, as it indicates that the voxel is part of the vessel wall.
Here, the movement of the blood overlaps with the movement of the vessel wall, which is
usually orthogonal to the blood flow direction, hence the second dominant flow direction.
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Another way of quantifying the coherence of flow is the Finite Time Lyapunov Exponent
(FTLE) [114]. The FTLE is a measurement for the separation of weightless particles
placed at similar positions and being moved by a flow field over time [115, 116]. In areas
with coherent flow, particles starting within neighboring voxels should reach a similar
final position after a given amount of time. However, in the direct vicinity of the vessel
boundary, where the coherent blood flow borders random motion caused by noise, a high
rate of separation can be observed. Therefore, areas of high intensity in an FTLE image
can be interpreted as an approximation of the vessel boundary [117].

Segmentation

Van Pelt et al. [118] used direct volume rendering to visualize the vessel geometry as
context information. The vessel surface is visualized using raycasting on the TMIP data
and clipped by an automatically positioned plane to show the inlying blood flow. This
approach allows for fast exploration of 4D PC-MRI flow data, as it works directly on the
acquired data by forgoing the need for a segmentation.

In many other applications, an explicit vessel segmentation is required to visualize
the blood flow data. Hennemuth et al. [112] used watershed transformations with user-
defined include and exclude points on PCMRA images to facilitate a segmentation. By
labeling the include points, users can segment multiple anatomical structures at the
same time. Similarly, Köhler et al. [99] used interactive graph cuts to obtain a vessel
segmentation from the TMIP images. The user iteratively marks regions in the image as
either belonging to a specific vessel or to the background until they are satisfied with
the resulting segmentation. Another graph cut-based approach was presented by Gülsün
and Tek. They first extract the vessel centerlines by applying a multi-scale medialness
filter to the magnitude images [119]. Afterwards, the centerlines are used as input for a
graph cut algorithm to facilitate a segmentation and reconstruct the vessel surface [120].

The previously mentioned techniques primarily focus on segmenting the vessel lumen
to extract its geometry. Krishnan et al. [117] introduced an algorithm to detect the
vessel boundary instead of the entire lumen, albeit not for the purpose of segmentation
but as a stopping criterion for their pathline integration. For each voxel, the average flow
velocity over time as well as the FTLE value are calculated. Regions with a low average
flow velocity and a high degree of flow separation (denoted by a high FTLE value) are
considered to be vessel boundaries.

Van Pelt et al. [121] used an active surface model to obtain a segmentation from 4D
PC-MRI data. An initial surface is generated using the Marching Cubes algorithm on
the TMIP image. This surface is then deformed by applying internal and external forces.
The external forces draw the surface towards vessel boundaries, which are detected using
the gradients of either magnitude, EVC or LPC images as a base. The internal forces
work as a counter balance and prevent the surface from being deformed excessively
from its initial shape. The authors compared the results from their approach on the
magnitude, LPC and EVC images, with the latter two achieving superior results due to
their incorporation of directional information.

Volonghi et al. [122] presented a semi-automatic segmentation technique to extract the
vessel surface. The approach uses the Fast Marching Level Set algorithm and requires
an approximation of the vessel centerline as input. To create this centerline, the user
places markers within the vessel, which are automatically connected using cubic splines.
During this step, a coarse approximation of the vessel surface obtained by using the
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Marching Cubes algorithm with a fixed threshold on the magnitude images at the peak
systole is shown to provide orientation for the user. This centerline is then used as an
initial condition for a Fast Marching Level Set algorithm, which automatically extracts a
refined surface.

Bustamante et al. [123] use a priori knowledge about the general shape of various
vessels for a fully automated segmentation (Figure 3.1). In their approach, the aorta,
pulmonary artery and vena cava were first manually segmented in a dataset obtained
from a healthy volunteer and fed into an atlas. This atlas could then be registered to new
datasets to facilitate a segmentation without further manual input. A coarse registration
to TMIP or PCMRA data was achieved using affine transformations and then fine-tuned
with a non-rigid registration. This registered atlas could then be further refined by fitting
it to each individual magnitude image, creating a time-dependent segmentation. Due
to no manual input being required for the segmentation, this approach achieves a high
degree of reproducibility.

Another example for the use of a priori knowledge was presented by Bergen et al. [124].
For each spatial position in the flow image, the flow curves denoting the flow velocity in
x, y and z direction were extracted. These curves were then matched to the typical flow
curves of voxels one would expect within specific regions of the aorta, e.g. high systolic
flow exclusively in x direction during the systole, to facilitate a segmentation.

Figure 3.1: Workflow for the atlas-based segmentation by Bustamante et al. [123].
A previously segmented atlas dataset is registered on a new input dataset to form an
atlas-based segmentation. This segmentation can then be fitted onto each magnitude
image to create a time-dependent segmentation.

The image is taken from an open-access paper by Bustamante et al., which is published under
the Creative Commons Attribution 4.0 International license. c©2015, Bustamante et al. URL:
https: // doi. org/ 10. 1186/ s12968-015-0190-5 License: https: // creativecommons. org/ licenses/ by/ 4. 0
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Perception-oriented Vessel
Visualization

3.2

Once the segmentation and extraction of the vessel surface has been achieved, the next
challenge for vessel visualization is to support the user in perceiving and and interpreting
the complex three-dimensional vascular structures. Thus, various methods to enhance
the perception of both depth and shape in computer-generated 3D images have been
implemented [128, 129]. Many of these techniques utilize colors or textures to convey
depth. Ritter et al. [130] employed hatching to visualize depth relations in complex vas-
cular structures and evaluated this approach in a study with 160 participants. Whenever
two sections of the anatomy were overlapping, the posterior structure was hatched to
simulate a shadow. Hansen et al. [131] introduced distance-encoding silhouettes, where
the depth is mapped to the width of an outline drawn around all of the vessels.

Lawonn et al. [125] presented a combination of depth-dependent halos, support lines
and the illustrative shadows by Ritter et al. to improve the perceptibility of depth. The
support lines are cast from manually selected points of the vessel onto a plane, creating
an effect similar to beams holding the model up, limiting the ability to freely rotate the
vessel. In a later publication, Lawonn et al. [126] extended this approach by casting the
support lines not to a plane below the vessels, but to a cylindrical support geometry
surrounding the focal part ot the vessel tree. Instead of support lines, Lichtenberg et
al. [127] employed glyphs to encode the depth of various points on the vessel tree. An
advantage of this approach is that additional information can be encoded within the
glyph, such as the distance to a risk structure. A comparison between three approaches
can be seen in Figure 3.2.

Rheingans and Ebert [132] used distance color blending, a combination of intensity
depth cueing and color modulation, to increase depth perception in volume models by
mimicking the light-scattering effect of the atmosphere. Joshi et al. [133] later validated
this method specifically for enhancing depth perception in vessel visualization. A similar
method emulating real-world optical effects is Depth of Field (DoF), where objects
are gradually blurred depending on their distance to a focal plane. Without using
eye tracking, this focal plane needs to be positioned manually or using heuristics [134].
Grosset et al. [135] evaluated the effectiveness of various DoF techniques in a study with

(a) (b) (c)

Figure 3.2: Depth visualization using support lines (a) [125], support anchors (b) [126]
and glyphs (c) [127].
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25 participants. They found that DoF only supports depth perception when the focal
plane is placed in the front of the scene.

Instead of emulating optical effects, the chromadepth technique by Steenblik [136]
directly uses the optical properties of the eye lense to create a depth effect. The depth
of each surface point in the image is mapped onto a specific color gradient. As light of
different wavelengths is refracted at different angles in the lens of the eye, this gradient
creates the illusion of depth in an otherwise flat image. Unlike other techniques, such
as Anaglyph 3D, chromadepth does not necessarily require any special type of surface,
glasses or other additional devices, although the effect can be strongly enhanced by
diffraction grating glasses [137].

A variation of this technique called pseudo chromadepth (PCD) was introduced by
Ropinski et al. [134] to increase depth perception in 3D angiography datasets. Instead
of using the full range of colors visible to the human eye, PCD only uses a gradient
from red (low depth) to blue (high depth), as a wider range of hues might distract from
the shading used to convey shape. The high difference in wavelength between red and
blue maximizes their chromadepth effect. Additionally, red is attention-grabbing and
intuitively perceived as foreground, whereas blue – the color of the sky – is generally
perceived as background. The effectiveness of this approach has been confirmed by
multiple studies [134, 138]. A major downside of using a chromadepth or PCD color
scale is that it completely occupies the color channel and thus prevents it from being
used to map additional information about the vessel surface. Therefore, instead of using
the chromadepth or pseudo-chromadepth scale directly on the vessel surface, Kreiser et
al. [139] proposed using the empty space (“Void Space Surfaces”) in between the vessels
to map depth information (Figure 3.3).

(a) (b) (c)

Figure 3.3: Mapping of depth values to Void Space Surfaces using different color scales
(a, b,c) and iso-lines (c) [139].
c©2020 IEEE
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Generation and Visualization of
Pathlines

3.3

Although the vessel surface provides important context information and can be used to
visualize hemodynamic parameters such as pressure or wall shear stress, the flow field
itself needs to be visualized to obtain a comprehensive understanding of the blood flow.
Geometry-based techniques, such as streamlines or pathlines, are the most frequently used
methods for flow analysis [87]. The biggest challenge of these methods is to avoid clutter
and occlusion without missing important features in the data. Interesting structures,
such as vortices, are often hidden within other, more laminar flow. Therefore, a variety of
methods have been developed to automatically or semi-automatically highlight important
flow structures. These filtering methods can be divided into two groups:

Explicit filtering removes lines not satisfying a specified criterion. Lee et al. [140]
proposed a view-dependent explicit filtering technique that resolves occlusion for pathlines.
They calculate a 3D entropy field from the flow field and perform a maximum entropy
projection to obtain a view-dependent 2D entropy map containing the highest entropy
and its corresponding depth value for each pixel. Pathlines that only pass through low-
entropy regions, but at the same time occlude pathlines with higher entropy, are filtered
from the visualization. Specifically for the exploration of blood flow data, Salzbrunn et
al. [141] introduced pathline predicates, a method of grouping vertices in a pathline based
on their fulfillment of a user-defined criterion. By chaining multiple predicates together
using Boolean algebra, complex filter criteria can be implemented. Born et al. [142]
adapted line predicates to support the exploration of cardiac blood flow by designing
a set of predefined predicates. Users could adapt and combine these predicates to suit
their specific needs for exploring cardiac flow data. Köhler et al. [69] implemented line
predicates to extract vortices from cardiac blood flow data. Although these vortices are
reliably detected, this approach only allows for a global filtering of pathlines.

Implicit filtering describes rendering techniques to emphasize lines of interest without
explicitly removing lines. One example is the work by Günther et al. [144, 145], who
presented an implicit filtering approach which modulates the line transparency with
respect to view-dependent occlusion and an importance criterion. The opacity of a line
segment is reduced when it occludes another line segment of higher importance. Thus, in

(a) (b)

Figure 3.4: Comparison between a regular seeding approach with filtering (a) and an
evolutionary seeding approach (b) to highlight a vortex using the same quality criterion
for the filtering and evolutionary algorithm [143].

Images courtesy of Wito Engelke.
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contrast to the previously described approach by Lee et al. [140], occluding pathlines are
not completely removed from the visualization. Examples for possible important criteria
include line length, curvature, flow velocity or vorticity.

Both types of filtering approaches discard or hide a high percentage of the calculated
lines, which is unfavorable in cases where the line integration is expensive. Additionally,
since these techniques operate on pre-existing sets of pathlines, it is hard for them
to emphasize features that are poorly represented in the unfiltered set. Therefore,
some techniques, such as the previously mentioned explorative approach by van Pelt et
al. [118], include dynamic seeding capabilities to overcome this issue. Particles, pathlines
or integral surfaces can be created on demand in the region of interest by placing a
cup-shaped seeding geometry within the vessel. Similarly, de Hoon et al. [146] use
particles to simulate injecting ink into a vessel at a specific location. By using different
integration and seeding options, these particles can mimic stream-, path- and streak
lines. Additionally, the movement of individual particles can be modified based on the
probabilistic distributions of noise on the original medical data, thus implicitly visualizing
uncertainty. Another example for an explorative approach to filtering pathlines presented
by Broos et al. , who used a user-defined transfer function to determine possible seed
points from a flow field [147]. This function determines for each voxel the probability of
becoming a seed point for a pathline. Multiple transfer functions can be combined to
include multiple features. This approach effectively increases the density of pathlines
in regions of interest and decreases the density of lines in all other regions to prevent
occlusion and visual clutter.

Engelke et al. employed evolutionary algorithms to determine suitable seeding locations
to achieve dense line coverage for specific flow features [143]. With this approach,
they were able to achieve high-quality results with significantly fewer line computations
compared to traditional filtering approaches (Figure 3.4). They also managed to overcome
the problem of under-sampling, as their approach is not tied to a predefined sampling
resolution. Esturo et al. [148] presented a method to find globally optimal stream
surfaces by utilizing a domain graph. The approach is tied to a predefined resolution
and thus unable to find solutions not contained in the graph. In general, adaptive
methods follow a similar goal as evolutionary approaches by striving to spend most
efforts in regions of interest. A good example in the context of flow analysis is the work
by Barakat et al. [149], which uses adaptive refinement for an accurate computation of
the flow map. The exploitation or refinement aspect of this approach is similar to that
of evolutionary algorithms, which is facilitated by mutation. The exploration aspect
differs, as the coverage of adaptive methods is determined in the first step by choosing a
base resolution. In contrast, evolutionary algorithms try to achieve good coverage by
continuous exploration, which allows them to work with a low population size from the
beginning.
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Combined Visualization of Pathlines
and Vessel Surfaces

3.4

On the one hand, as previously mentioned, the vessel surface provides important context
information and is therefore often included in visualizations of medical flow. On the
other hand, it is also an additional source of occlusion. Therefore, focus-and-context
visualization techniques that ensure the visibility of inlying important flow features while
maintaining as much context information as possible are required. Viola et al. [150]
introduced importance-driven volume rendering, whereas based on the viewing direction,
less important structures are automatically suppressed (e.g. using transparency) in favor
of more important inset objects. Gasteiger et al. [151] presented Ghosted Views, which
employ an approximation of the Fresnel effect to modulate the opacity of vessel surfaces,
thus showing the blood flow inside of a vessel without removing the entire front-facing
part of the surface. In a subsequent study, Baer et al. [152] showed that in comparison to
a surface with constant transparency, this approach allowed for a more accurate analysis
of the aneurysm and its flow patterns. Glaßer et al. [153] presented a similar technique,
which uses the Fresnel effect to highlight vessel boundaries. Lawonn et al. [154, 155]
modified the approach of Gasteiger by mapping surface shape and distance to pathlines
to the vessel surface using a 2D texture lookup table. Additionally, the surface opacity is
modulated using a measure derived from smoothed suggestive contours instead of the
Fresnel effect. Suggestive contours were introduced by DeCarlo et al. [156] and describe
view-dependent contour lines added to three-dimensional renderings to emphasize their
shape, similar to the contour lines an artist would draw.

Another focus-and-context approach by Gasteiger et al. [157] uses an elliptical “lens”
manually positioned in screen space. This lens blends between two different visualization
styles and can be used to clip away the vessel surface and reveal underlying flow in a
specific focal region. However, due to lens existing only in screen space, camera movement
may result in an undesired change of the focal region and require repositioning of the
lens. Lawonn et al. [158] used an automatic cut-away technique that removes the vessel
surface when it occludes any pathlines, allowing for a simultaneous visualization of blood
flow and parameters on the vessel wall. This reduces the amount of surface area that
needs to be culled, but prevents the entire flow course from being visible at one time.

(a) (b) (c)

Figure 3.5: Explorative forward (a) and backward (b and c) pathline seeding at a
user-specified vessel cross-section [110]. The pathlines are colored according to flow
velocity (a), seed plane (b) and distance from the seed plane (c).
c©2010 IEEE
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Meuschke et al. [159] presented a combined visualization of hemodynamic flow and vessel
surface information with a focus on near-wall flow. To prevent occlusion, the vessel
surface is mapped onto a 2D plane and displayed alongside the 3D visualization. This
approach focuses on correlating multiple surface parameters, such as wall shear stress
and wall thickness, by mapping one parameter to the 2D plane using a color scale and
an additional parameter to a 3D bar chart hovering above the plane. Neugebauer et
al. [160] used the vessel surface as an input for implicit pathline filtering. They employed
an automatic detection of potentially interesting surface regions based on the surface
geometry, although manual selection of a region is also possible. Instead of filtering
existing pathlines according to their distance to the selected region of interest, they
dynamically seed new lines close to the region. Van Pelt et al. [110] introduced an implicit
filtering technique by interactively selecting vessel cross-sections as seeding planes. By
placing these planes into or close to regions of interest, the user can gain insights into
both local (such as vortices) and global (such as splitting flow) flow patterns (Figure
3.5).

Oeltze et al. [162] used clustering to reduce visual clutter in simulated cerebral blood
flow data by grouping pathlines together based on their geometry or attributes. Only
a single representative for each of the resulting cluster is then visualized. In a later
publication, Oeltze et al. [163] added dynamic seeding capabilities to better convey
complex flow structures, such as embedded vortices. Meuschke et al. [161] classified flow
patterns by mapping the aneurysm surface and pathlines to a hemisphere in order to make
them comparable between datasets. The pathlines were clustered and a representative of
each cluster was compared to a set of predefined pattern types to facilitate an automatic
classification of the flow patterns (Figure 3.6). Another efficient clustering approach for
blood flow data, using coherent structures, was presented by Englund et al. [164]. They
calculate a coherence map for pathlines that are seeded from a 2D plane positioned by
the user, detailing the amout of divergence over time of the pathlines seeded from similar
positions. By finding local minima within this map (i.e. regions in the seed plane that
produce similar pathlines) and clustering them together with their associated pathlines,
distinct flow patterns can be extracted.

While clustering-based methods are well suited to give an overview of flow, they are
less suitable to probe specific flow behavior. Additionally, the reduction of complex flow
patterns to a single line may fail to capture their full structure and shape as well as

(a) (b) (c)

Figure 3.6: Classifying flow patterns within an aneurysm (a) by calculating representa-
tives and mapping them into a hemisphere (b). The resulting lines are then matched to
several predefined flow pattern types (c) [161].
c©2019 IEEE
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their relation to the vessel surface. Targeting specific medically relevant flow patterns,
Neugebauer et al. [165] used the ostium as a seeding plane for pathlines, increasing the
pathline density and highlighting the flow entering or leaving the aneurysm. Instead
of highlighting the entire flow within an aneurysm, Gasteiger et al. [107] presented a
method to specifically extract and visualize the inflow jet and impingement zone in
aneurysms, which are both correlated with the risk of rupture of an aneurysm. Van Pelt
et al. [166] extended this approach to allow for a comparative visualization of multiple
stent configurations in the same aneurysm. This allows estimating the effect of the
different stent configurations, especially with respect to reducing the wall shear stress
exerted on the aneurysm wall. However, since the resulting visualization is tailored to a
very specific application, it is not suitable for a more general, explorative approach.
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The comparison of complex information is a key part of data analysis. Although there
exist a set of general techniques, such as juxtaposition and explicit encoding, each specific
application requires a specialized solution to allow for effective comparisons [167]. Verma
and Pang [168] consider three approaches to comparative visualizations: With Image-
level comparison, the comparison is performed on the output images of visualizations,
i.e. by overlaying or displaying them side by side. Data-level comparison describes the
direct comparison of raw data, requiring an application-specific metric. Feature-level
comparison describes comparing features derived from the data, such as streamlines,
pathlines or iso-surfaces.

Pagendarm and Post [169] present an example for image-level comparison by overlaying
visualizations of features from the same flow field to highlight the spatial displacement
of extracted features. Schneider et al. [170] implemented a feature-level comparison by
extracting contour trees from two scalar fields and finding overlapping features in both
datasets.

Various methods have also been explicitly developed for the explorative visualization
of medical flow data [171]. So far, visual comparisons of unsteady medical flow data
was achieved using image-level techniques based on strong abstractions that typically
represent only some flow features. The framework developed by Van Pelt et al. [110]
encompasses multiple visualizations. They use illustrative techniques, such as contour
rendering, to focus the flow visualization on relevant aspects. These techniques include
the use of measuring planes to directly visualize the underlying flow field. The overall
flow structures, such as vortices or branching flow, can also be represented using pathlines.
Born et al. [172] used various illustrative techniques inspired by hand-drawn anatomical
illustrations to create simple visualizations that give an overview of 4D PC-MRI datasets.
The depiction of flow is reduced to a set of minimal flow lines representing the main flow
characteristics of the dataset. Although this simplified visualization improved the visual
comparability of different datasets, it does not support the extraction of comparative
measures, such as differences in flow speed or direction.

Angelelli and Hauser [173] presented a method to optimize side by side comparisons
of flow in tubular structures, such as vessels. By straightening the structure, multiple
representations of the same dataset, e.g. different time points or visualization parameters,
can be juxtaposed (Figure 3.7).

In order to make the analysis of cardiac blood flow more objective and comparable,
Köhler et al. automatically identified various blood flow patterns [69]. In a later publi-
cation, they developed a more abstract representation of vortex flow in cardiac vessels
for the purpose of comparing multiple datasets by using circular bull’s eye plots [174].
The temporal position of a vortex is mapped to the angle, the position on the centerline
to the distance from the plot center, and the vorticity is mapped to color. This creates
a highly compact spatio-temporal depiction of the general vortex structure in a single
dataset, which can also be juxtaposed for comparative purposes (Figure 3.8). The
main goal of this visualization is to enable the physician to quickly distinguish between
pathological and healthy flow structures. A refined version of this approach, which
shows the spatio-temporal position of singular vortices, was presented by Meuschke et
al. [175]. Due to the high level of abstraction, both methods do not enable a more
in-depth comparison between datasets.
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In addition to these approaches, there also exist methods offering data-level or feature-
level comparative visualizations of flow data for very specific use cases. Glaßer et
al. [176] presented visualization and preprocessing techniques for the visual analysis of
longitudinal studies of brain perfusion MRI data. The datasets are co-registered using
the skull as a reference object and displayed using both 2.5D and 3D visualizations.
The 2.5D visualization employs parallel coordinate plots. While this method allows for
a comparative visualization of multiple datasets, it is strongly tailored to longitudinal
studies with a single patient. A comparison between different patients or healthy
volunteers is not supported.

Figure 3.7: Side-by-side flow visualization of multiple time steps in a straightened
aorta [173].
c©2011 IEEE

Figure 3.8: Comparative view of bull’s eye plots showing the temporal occurrence
of vortices in multiple datasets (right). Two larger plots showing data from healthy
volunteers are displayed as reference (left) [174].

Reprinted by permission from Springer Nature: Bildverarbeitung für die Medizin 2015 [174], c©Springer-
Verlag Berlin Heidelberg 2015
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Placement within previous work
of the Visualization Group 3.6

Within our Visualization Group, several PhD and Habilitation thesis focussing on the
analysis of blood flow data have been written. Some of publications authored by former
PhD students from our group have already been mentioned in the previous sections of
this chapter. In the following, we briefly summarize their work and explain how our
current approaches differ.

The first work on this topic within our group started with a cooperation with neuroradi-
ologists from the University Hospital in Magdeburg and the Laboratory of Fluid Dynamics
and Technical Flows from the University of Magdeburg. Matthias Neugebauer focussed
his work on both segmentation and explorative visualization of cerebral aneurysms. In
addition to visualizing the aneurysm and close regions of the harboring vessel, he added a
volume rendering of the entire vessel tree to serve as context information [177]. Hemody-
namic parameters of the vessel wall could be visualized using 2D planar maps positioned
around the 3D surface visualization [178]. Potentially interesting flow structures close to
the vessel wall could be automatically extracted and visualized [160]. A more in-depth
visual analysis of the flow within the aneurysm is achieved by displaying color-coded
streamlines seeded from and directional flow glyphs placed on the ostium, as well as
manually placed sectional planes [165].

Rocco Gasteiger developed a surface shading that improves shape perception for
the vessel wall, while still keeping inset features such as pathlines visible [151]. The
impingement zone within the aneurysm could be visualized both as a surface conveying
its shape and size as well as a simplified arrow glyph [107]. Using a lens in screen
space, different visualizations (e.g. vessel surface, pathlines or iso-surfaces within the
flow field) could be blended with each other to produce a customizable focus-context-
visualization [157].

Kai Lawonn improved on the surface shading by Gasteiger et al. by adding more
expressive shape cues and increasing the visibility of pathlines [154, 155]. Additionally,
he developed a technique to visualize surface parameters simultaneously with pathlines
by employing dynamic cutaways [158]. He developed several techniques to improve depth
and shape perception of complex vascular structures [125, 126].

Steffen Oeltze-Jafra worked on clustering stream- and pathlines within aneurysms to
identify different flow structures [162, 163].

An additional cooperation with radiologists from the University Hospital Magdeburg
and the Herzzentrum Leipzig since 2011 led to additional research focussed on cardiac
imaging. Benjamin Köhler worked on the detection [69, 179], visualization [180, 181]
and comparison [182] of vortices based on 4D PC-MRI images within the aorta and
pulmonary artery. Additionally, he extracted several hemodynamic parameters from the
measured flow fields [96, 183, 184]. These functionalities were implemented into a single
research tool, which was made available to the clinical research partners [99].

Monique Meuschke developed clustering and classification techniques for vortices within
the aorta [175, 185]. Later, her focus switched to cerebral blood flow and worked on a
clustering and classification system for flow structures within aneurysms [161, 186]. By
using glyphs and 2.5D maps, she visualized complex hemodynamic surface parameters
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such as tensors or wall deformation [159, 187]. Additionally, she employed visual analytics
techniques to compare multiple datasets [188].

Many of these previous publications focussed on detecting or visualizing specific flow
features, such as vortices or the impingement zone. As I work with both simulated and
measured data, my approach to the visualization of blood flow is to allow physicians
as much freedom as possible to define features they are interested in. My work on
explorative hemodynamic visualization (see Section 4.3) lets them find arbitrary flow
structures within an aneurysm based on hemodynamic or geometric parameters of the
vessel surface. Similarly, the evolutionary pathline seeding can be freely configured to
produce different pathlines based on the user’s specific research interest by adjusting its
fitness function. The comparative visualization for the aorta using measured 4D PC-MRI
data, while including a function to highlight vortices, uses normalized planes to find
differences and similarities directly within the flow field in regards to flow velocity and
direction.
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4

Exploration and Comparison
of Blood Flow Data





4D PC-MRI Segmentation Using FTLE
Fields

4.1

The content of the following section is based on:
Benjamin Behrendt, Benjamin Köhler, Daniel Gräfe, Matthias Grothoff,
Matthias Gutberlet, and Bernhard Preim. “Semi-Automatic Vessel Boundary
Detection in Cardiac 4D PC-MRI Data Using FTLE fields”. In: Eurographics
Workshop on Visual Computing for Biology and Medicine. The Eurographics
Association, 2016

As mentioned before, an accurate visual representation and extraction of quantitative
hemodynamic information hinges on having a good segmentation of the underlying
medical data in most cases. Methods range from simple thresholding or region growing [76]
to more sophisticated techniques such as level sets [190], watershed transformations [112]
or graph cuts [99, 191, 192]. The segmentation of 4D PC-MRI data can be challenging,
in particular when segmenting low-contrast images (Figure 4.1). In such cases, the
segmentation usually requires extensive time-consuming and exhausting manual input.
Since the differences in local contrast make the TMIP images unsuitable to base a
segmentation on, we propose the additional usage of directional information. Flow
inside of a blood vessel generally follows the vessel’s course and is somewhat coherent,
while any movement perceived outside results from noise and is therefore random.
Thus, the presence of a general flow direction distinguishes the vessel anatomy from
their surroundings, providing additional valuable information for segmentation purposes
(recall Section 3.1).

This distinction is quantifiable using the Finite Time Lyapunov Exponent (FTLE) [114],
which is a measure of the rate of separation of infinitesimally close trajectories in a

(a) (b) (c)

Figure 4.1: Comparison of TMIP image slices showing the aorta with different contrast
levels. While one image (a) can easily be segmented on image intensity alone, segmenting
the others (b, c) is challenging due to the low contrast in the aortic arch and descending
aorta.
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specified time frame of a dynamic system. The lack of coherent flow outside of the
anatomy results in a high rate of separation in the direct vicinity of the vessel boundary,
as this is where directed flow borders on random motion. FTLE fields approximate
Lagrangian Coherent Structures (LCS), which are trajectory structures in a dynamical
system that indicate the presence of physical boundaries or other major influences on
the flow [115]. Therefore, areas of high intensity in an FTLE image can be interpreted
as an approximation of the vessel boundary [117].

To improve the segmentation process specifically on 4D PC-MRI images with low
overall contrast, we have developed an algorithm that combines FTLE and magnitude
information into a new type of image. Using this image as a base for segmentation allows
us to both significantly speed up the segmentation process and increase the segmentation
quality in comparison to classical methods based solely on magnitude.

FTLE image calculation

The base for an FTLE field calculation is a flow map Φt+δt
t (v) [116], which can be

calculated from the directional images. It maps each voxel v = (x, y, z, t) in the four-
dimensional dataset to the position a massless particle integrated from v at time step t
would have at the time point t+δt. Parameters of this process are step size and integration
time δt. The step size controls the number of sampling points for the integration process,
thus increasing the step size can increase the calculation speed at the cost of accuracy.
The optimal integration time varies with each dataset, as it is dependent on variables
like overall flow speed and turbulences [193].

In areas with coherent flow, neighboring voxels in the flow map should reach a similar
final integration position. Due to the coherent flow of the vessel in contrast to the
random noise outside, the aorta’s shape would be clearly distinguishable in this image.
To obtain the actual FTLE value of each voxel v at time t (Eq. 4.3), its spatial gradient
or Jacobian J(v, t, δt) is needed (Eq. 4.1) [117]. It represents the separation of flow
around v in all directions and is approximated by calculating the central differences
with all neighboring voxels. By calculating its Euclidean or Spectral norm, it can be
quantified as a single, scalar value. λmax in Eq. 4.2 is the maximum eigenvalue of the
matrix JTJ . The logarithm in Eq. 4.3 is applied to account for the exponential growth
of this term. Additionally, its numerical stability towards changes of the integration time
δt is increased by performing a normalization [117].

J(v, t, δt) = ∇Φt+δt
t (v) (4.1)

λ(v, t, δt) =
√
λmax(J(v, t, δt)TJ(v, t, δt)) (4.2)

FTLE(v, t, δt) = 1
|δt|

log(λ(v, t, δt)) (4.3)

Due to the absence of a heuristic to determine the optimal integration time before
actually performing the integration, we opted for a fixed value of 20% of the dataset’s
overall time frame (100 - 120ms). The FTLE calculation is performed for each voxel and
time step, thus the resulting FTLE image is three-dimensional and time-resolved. Since
our goal is to create a static segmentation, we can further increase the FTLE image
contrast by sacrificing the temporal information and applying a temporal maximum
intensity projection. As a measurement of flow separation, FTLEs are strongly dependent
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on the time frame they are generated over (defined by t and δt), so there is no need to
calculate them over time frames without significant flow. Therefore, the diastolic phase
can be skipped during FTLE calculation (Figure 4.2c). Since we are only interested in
the ridges of the FTLE image, a normalization above the 80% quantile was applied to
the final image (Figure 4.2a and 4.2b).

In addition to boundaries, certain inset flow structures can also cause high FTLE
values. For instance, strong vortices or inflow jets can sometimes be hard to differentiate
from the actual vessel boundaries (Figure 4.3b). Also, FTLE images are sensitive to
noise, which is likely to appear in air-filled areas. In order to increase the robustness of
our approach against such structures, we use additional information from the TMIP and
flow data to reduce or eliminate their effects.

Although the gradient of the TMIP images alone may not be sufficient to detect vessel
boundaries (Figure 4.3a), it can still help to rule out noise that is detected as unwanted
boundaries in the FTLE image. By normalizing both the TMIP gradient and FTLE
image to an intensity range of 0 to 1 and multiplying them, we can enhance the contrast
of the actual vessel boundary. In both the gradient and FTLE image, the actual boundary
should have comparatively high values, while most inset flow structures are only visible
in the FTLE image. This creates an image with high intensities on the vessel boundaries,
but also a high amount of noise, especially in the lung (Figure 4.3d). As proposed by
Walker et al. [194], we generated the STDEV image by adding up the flow’s temporal
standard deviation over all time steps for each voxel to remove these artifacts. Areas
with an exceptionally high standard deviation are most likely to be air-filled regions and
thus cannot be part of the vessel anatomy (Figure 4.3c). They can therefore be filtered
out by multiplying our image with the inverse of a normalized STDEV image. In the
resulting image, which we will reference as Enhanced FTLE (EFTLE), vessel boundaries
are clearly visible with minimal noise (Figure 4.3e).

(a) (b) (c)

Figure 4.2: FTLE slice generated for a time frame over the systole with (b, c) and with-
out (a) normalization above the 80% quantile, diastolic FTLE frame with normalization
(a).
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(a) (b) (c)

(d) (e)

Figure 4.3: Slices from the input and output data; TMIP gradient (a), FTLE (b)
and STDEV (c) input images. The last two images show the result excluding (d) and
including (e) the STDEV image. The red arrow highlights an area, where including the
STDEV reduces noise.

Implementation

After acquiring and preprocessing the dataset, our application generates the necessary
derived images like TMIP and flow map using parallel processing on the GPU. Generating
the flow map takes the most time, as it requires to integrate the flow for each voxel in
every time step. To approximate the flow trajectory during the flow map calculation, we
are using the fourth-order Runge-Kutta integration (RK4 ), with a step size of 1, which
offers an acceptable compromise between accuracy and speed.

The actual segmentation is performed using the 3D graph cut implementation GridCut,
with edge weights specified by the function e−α·||∇I||2 . I is the image intensity and α a
tolerance parameter with an experimentally determined value of 1000 [192]. The user
has to manually classify small regions using a paint brush tool as belonging to either
the vessel anatomy or background (Figure 4.4). As GridCut supports 3D graph cuts,
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not all individual slices have to be painted onto by the user. After each manual input,
GridCut is executed in a background thread to generate the segmentation, facilitating
an interactive 2D segmentation preview. At any time, the user can also generate the 3D
surface mesh from the segmentation to identify and correct regions with segmentation
errors. This mesh is extracted using the Marching Cubes algorithm, decimated using the
quadric decimation algorithm by Hoppe et al. [195] and smoothed using a low-pass filter,
as suggested by Taubin et al. [196].

Results

To evaluate our method, we asked an expert radiologist to use it as a base to perform
segmentations on. We used four clinical datasets (A-D, Figure 4.5) showing the aorta
and pulmonary artery of healthy volunteers as well as patients with different pathologies.
These specific datasets were chosen out of a larger database as representatives of different
contrast levels. Each dataset consists of six images with a grid resolution of 132 × 192
× 15 - 26 for each of their 11 to 23 time steps, containing flow direction and magnitude
in x, y and z direction. From each of these datasets, we constructed magnitude TMIP,
STDEV and FTLE images and combined them into EFTLE images. All preprocessing
tasks were performed before the radiologist started segmenting the images. On an NVidia
Geforce GTX980, generating a flow map without the diastolic time frame took around
one to three minutes, depending on the dataset dimensions.

The radiologist segmented all datasets twice, once based on TMIP and once on
EFTLE images. To objectively evaluate our approach against classical methods, we
compared both required input for and resulting vessel model from both segmentations.
The quantification of user input consists of counting how many voxels the radiologist
had to manually color in order to reach a satisfying segmentation. In order to make
the results comparable between different datasets with varying resolutions and vessel
volumes, we calculated the ratio of manually segmented voxels in TMIP and EFTLE

Figure 4.4: Segmentation process using graph cuts. The user manually draws foreground
(green) and background (red) regions into the slice images, which are then used as input
for the graph cut algorithm, producing a segmentation (yellow outline).
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images. To ascertain that the user input for segmenting the EFTLE images would
not also generate a good segmentation on a TMIP, the input for both EFTLE- and
TMIP-based segmentations was then reapplied to the other image. We additionally
generated Local Phase Coherency (LPC ) images [111] and applied the EFTLE-based
segmentation input to them to compare the respective segmentation results.

During an informal interview, the radiologist expressed that especially for the datasets
with poor contrast, EFTLE images were much easier to segment because the anatomy
was much clearer to see (Figure 4.6b). This proved especially useful for Dataset B
and Dataset C (Figure 4.5), as the aorta does not align exactly with any of the image
axes in most parts. The increased visibility allowed for a segmentation of additional
parts of the ascending and descending aorta, as seen in Figure 4.7. The TMIP-based
segmentation of the dataset in Figure 4.7a is missing parts of the descending aorta that
were not sufficiently visible in the magnitude images. In Figure 4.7c, the radiologist
was unable to segment parts of the ascending aorta around the left ventricle. Both of
these areas were made possible to segment using EFTLE images (Figure 4.7b and 4.7d).
Additionally, Figure 4.7d shows a better segmentation of the vessels branching from the
aortic arch, which are important landmarks in many applications. A reoccurring problem
with segmenting EFTLE images is that the segmentation can leak from the aorta onto
the pulmonary artery, since the graph cut has problems separating them in some areas.
On the low-contrast datasets, however, the effort to manually correct these errors was
significantly lower than the effort to create a magnitude-based segmentation.

Figure 4.8 shows an overview of the ratio of foreground and background voxels the
expert had to manually mark on our EFTLE images in comparison to TMIP images to
order for the graph cut algorithm to produce a satisfying segmentation. Thus, a value
below 1 means that less manual input was required for the segmentation using EFTLE
images, a value above 1 denotes a higher amount of manual input. Due to the lack of a
gold standard for the segmentations, we did not compute similarity measures such as
the DICE coefficient. The two images with better contrast (Dataset A and Dataset B)
exhibit higher ratios, showing that our method was less efficient on them. Due to the
aforementioned leaking of the segmentation into the pulmonary artery, Dataset A has an
exceptionally high ratio for manually marked background voxels. On images with lower
contrast levels, our approach performs significantly better, as it reduces the amount of
required manual input by 22 to 32 percent.

Figure 4.5: Datasets used for the evaluation (A-D)
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(a) (b) (c)

Figure 4.6: A slice rendered as TMIP (a), EFTLE (b) and LPC (c).

Additionally, we applied the segmentation input for EFTLE images to TMIP images and
in reverse (Figure 4.9). On datasets with better contrast, exchanging the input produced
mostly valid segmentations in both cases. Applying the EFTLE input to TMIP images
generally causes smaller areas to disappear from the resulting segmentation. In the
reverse case, additional undesired areas belonging to the pulmonary artery become visible
(Figure 4.9b). The same things happen on the datasets with lower quality, although the
effects are strongly increased. Here, applying the EFTLE input to TMIP images fails
to produce a valid segmentation, because there is too little input for the graph cut to
work with. This had to be solved by marking additional voxels as background, which
still results in an unsatisfactory segmentation (Figure 4.9c). Applying EFTLE input to
LPC images produced a seemingly valid segmentation for all four datasets. On closer
inspection, however, the vessel segmentation turned out to be incomplete. The graph
cut algorithm fails to automatically include many voxels near the vessel boundary, likely
due to generally lower SNR of LPC images (Figure 4.10).

(a) (b) (c) (d)

Figure 4.7: Vessel mesh extracted from the segmentation of Dataset B (a, b) and
Dataset C (c, d); the vessels generated from a magnitude-based segmentation (c, a) cover
less of the anatomy than those generated from our method (d, b).
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Figure 4.8: Ratios of the voxels our expert had to manually segment on our EFTLE
images in comparison to the TMIP-based segmentation.

(a) (b) (c)

Figure 4.9: Segmentation results after interchanging the input for TMIP and EFTLE
images. Reference segmentation (a), TMIP input applied to EFTLE image (b), EFTLE
input applied to TMIP image (c).

Discussion and Future Work

We presented a method to aid the segmentation of vessels in low-contrast cardiac 4D
PC-MRI datasets. This was achieved by combining magnitude-based images with flow
coherency information extracted from FTLE fields. Although we only tested it with
cardiac 4D PC-MRI data, our method should be easily adaptable for other regions of
the human body, as long as the vessels are large enough to be captured by 4D PC-MRI.
Similarly to LPC images, the resulting EFTLE images allow for a segmentation of the
vessel even in areas with low magnitude contrast or signal-to-noise ratio. With the
help of an expert radiologist we were able to confirm that our approach requires less
input to generate a satisfying segmentation than an LPC-based method. While our
approach works better on low-quality images, using the TMIP as a base for segmentation
was preferable on high-contrast datasets. Therefore, users should be able to switch
between these two options, depending on the quality of their datasets. Alternatively, a
histogram analysis could be performed to automatically switch between EFTLE and
TMIP segmentation.
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(a) (b)

(c) (d)

Figure 4.10: Comparison between LPC- and EFTLE-based segmentations (yellow
outline) using the same input; Red circles in the LPC images (b, d) indicate areas with
incomplete segmentation compared to EFTLE images (a, c).

Further improvements to our approach could be made by a more detailed exploration
of the algorithm’s parameter space, namely the step size, integration time and scale of
the FTLE image. A dynamic adjustment of these parameters, based on the TMIP image
contrast, could potentially allow our approach to perform well even on high-contrast
images. Thus, further studies need to be conducted in order to find a heuristic for
determining an optimal parameter set for each individual dataset.
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Perception-oriented Vessel
Visualization

4.2

Visualizing complex vascular shapes together with pathlines on a two-dimensional screen
naturally comes with various challenges. Common issues are a lack of depth perception
and overlapping between the vessel wall and inlying pathlines. In this section, we will
present our solutions to these problems.

Enhancing Visibility of Blood Flow in Volume
Rendered Cardiac 4D PC-MRI Data

4.2.1

The content of the following section is based on:
Benjamin Behrendt, Benjamin Köhler, Uta Preim, and Bernhard Preim. “En-
hancing visibility of blood flow in volume rendered cardiac 4D PC-MRI data”. In:
Bildverarbeitung für die Medizin. Springer, 2016, pp. 188–193

This work is an extension of my Master’s Thesis [198]. For the paper publication,
I added the minimum structure thickness to suppress noise and conducted the
expert interview.

As previously mentioned, a segmentation is a precondition for many vessel visualization
techniques. However, to allow for a quick explorative visualization, it can be beneficial
to use approaches which do not require a pre-processing or segmentation of the data.
A use case for such an algorithm is the generation of preview images or videos for a
dataset that has just been acquired. Direct Volume Rendering (DVR) is a visualization
technique which allows displaying a volume dataset without needing a segmentation. The
visualization is controlled by a user-specified transfer function, which can be manipulated
on the fly to allow for fast exploration of the dataset. However, problems can arise when
objects, such as pathlines, representing the intravascular blood flow are visualized in
addition to DVR. Using a simple intensity-based transfer function, the pathlines would
either be hidden behind the vessel wall or the volume rendering would have to be drawn
entirely on a background layer, drastically reducing the perception of spatial relations
between the flow and surrounding anatomical structures.

There are a variety of methods to solve overlapping problems, ranging from simply
cutting out the entire context to geometric calculations identifying obstructing parts of
overlapping features and removing them [150]. These techniques are often summarized
as smart visibility techniques. However, they seem unsuitable for depicting blood flow
obtained from 4D PC-MRI using path lines. Since these path lines occupy nearly all of
the space inside the vessel’s context anatomy, rendering geometric calculations to find
overlapping parts would be superfluous. On the other hand, simply removing the entire
context may reduce the viewer’s spatial awareness, making it harder to estimate position
and size of the focus objects.

Therefore, we propose an automated ray sampling algorithm to open up any context
structure and show inset focus objects, achieving a similar effect to frontface culling
on indirect volume visualizations. Our approach reduces occlusion problems between
vessel wall and blood flow in a Direct Volume Rendering of 4D PC-MRI data. The

56



4.2. PERCEPTION-ORIENTED VESSEL VISUALIZATION

visibility of focus objects inside the anatomy is guaranteed while spatial awareness is
mostly maintained due to the presence of anatomical structures as context information.
Furthermore, as our sampling technique does not make any assumptions about the transfer
function, our approach can be combined with existing volume rendering techniques such
as closest vessel projection.

Implementation

Our visualization approach encompasses two parts:

1. The blood flow, which is represented by pathlines and rendered as normal 3D
geometry.

2. The vessel anatomy, which is important as context information and rendered using
Direct Volume Rendering.

We decided to use a closest vessel projection [199] approach for our volume rendering,
whereas the sampling along the ray is stopped once it hits the first local intensity
maximum above a given threshold. Additionally, we use the local magnitude gradient at
this position to calculate Phong lighting to support shape perception.

As our goal is to produce a fast, explorative visualization, the pathlines representing
blood flow are not pre-computed. Instead, they are generated from particles with a
uniform seed distribution inside the anatomy, which move according to the underlying
time-resolved flow field and draw a trail behind them to form pathlines. To avoid placing
particles outside of the anatomy, a mask defining valid particle positions is created
by applying a threshold to the original TMIP. This threshold is linked to the transfer
function used for the anatomy rendering, thus the mask only contains voxels that are not
rendered completely transparent. This is similar to an approach by Stalder et al. [200],
but instead of drawing the path lines on a layer in front of MIP visualization of the data
volume, we spatially integrate both of these types of visualizations.

The composition of DVR anatomy and geometry-based path lines is accomplished
by comparing the current depth during ray sampling with the OpenGL depth buffer
generated when rendering the lines. The ray sampling is terminated prematurely once a
line is hit, i.e. the current sampling depth exceeds the value stored within the depth buffer.
Since all particles are placed inside the anatomy, their path lines are generally occluded,
as shown in Figure 4.11b. Thus, the intravascular flow can only become visible if the
vessel front is culled. If we were using a geometric surface, we could simply calculate the
normals for each face and remove those pointing towards the viewer (frontface culling).
A common way to replace surface normals in DVR, e.g. for the purpose of lighting
calculations, is to employ gradients, as they point towards the outside of structures with
high intensity (vessels) and high gradient magnitudes appear at structural boundaries.
However, using such gradients to facilitate frontface culling would likely only peel off the
outer layer of the voxels belonging to a vessel, as within the vessel, intensity gradient
magnitudes are generally small and thus may be oriented arbitrarily due to noise.

Instead, our algorithm requires an approximated binary vessel segmentation. Unlike
a segmentation used to extract the vessel geometry, e.g. using Marching Cubes, this
segmentation can be very coarse and therefore be generated fully automatically. For the
screenshots presented in this section, we used a threshold on the temporal maximum
intensity projection (TMIP), which is set to the median intensity value. During ray
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casting, our algorithm stores two Boolean values for each ray (Algorithm 1). The first
(b1) represents whether the ray has already hit an anatomical structure, the second (b2)
acts as a switch to control whether encountered voxels are to be rendered or skipped
(see Figure 4.11a). For each sampling point on the ray, we check if the current position
is part of the anatomy by looking it up in the segmentation. This happens first at point
P1, where the structure is hit for the first time. Now, b1 switches to true. After that,
once we encounter a voxel that is no longer part of the anatomy (point P2), b2 is flipped
to true and the sampling position is set back to a previous point on the ray (point P3).
Only now the intensity values read from the sampling position will contribute to the
rendered image. Due to jumping back after leaving the anatomic structure, its back
side will be rendered while any other part of it gets culled. The effect of this rendering
method in combination with path lines can be seen in Figure 4.11c. By manipulating the
distance between P2 and P3, the thickness of the rendered back sides can be adjusted.
To prevent holes in the visualization, this parameter should be set to a distance that
equals at least one voxel in every possible viewing direction.

It is possible for the user to specify a minimum structural size to increase the robustness
or our algorithm against noise and other image artifacts. If the ray exits a structure
without having traversed this given distance inside of it, the loopback will not occur
and b1 will be reset to false, effectively culling the entire structure. It should be noted
that using a minimum structural thickness will not only remove artifacts, but also erode
all anatomical structures. Therefore, in order to keep the visualization as faithful as
possible, the minimum structural thickness should be at most two voxels.

Results

We have tested our algorithm with a set of 20 three-dimensional, time-resolved flow
images of the aorta acquired from 4D PC-MRI scans using a 3 Tesla Magnetom Verio
MR with a Venc of 150 cm/s. They were acquired from both healthy subjects as well as
patients with different pathologies. The datasets consist of six images for each time step,
containing flow direction and magnitude in x, y and z direction. They have a resolution
of 132 × 192, with 15 to 25 slices and 11 to 19 time steps.

In an informal evaluation, we asked an experienced collaborating radiologist to compare
our visualization against one where the path lines were simply drawn in front of a MIP,
as shown in Figure 4.12. The dataset in this example was acquired from a patient with
a bypass and contains abnormal flow patterns in the form of vortices in the ascending

P1 P3 P2

(a) (b) (c)

Figure 4.11: Principle of our algorithm. P1 and P2 are entry and exit points, re-
spectively, whereas P3 is the loopback point (a); flow visualization with loopback-based
frontface culling disabled (b) and enabled (c).
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Algorithm 1 Pseudocode for the processing of a single DVR ray
for all ray in rays do

b1 ← false
b2 ← false
d← 0
d0 ← 0
while d ≤ length( ray ) do

pos← start( ray ) + d · direction( ray )
s← intensityAt( pos ) . Sample from image
if b1 and b2 then

accumulate( s ) . Apply transfer function
else if b1 and not inSegmentation( pos ) then

if (d− d0) > min_distance then . Ensure min. structure size
b2 ← true . Set second switch
d← d− jump_distance . Jump back
continue

else
b1 ← false . Reset both switches
b2 ← false

end if
else if inSegmentation( pos ) then

b1 ← true . Set first switch
d0 ← d . Store current pos. on ray

end if
d← d+ sampling_distance

end while
end for

aorta and aortic arch. In both visualizations, the red highlights are best noticeable when
hiding laminar flow (green). With only the vortex visible, the lack of spatial information
in the MIP visualization makes it difficult to pinpoint its exact location. Using our
approach, on the other hand, the vessel structure is still clearly recognizable, allowing
for easier localization of the vortex.

The expert was asked to compare the visualizations with respect to the visibility of
path lines and the ability to pinpoint their location inside of the vessel and confirmed
that, in our visualization, the vessel’s inner surface were clearer to see. It was also easier
to judge the distance between path lines and vessel boundaries. To understand the
overall vessel shape, however, the MIP visualization was more suitable, because even
parts with lower contrast in the dataset were visible here. This was partially remedied by
the ability to disable frontface culling at will, resulting in a more intuitive and complete
model of the vessel. Still, it was noted that the ability to display the dataset using MIP
should be kept as an option.

Discussion

We have presented a technique to solve overlapping issues when merging volume rendering
with geometry visualization, emphasizing inset features while retaining spatial context
information. Although we focussed on displaying blood flow in 4D PC-MRI data, the
approach can be applied to any volume dataset as long as there is a way to obtain an
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approximate segmentation of the anatomy. Our method allows for a fast exploration
and qualitative analysis of the dataset and containing flow patterns without the need
of time-consuming manual segmentation. Since only the front sides of the vessels are
removed, spatial information remains available.

Our approach does not make any assumption of the nature of the transfer function
and sampling strategy used for volume rendering, besides that it needs to retain depth
information to allow for a composition of the image with the geometry-based pathlines. It
can therefore be used in conjunction with existing volume rendering approaches, such as
windowing or closest vessel projection. Problems with our method arise from data quality
as well as from using a TMIP to visualize the vessel anatomy. When two neighboring
voxels have similar blood flow speeds, the TMIP does not generate a gradient between
them even if they belong to different anatomical structures. Therefore, our algorithm will
consider these intertwined structures as a single large structure and not properly visually
separate them. These artifacts could be reduced by incorporating the flow information
into the boundary detection, e.g. by using an FTLE or LCS image instead of the TMIP
gradient. However, the increased processing time required to generate these images could
be considered as a downside to an approach that is mainly supposed to deliver a quick
preview of the data.

(a) (b) (c) (d)

(e)

Figure 4.12: Blood flow inside the aorta and pulmonary artery rendered using our
algorithm (a, b) and a MIP (c, d), in each case with ( right) and without ( left) laminar
flow (green). Vortices are highlighted in red. A visualization of the vessel anatomy is
provided for reference ( e).
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Combining Pseudo Chromadepth Enhancement and
Parameter Mapping for Vascular Surface Models

4.2.2

The content of the following section is based on:
Benjamin Behrendt, Philipp Berg, Bernhard Preim, and Sylvia Saalfeld. “Com-
bining Pseudo Chroma Depth Enhancement and Parameter Mapping for Vascular
Surface Models”. In: Eurographics Workshop on Visual Computing for Biology
and Medicine. The Eurographics Association, 2017

Regardless whether vascular structures are displayed using DVR or surface rendering,
the final result on screen is always a two-dimensional projection of complex, possibly
intertwined or overlapping three-dimensional objects. Thus, a large set of techniques
have been developed especially for vessel visualization, including surface and volume
rendering, illustrative techniques and model-based techniques. Some of these techniques
are carefully adapted to shape or depth perception by using special color scales [129].
The downside of using color scales to convey depth is that the color channel cannot
be used to visualize parameters on the vessel wall. This is problematic in blood flow
visualizations, as hemodynamic parameters of the vessel wall (such as pressure or wall
shear stress) are often mapped directly to the surface using color scales.

Common techniques to convey depth using color include chromadepth or pseudo-
chromadepth (PCD), recall [134]. In this work, we examine if this type of encoding can
be combined with additional visualization techniques to increase depth perception. We
present a framework for the improved visualization of vessels that features enhanced
depth perception in addition to allowing surface parameters to be mapped to the vessel
wall using color scales. Our approach uses different color scales on the vessel surface to
create separate visualizations for depth and surface parameters, which are then combined
using a blending mask. The generation of this mask is inspired by the Fresnel effect,
which describes the reflection of a surface based on the viewing angle.

Both chromadepth and PCD assume that the color channel of the image does not
contain relevant information and can therefore be utilized to increase depth percep-
tion [134]. While this is true for some applications, such as angiography images, it cannot
be generalized for every kind of medical visualization task. An appropriate visualization
for the exploration of hemodynamic data should therefore convey the general shape and
depth of the vessel model, but simultaneously encode the aforementioned functional
parameters as well. To reduce mental load, the physician should also be able to compare
different regions on the vessel wall regarding their spatial relation and parameter values
without having to switch between different types of shading. We present a technique
that allows the use of PCD in addition to mapping data to the surface color of a model,
which is described in the following.

Method

We are applying our technique to cerebral vessel models with attached hemodynamic
information. These vessel surface models are generated from 3D digital subtraction
angiography data, showing cerebral aneurysms, by applying a threshold-based segmenta-
tion. The iso-surface is extracted and converted into a triangle mesh. This mesh is then
visualized as a 3D surface model and illuminated using Phong Shading with a single
headlight. For the extraction of hemodynamic parameters, the surface mesh is employed
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for computational fluid dynamic simulations. To map the hemodynamic parameters to
the vessel surface, we tested two color scales: a color scale ranging from white to orange
in a first study and a color scale from white to green for the final study. We decided
against using hatching to convey the additional information, as it may also interfere
with the Phong-based lighting we use to convey the shape of the vessels. Furthermore,
hatching is not well suited to highlight small areas of interest.

When analyzing surface parameters on a vessel, physicians often look for “hot spots”.
These are small areas with very high or low values, which can be perceived pre-attentively
when they are encoded with color. To highlight regions with particularly high or low
parameter values, we have chosen to discretize the color scale to five different shades
(Figure 4.13b). To make these shades even more distinct, a black outline has been added
to mark the transition between shades (Figure 4.13c).

Since the green color channel is not occupied by PCD, a trivial solution would be to
map hemodynamic information to that specific color channel only. Such a visualization
(Figure 4.14) would be unsatisfactory, as not only can the same parameter value have
widely different associated hues depending on its location on the model’s surface, but
the shade at a specific location can even change as a result of camera movement. It is
very difficult for humans to mentally disassemble a composite color into its respective
channels. Thus, the interpretation of such a visualization would be error-prone.

Our method displays the PCD color scale on the edges of the 3D model only, based
on the current viewing direction. This type of shading is inspired by the Fresnel effect,
which describes the amount of reflection and refraction of light on a surface in relation
to the viewing angle. A flatter viewing angle on a surface increases the amount of light
that is reflected, resulting in the surface appearing brighter when lighted (Figure 4.15a).
A physically accurate calculation of this effect is quite complicated, especially when
taking into consideration that, due to chromatic dispersion, the strength of the Fresnel
effect also depends on the light components’ wavelengths. Instead, we use a simplified
version of this effect to generate a mask for overlaying the PCD color gradient. Our
Fresnel-Inspired PCD (FI-PCD) mask MPCD is calculated similarly to the ghosted views
introduced by Gasteiger et al. [151] using the following formula:

(a) (b) (c)

Figure 4.13: Comparison of a smooth color scale (A), discrete color scale (B) and
discrete color scale with additional boundaries (C) when visualizing wall shear stress on
a vessel.
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MPCD = fscale ∗ (1− |2 ∗ arccos(~I · ~N)
π

− 1|)s

~I and ~N are the incident and normal vectors at the surface, respectively. The scaling
factor fscale can be used to adjust the effect strength. Similarly, s controls the steepness
of the transition from surface to PCD color scale. We have empirically chosen a scaling
factor of 1 and a steepness of 2. MPCD is dependent on the angle between the normal and
incident vectors, reaching its maximum value when they are orthogonal to each other. On
spherical or tubular models, the Fresnel effect strongly increases the reflectiveness around
the edges of the model (Figure 4.15b). Our final FI-PCD visualization comprises two
images, both of them renderings of the vessel surface. The first one has the parameters
mapped to its color (Figure 4.16a), the second is colored entirely according to the PCD
scale (Figure 4.16b). For each pixel in the final image, the pixel’s value in the mask
MPCD is extracted and used as weight for the linear interpolation between the two
images (Figure 4.16c). For example, black MPCD pixels yield the color-coded parameter
value and white MPCD pixels yield the PCD-based color-coding. The resulting FI-PCD
visualization (Figure 4.16d) allows mapping a scalar parameter to any color scale, while
PCD depth cues are shown only on the edges of the model. They are still clearly visible,

Figure 4.14: PCD shading where the depth is continuously mapped to the red and blue
color scale and the scalar parameter is mapped to the green color channel using a discrete
scale.

Steep angle
Weak reflection

Flat angle
Strong reflection

(a)

Weak reflection

Strong reflection

Strong reflection
on the edges

on the edges

in the center

(b)

Figure 4.15: Simplified principle of the Fresnel effect; the amount of reflection on a
reflective surface depends on the viewing angle (a). When applied to a spherical object,
the edges exhibit strong reflections due to the shallow viewing angle (b).
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while interference with the object’s surface color is reduced. Usually, the physician would
rotate the vessel in a way that the interesting areas are facing the camera instead of
being relegated to the edge of the model. In addition to providing depth cues by hue,
displaying the PCD scale at the edges also increases the perceptibility of overlaps, which
is another important depth cue.

Implementation

Generation and composition of both images is performed mostly in the fragment shader.
When rendering the surface, the attribute values for the surface are sent to the graphics
card as vertex attributes. Additionally, the highest and lowest values of the attribute
as well as the highest and lowest depth values from the previously rendered frame are
stored in the fragment shader as uniform variables. Then, the attributes are interpolated
between vertices, normalized to a [0, 1] range and transformed into a color value by the
fragment shader. The transformation is performed linearly in RGB color space between
white (#FFFFFF) and orange (#FF7F00, pilot study) or green (#00FF00, final study).
Next, the resulting color value is discretized into five distinct shades and used as surface
color.

The boundaries between color shades are generated dynamically on a per-triangle
base by analyzing the affinity of each vertex to a certain color class. For each triangle
with different affinities at the edges, the fragment shader draws a black line separating
these vertices. This approach allows for a very fast generation of dynamic outlines on
the surface, without the need for any pre-processing or the creation of new geometry.
Unfortunately, since the lines are always at the center between two vertices, they do
not always line up exactly with the actual color transition. On a model with a decent
triangle resolution, this effect is only noticeable when zooming in very closely to the
surface.

The second image is generated by normalizing the current fragment’s depth using the
previously stored depth range and mapping the resulting value to the PCD color scale.
Using the depth range from the previous frame allows us to draw the geometry using a
single rendering pass, although it produces a barely noticeable flicker in the PCD color
scale during fast animations. Afterwards, the MPCD value is calculated and used to
compute the composition of both images.

(a) (b) (c) (d)

Figure 4.16: Composition of images to create the FI-PCD visualization: Surface color
image (a), PCD image (b), Composition mask (c) and resulting FI-PCD image (d).
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Evaluation

Our evaluation consists of two separate studies; a pilot study with participants from
the general public, and a final study with experts in the fields of medical engineering
and flow simulation. All participants were shown 3D visualizations of cerebral vessel
surfaces models. These models had one of multiple available attributes mapped to their
surface, such as pressure or wall shear stress. Participants were shown two points on
these datasets and had to select either the one closest to them or the one with the highest
parameter. The datasets were shown with three shading styles:

1. A normal, Phong shaded visualization without any distinct depth enhancement

2. Using brightness as a depth cue, whereas triangles are reduced in brightness by up
to 75% based on their distance.

3. Our implementation of FI-PCD.

All three visualization styles can be seen in Figure 4.17. For the purpose of this
evaluation, a prototypical application was designed to automate the evaluation process
as much as possible. Texts and descriptions in the application were shown in both
German and English. When started, the test application presents the user with a few
instructional pages. All of them include a “Continue” button that becomes enabled after
five seconds and allows the participant to advance to the next screen. The first and
second pages contain general information about the study as well as labeled example
images for all types of visualizations used in this study. To prevent any bias, these images
are always shown in random order. The actual study consists of two blocks, where the
user has to select either the point closest to them, or the one with the highest scalar
surface parameter. Thus, for two selected points on the surface, the user has to identify
their spatial relation or ranking of scalar values (Figure 4.18). Additionally, they always
have the option to click a button labeled “Not sure” if they cannot decide for one of the
points. During each task, the application measures the completion time, rotation time
and whether the user clicked the correct point or hit the “Not sure” button instead. For
the rotation time, we counted the amounts of single frames that a rotation was performed

(a) (b) (c)

Figure 4.17: The different shadings used in the first study: No depth cues (a),
distance-based brightness modulation (b) and FI-PCD (c)
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in and converted them to a duration in seconds. Frames where the user kept the left
mouse button pressed without moving the mouse (therefore not actually performing a
rotation) were not included.

Each block is introduced by another instructional page, which is then followed by
six dedicated tutorial datasets. They serve as a way to familiarize the user with the
visualizations and tasks, therefore their measurements are excluded from the final statistic.
Furthermore, a learning effect during the actual evaluation is prevented. After completing
the tutorial for each block, the user sees a message explaining that the training part
is over and asking them if they have any questions before proceeding. This was done
to ensure they were properly prepared and did not have to ask questions during the
time-measured evaluation. They were encouraged to complete each task as fast and
accurately as possible due to the time measurement. “Guessing” the correct answer was
discouraged in favor of using the “Not sure” button.

The order of blocks was consistent for all participants, starting with the depth judgment
tasks and then switching over to the parameter judgment task. Each task consisted of
30 images in total, six of them being the training images. All users were shown the same
images, although they were ordered randomly. The application ensured that the same
dataset did not appear twice in a row with different shading. Participants did not receive
any immediate feedback about the correctness of their answers during the study, but
statistics about their general performance were made available to them afterwards upon
request.

After completing the assignments on the computer, all participants were asked to fill
out a questionnaire. In addition to age, biological gender and known visual disorders,
participants were asked if they have experience with analyzing medical data or modeling
3D objects and whether they play 3D video games regularly. For visual disorders, we were
mostly interested in those that impede the ability to perceive color or depth. Since there
are many cases where people are unaware of their color perception impairment, we added
a very abbreviated color blindness test using three Ishihara plates. Two of them had

Figure 4.18: One of the datasets with two marked points shown to the participants as
part of the depth judgment task. The image used brightness-based depth cues and the
green color scale from the final study.
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numbers encoded in them (42 and 6) while the last one did not. None of the participants
who had not already denoted a form of color blindness in the questionnaire failed this test.
At the end, participants were asked to rank the three types of visualizations according
to their usefulness for perceiving depth and the surface attribute as well as their general
aesthetic. They were also given space for any additional remarks. We expected the
visualization without depth cues to perform worst in the depth judgment, but best in the
parameter judgment task. As both brightness-based cues and FI-PCD would partially
overlay the surface color scale, we expected them to perform equally well, but not as good
as the visualization without depth cues. Since PCD has proven superior to brightness-
or contrast-based cues by studies in the past (such as [138]), we expected FI-PCD to
perform best in the depth judgment task.

The pilot study allowed us to identify several flaws in our technique. Before the final
study, we corrected these problems by changing some aspects of both our visualization
as well as the application. First, the color scale used to encode the surface attribute was
changed from white-to-orange to white-to-green. The original orange scale was chosen
due to aesthetic reasons. However, many participants in the pilot study noted that red
areas from the FI-PCD shading interfered with orange areas from the surface attribute
color scale. Since PCD only uses the red and blue color channel, green was chosen for the
surface attribute to prevent color overlaps. A comparison between the two color scales
in combination with FI-PCD can be seen in Figure 4.19. We also added a permanent
legend for the used color scales in the bottom left corner of the screen. This was done in
response to some participants in the first study confusing the meaning of some of the
colors during the course of the study. The legend always encoded the surface attribute
color scale in combination with the current depth enhancement color scale.

Pilot Study: For the pilot study, we took advantage of the popular open house
day at our university as a means of finding volunteers. Visitors of this event were
asked to participate in our study. A total number of 104 people from the general public
volunteered to participate in the pilot study. Ten of them were later rejected due to vision
impairments (i.e. various forms of color blindness or problems with depth perception),

(a) (b)

Figure 4.19: Different color scales used in the first (a) and second study (b) in
combination with FI-PCD.
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Figure 4.20: Experimental setup for the pilot study with all four PCs showing our
applications stand-by screen. The two disabled monitors in the corner were not part of
the study.

failing to comprehend the assignment or not filling out the corresponding questionnaire
completely. The age of the participants ranges from 11 to 73, with an average of 28.6
and a standard deviation of 14. Out of the 94 participants that were included in the
evaluation, 40 were female (42.6%). In order to allow for a high number of participants,
we set up four PCs for simultaneous use. They were positioned in a corner of the room
to prevent distractions (Figure 4.20). To ensure comparability of the results between
the different stations, we used PCs with similar hardware specifications and identical
screens. All stations ran the application at a resolution of 1920 × 1080 with 60 frames
per second.

Both verbal explanations as well as written instructions and other materials were made
available to the participants. Additionally, they were given a short verbal introduction
about the topic of vessel visualization in general and the study in particular. To keep
any descriptions simple and explanations short, the different scalar attributes shown
in the visualizations were always just referred to as “pressure”, despite also including
other attributes such as wall shear stress. After that, they were instructed to sit down
at one of the stations and follow the on-screen instructions from the application. Half
of the participants were randomly selected to be given limited control over the camera
during the study, whereas they can rotate the dataset by ten degrees in any direction.
These participants were shown an extra paragraph in one of the instructional pages of
the application explaining that they had the ability to orbit the camera. If they did not
rotate the camera at least once during the tutorial, they were reminded to do so by a
pop-up dialog.

Final Study: The results and feedback we received from the pilot study was used
to enhance our prototype for the final study, as previously described. For this study,
we directly approached several experts in the fields of medical engineering and flow
simulation. Due to the lower number of participants in this study, we decided against
splitting them into two groups. Therefore, we allowed all of them to rotate the camera.
Eleven experts volunteered to take part in our final study. One person was excluded
due to color blindness. The age of the included participants ranged between 22 and 41
(average of 29.1), with two of them being female (20%).
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The second study was performed on a laptop, as it took place at our participant’s
workplace. Despite having less powerful hardware than the PCs used in the first study, it
was able to run the application at a resolution of 1920 × 1080 with 60 frames per second.
For this study, the verbal introduction to vessel visualization was either omitted or kept
very brief, since most participants were already familiar with this field. The instructions
given by the application itself as well as the questionnaire remained unchanged from the
pilot study.

Results

Pilot study: For each participant, we calculated four values from our measurement
for each shading style. Correctness is the percentage of correct answers, e.g. how often
participants selected the nearest point (during the depth judgment task) and the point
with higher scalar value (during the parameter judgment task), respectively. Certainty
denotes the percentage of answers where the user selected any of the points and not the
“Not sure” button. Duration is the average time in seconds the users took for each image.
Rotation is the average time the user spent rotating the dataset. For this value, we only
included users who actually rotated the dataset.

The ability of the participants to pick the point closest to them benefited from having
any form of depth cues enabled (Figure 4.21). Without them, they were only correct in
79% of the depth judgment tasks. Brightness-based depth cues increased their accuracy
to 90%, whereas FI-PCD only increased it to 85%. This is surprising, as we were
expecting the FI-PCD to provide much better depth cues than the brightness-based
approach. Although being reminded after each training session that they could rotate,
only 35 of the 50 users with the ability to rotate actually made use of it. Three of them
performed so little rotation that we assume this interaction to be accidental. This may
have been a result of being overwhelmed due to unfamiliarity with 3D visualizations and
interaction. Users that stated experience in 3D modeling or 3D video games rotated for
an average of 0.3 seconds per dataset, whereas users with no experience only rotated for
0.19 seconds. The values for certainty and rotation are extremely similar for each of the
three shading styles. The users generally rarely used the “Not sure” button in this study.
The average duration was slightly higher for the visualization without depth cues (4.2 s)
in comparison to brightness-based cues (3.8 s) and FI-PCD (4.0 s).
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Figure 4.21: Box plots showing correctness (a), certainty (b), duration in seconds (c)
and rotation duration in seconds (d) for the depth judgment task from the pilot study.
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Figure 4.22: Box plots showing correctness (a), certainty (b), duration in seconds
(c) and rotation duration in seconds (d) for the parameter judgment task from the pilot
study.

For the parameter judgment task, the visualization without cues reached the best average
correctness (96%, Figure 4.22). Users also performed fastest, with an average duration
of 2.9 s per image. This result was to be expected, as there are no additional color
or brightness gradients added to the surface color. The brightness-based depth cues
performed better than FI-PCD with regard to correctness (92% compared to 80%) and
duration (3.2 s compared to 3.5 s). This is most likely due to our choice of color scale
to encode the surface parameters in this study. Many participants remarked that the
orange from the surface color scale was interfering with the red from the PCD scale, thus
making it hard to distinguish them.

Interestingly, in order to interpret the colors of areas strongly affected by depth cues
(i.e. those close to the edge of the vessel when using FI-PCD or those in the background
when using brightness cues), users often resorted to “counting” color gradients. They
would search for an area that was completely white and then count the boundaries
they had to cross to reach the marked point. That way, they could tell which area
represented a higher parameter value even without being able to distinguish the colors
directly. Since this approach requires a path from a marked point to a white area that is
visually uninterrupted, it was not possible in all cases.

Just as in the depth judgment task, the certainty for all shading styles is very similar.
Rotation was used even more rarely in this task. Since the marked points were never
obstructed by other geometry, there was little point in rotating the dataset to compare
the surface coloring. We also analyzed the correctness with regard to whether the users
made use of rotation during the tasks. The ability to rotate the view had very little effect
on the results of the surface parameter task. The correctness of the depth judgment task
increased when rotation was used on the FI-PCD images as well as those without depth
cues. Since parallax movement is another important depth cue, this improvement is not
surprising.

Final study: In our second study, the FI-PCD method reached better results. During
the depth judgment task, users were able to pick the correct point in 94% of the cases.
With the brightness-based shading, they were able to choose correctly in 90% of the
cases, similar to the first study. Without any depth cues, the participants only reached
85% accuracy. This accuracy is slightly higher compared to the first study, which may
be a result of the users’ increased familiarity with 3D vessel visualization.
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The same trend is visible in the certainty plots. Overall, the duration and rotation plots
from the second study show the same trends as those in the first study. Interestingly,
users took longer for their decision and also rotated the view more when viewing the
datasets with FI-PCD compared to brightness-based depth cues. This may be because
the combination of PCD and surface color scale can no longer be perceived pre-attentively.
As expected, users were able to judge the parameters best when no depth cues were
present, reaching a mean correctness of 98%. Brightness-based depth cues produced
an almost identical result with a mean correctness of 96%. FI-PCD shading had the
strongest negative effect on the participant’s ability to compare parameter values on the
surface, although not as strong as in the first study. The mean correctness in this case
was 90%.

The average duration for each decision (from both tasks) was significantly higher in
the second study (5.5 s) compared to the first (3.7 s). Similarly, the average rotation
duration was also higher (0.3s compared to 0.2 s). This may indicate that in the second
study, participants put more effort into the evaluation.

Discussion

With FI-PCD, we have introduced a novel rendering technique that combines pseudo
Chromadepth with color-encoded surface attributes to visualize vascular anatomy in
combination with scalar parameters. We have performed two studies to evaluate our
technique. They have shown that FI-PCD can increase the perception of depth while
maintaining recognizability of surface scales on the vessel surface. For the latter, a careful
choice of color scale is required to avoid conflicts with the color gradients introduced
by PCD. In our first study, we used an inappropriate color scale to encode surface
parameters. This strongly reduced our method’s ability to convey both depth and surface
parameters at the same time. We were able to remedy this problem in the second study
by choosing a different scale that relies only on the green color channel, which goes
unused by PCD. This resulted in a higher increase of depth perception than classic,
brightness-based depth cues.

We decided to use a discretized color scale instead of a smooth one. This reduces
ambiguity between the surface color and PCD scale while at the same time highlighting
areas with high or low values, which physicians are often interested in since their decisions
are discrete as well. The highlighting was increased further by the introduction of outlines
around the differently colored surface regions. This created a robust visualization that
still allowed users to compare parameter values on the surface even when overlaid with
another color or brightness gradient.

Both studies showed that overlaying the color channel with depth cues reduces the
recognizability of the surface color scale. This effect was strongest when using FI-PCD.
A likely explanation is that FI-PCD affects the color of both close and distant regions,
whereas brightness-based depth cues only affect distant regions. Therefore, FI-PCD
should be kept as an optional addition to any visualization that can be disabled in case
an in-depth comparison between the scalar values of different surface points is required.

While we could show that FI-PCD can enhance the perception of depth, there are still
issues that need to be improved on. Firstly, FI-PCD tends to distort the underlying
color scale. This can be partly remedied by choosing a scale that does not interfere
with the red and blue colors from PCD, such as our white-to-green scale. However,
it would be interesting to see if this effect can be further reduced by using different
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values for the scaling factor and steepness in our FI-PCD formula. Reducing the scaling
factor or increasing the steepness would make the PCD color scale less prominent in
the visualization. Therefore, it may be possible to find a setting that results in a better
trade-off between depth and surface color perception.
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Explorative Hemodynamic
Visualization and Comparison

4.3

The goal of many applications is not just to produce an effective visualization, but
ultimatively to allow medical experts to gain new insights. This section details our work
in the field of explorative visualization of hemodynamic data to allow medical researchers
both to answer research questions and form new theories.

Explorative Blood Flow Visualization using Dynamic
Line Filtering based on Surface Features

4.3.1

The content of the following section is based on:
Benjamin Behrendt, Philipp Berg, Oliver Beuing, Bernhard Preim, and Sylvia
Saalfeld. “Explorative Blood Flow Visualization using Dynamic Line Filtering
based on Surface Features”. In: Computer Graphics Forum 37.3 (2018), pp. 183–
194

After the original paper submission, we extended our application based on feedback
from our collaborating physicians to allow for a more in-depth calculation of flow
statistics and report generation.

Physicians are often interested in exploring blood flow patterns that manifest in specific
hemodynamic features, such as changes in pressure or wall shear stress, on the vessel wall.
Simply displaying them inside of the vessel anatomy using established smart visibility
techniques would likely produce unsatisfactory results. To prevent occlusion between
pathlines and vessel surface in the 3D visualization, the pathlines are often filtered by
their parameters, such as velocity magnitude or vorticity. However, these filters require
a priori knowledge of about the flow structures users expect to find. For an explorative
approach, where the physician wants to figure out what kind of flow causes a specific
phenomenon on the vessel surface, their usefulness is limited.

Thus, we present a set of techniques to interactively select and filter flow structures
directly based on their effect on the vessel wall. By selecting regions on the vessel
surface with hemodynamically interesting parameter values, such as local extrema in
pressure or wall shear stress, underlying flow structures such as vortices are automatically
highlighted. These highlights can then be further refined by filtering or modulating
opacity based on parameters such as velocity, pressure or residence time. Our work
was designed in cooperation with an experienced neuroradiologist to identify complex
interactions between hemodynamic parameters in general, and combines the tasks of
parameter visualization and pathline selection to create an intuitive and robust tool for
explorative pathline filtering. The user’s goal is to find local flow structures within the
pathlines correlating to properties of the surface. A general workflow would therefore
involve finding those surface features, selecting a subset of them for further investigation
and extracting flow structures related to the selected features. The interaction should
take advantage of the users’ domain knowledge by allowing them to freely select regions
they are interested in. Menial tasks such as manually drawing onto the surface to define
this region should not be required, but kept as an option to increase flexibility. Based
on this workflow, we identified the following key requirements for our application in
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cooperation with our clinical partners:

Req. 1 It should support finding medically interesting surface regions based on their
morphology and hemodynamic parameters through the visualization.

Req. 2 The user should be able to easily select multiple surface regions and explore the
associated local flow structures.

Req. 3 To support exploration, the user should have control about what kinds of flow
structures are extracted.

Req. 4 The flow structures extracted from each selected feature should be visually
distinguished.

Req. 5 The user should be able to further explore the extracted flow structures based
on their own features.

To evaluate our work, we selected nine datasets, which yielded contradicting results
using conventional analysis. The evaluation was carried out with two expert neurora-
diologists and an expert of flow simulation. One of the neuroradiologists was involved
in the design of our application, whereas the other is completely independent. In the
evaluation section, we provide exploration results for these datasets as well as an informal
qualitative evaluation.

During the evaluation, we show that our approach allowed for a systematic exploration
and quantitative assessment of flow structures in aneurysms. Interesting structures such
as vortices could be reliably detected and comprehensibly visualized, allowing the user
to gain insights into the flow patterns both on a local and global scale.

Method

In this section, we will give an overview of the intended workflow we support (Figure 4.23).
For each step, we will provide information about the user’s interaction possibilities and
explain our design decisions as well as the technical implementation. Starting from the
vessel visualization, the structure is as follows:

Vessel and 
Parameter 

Visualization

Reverse Surface 
Patch Selection

Parameter 
Visualization

Parameter-based 
Selection

Pathline Filtering

Bundles

Extraction of 
Simulated Blood 

Flow

Medical Image 
Acquisition

Phong Shading
Glass Lighting Mode
Adaptive color-coding of parameters 

Implicit filtering
based on visualization
Explicit filtering
with scatterplot and
parallel coordinates view

Color
Line Thickness
Opacity

Freeform Selection

Figure 4.23: Workflow for our application starting with the medical image acquisition.
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1. Visualization of the vessel surface with mapped surface parameters

2. Selection of one or more interesting surface regions

3. Extraction of pathlines related to the selected regions

4. Further filtering of extracted pathlines

Vessel Visualization: Initially, the user is presented with an empty visualization of
the vessel surface. We employ Phong shading with a single headlight to convey the vessel
shape. To prevent the surface from occluding the inner flow that the user will eventually
add, it is always rendered semi-transparently. The amount of transparency can be freely
configured, but defaults to an empirically determined value of 33%. While reducing the
surface opacity does increase visibility of the inner flow, it also decreases the visibility of
lighting effects and therefore reduces shape perception. We therefore decided to adopt a
different strategy for applying lighting and transparency to the vessel surface that we
call “glass lighting mode”.

To emphasize the vessel boundaries even at higher transparency settings, we added
a Fresnel effect to the lighting. Similar to the approach by Gasteiger et al. [151], the
lighting intensity is then multiplied with the vessel opacity for each vertex, although we
consider both the Fresnel and the Phong lighting for this. Regions with strong lighting
therefore appear more opaque, highlighting the vessel shape and creating an effect similar
to looking through a glass bottle. The glass lighting mode is enabled by default, but can
be disabled by the user in favor of using traditional Phong shading with semi-transparent
surfaces. A comparison between both modes can be seen in Figure 4.24. To prevent
visual clutter from overlapping parts of the vessel, the user can set the backfaces of the
vessel to be always fully opaque, despite the previously mentioned transparency setting.
This is disabled by default to prevent the user from missing details in the flow that
otherwise may be hidden. Figure 4.24 shows an overview of the effect of this setting
both in the traditional as well as the glass lighting mode.

Since this visualization style produces multiple, overlaying transparent fragments for
most pixels on screen, we employ Order Independent Transparency (OIT ) [203] to ensure
correct image composition. Instead of rendering fragments directly into a framebuffer
and resolving overlays using a depth test, we write their color and depth values into a
shader storage buffer using a linked list structure. Fragments with an opacity of 1%
or lower are discarded to reduce GPU load and conserve memory during composition,
as such fragments barely contribute to the visualization. The final image is composed
by a separate fragment shader that is applied to a screen-filling quad, effectively being
executed exactly once for each pixel on screen. Using the linked list from the previous
rendering stage, the shader gains access to all fragments for the pixel and is therefore able
to sort them according to depth and to perform alpha blending in the correct order. This
results in a correctly composed image generated entirely on the GPU without having to
perform any pre-processing or ordering on the vertices prior to the rendering step.

Parameter Visualization: To add pathlines to the visualization, the user has to
select at least one area on the vessel surface based on surface parameters. When the
user is selecting these features on the vessel surface, naturally the surface is considered
as the focus object. Therefore, it is now rendered fully opaque and allows mapping
parameters using a color scale. As there are no pathlines rendered, the glass lighting
mode is not available during this selection. Parameters of the vessel wall, such as pressure
or wall shear stress, are displayed onto the surface using color scale. In order to highlight
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(a) (b)

(c) (d)

Figure 4.24: Different rendering modes for the vessel surface in the pathline viewer;
Disabled (a,b) and enabled (c,d) glass lighting, disabled (a,c) and enabled (b,d) opaque
backfaces.

interesting hotspots, which are characterized by local extrema of surface parameter values,
we employ discretized color scales similar to the ones used in section 4.2.2. Once again,
the boundaries are highlighted using black outlines to further emphasize the transition
between shades. The user can freely choose from a set of predefined color scales and
configure the amount of discrete shades. Figure 4.25 shows a comparison of different
settings for the amount of shades. A higher amount of shades adds more details to the
image, but can also lead to a cluttered visualization. Our clinical partners were interested
in specific parameter ranges, i.e. areas with a normalized wall shear stress value below
20%. To identify these regions, more than five different shades were rarely necessary.
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(a) (b) (c)

Figure 4.25: Wall shear stress visualized on the vessel surface using a color scale with
2 (a), 5 (b) and 10 (c) discrete shades ranging from white to orange.

Since the color scale and range settings need to be changed in real-time, they are applied
entirely in the fragment shader. Parameters are normalized to a [0-1] range and uploaded
to the GPU as vertex attributes. Settings, such as value ranges or the selected color
scale, are stored as uniform variables for the shader, allowing them to change without the
need to re-calculate the stored parameter values. To convey the meaning of the selected
color scale, a color legend showing the parameter ranges for each shade is permanently
visible on the left side of the image (Figure 4.25). Any change to the color scale, the
amount of shades or parameter range is reflected on the legend in real time. The selected
color scale’s domain is initially determined based on the active parameter’s value range
and can later be adjusted. This is useful in case the parameter value distribution in the
dataset does not fully cover the natural range of that parameter or if the user is only
interested in a specific sub-range. The adjustment can be performed manually by simply
entering new minimum and maximum values, or semi-automatically by basing the scale
only on the currently visible surface area instead of the entire parameter range. Using the
latter approach increases the detail dynamically when only a smaller part of the dataset
is visible on screen. To achieve this, the fragment shader responsible for rendering the
surface writes the parameter values it encounters into a buffer using atomic min/max
operations. However, it may lead to overestimation of parameter differences, since smaller
changes in the parameter value may lead to higher differences in the mapped color. To
remedy this effect, the color legend will always show the entire parameter range, clearly
indicating that the color scale currently only covers a part of the parameter range. At
any point, the user can fixate the current automatically determined range to prevent it
from changing as a result of adjusting the camera.

Surface Patch Selection: When the user clicks on the vessel surface, we determine
the vertex closest to the cursor position in screen space. This is done by performing
an off-screen rendering step that maps the IDs of all vertices onto the surface (without
performing interpolation) and renders them into a framebuffer. Reading the value of
that framebuffer at the cursor position returns the ID of the closest vertex. A simple
way to select a feature on the surface would be to place a marker at the position of
the closest vertex and then select all adjacent vertices in a specific distance. This type
of selection is available in our software, but it is not the default setting. We decided
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against this approach as the primary method to select patches for several reasons. Using
a distance threshold based on user input would add another step to the interaction,
which we want to keep as simple as possible, according to requirement 2. It may also
lead to confusion whether the distance threshold refers to the distance on the surface
(resulting in a circular selection) or in 3D space (resulting in a spherical selection around
the marker). Additionally, this type of interaction would limit the user to selecting
circular or spherical sections of the surface.

Instead, we decided to allow selecting arbitrary regions on the surface. Unlike the
approach by Neugebauer et al. [160], we base the region selection on hemodynamic instead
of geometric features. We presume that a medically interesting region characterized
by dissonant geometry would also be characterized by their hemodynamics. Therefore,
we derive the selection shape directly from the surface parameter the user has enabled.
We determine the color shade of the selected vertex and iteratively search for adjacent
vertices with parameter values that would lead to the same color shade, effectively
performing a flood fill on the surface (Figure 4.26b). Alternatively, the user can choose to
also include “higher” or “lower” shades in the selection. This allows selecting arbitrarily
shaped regions on the surface using a single click, whereas the parameter visualization
itself works as a selection preview. We refer to these selections as “patches”. It is possible
to change the active surface parameter during the selection. Previously created patches
will remain unchanged, whereas the placement of new patches will be based on the
currently active parameter (Figure 4.26c). We decided against using time-varying surface
parameters, as they would likely make both the selection process and interpretation of
the results more difficult.

By default, each singular selection creates a new patch. Additionally, it is possible to
have multiple selections contributing to the same patch, even if the resulting surface is
not coherent. If a selection based on surface parameters provides unsatisfactory results,
the patch can manually be adjusted by drawing or erasing regions directly on the mesh.
Visually, these patches are differentiated using predefined colors. Since the association of
vertices to their respective patches is stored as flags in a 16 bit integral vertex attribute,
it is possible for different patches to overlap. The total number of patches is therefore
limited to 16. We assume this technical limitation to be unproblematic, as there would
rarely be a situation where the user would need to create more than 16 different patches.

Pathline Visualization: After the user completes the selection of interesting surface
regions, they have the option to select a distance from which to extract pathlines
representing the associated blood flow. Only pathlines that come closer to the selected
vertices than the distance threshold at least once during their course are selected. The
chosen distance can be changed at any time, causing the pathline extraction to be
repeated. The extraction is done by building a KD tree from the surface patch vertices
and calculating the shortest distance for each pathline vertex from this patch. Only
pathlines where at least one vertex is within the selected distance to the surface patch is
included in the line bundle associated with that patch. We decided to use pre-integrated
streamlines instead of dynamically seeding new lines close to the selected path for
performance reasons due to the explorative nature of our application. Creating new
pathlines with dynamic seeding would take significantly longer, whereas filtering existing
pathlines takes at most few seconds and allows us to provide almost instant feedback to
the user.

If the user has selected multiple patches on the surface, the distance threshold can
be configured individually for each patch. The resulting pathline bundles are colored
according to the patches they belong to (Figure 4.26d), making them visually distinct
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(a) (b) (c)

(d)

Figure 4.26: Workflow of selecting surface patches; surface visualization without any
selection (a), selection of one patch (b, red arrow), second selection using a different
parameter (c, green arrow); pathlines passing each of the selected patches highlighted with
matching colors (d).

(recall requirement 4). Pathlines belonging to different patches can be individually
configured, such as by toggling their visibility or mapping parameters to their color,
thickness or opacity. The patches themselves are visible on the vessel surface by default,
but can also be individually hidden or rendered semi-transparently.

This is useful for extensive patches that may otherwise create occlusions. The pathlines
are drawn as lines, then converted into view-aligned quads using the geometry shader.
This allows the adjustment of the line on a per-vertex basis and also circumvents OpenGLs
width limitation of line primitives. Alongside each vertex, we store the integration time
point as a vertex attribute. This allows animating the flow by mapping the temporal
distance of the time point stored for each vertex with the current animation time point
to opacity. The temporal range for which vertices are visible can be adjusted by the user.
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Pathline Filtering: To further refine the previously selected lines, pathline bundles
can be filtered based on their parameters, such as pressure or velocity. This gives the
user the ability to restrict the visualization of a previously extracted line bundle to
a certain combination of features (requirements 3 and 5). One way of filtering the
bundles is to map their hemodynamic parameters to line thickness or opacity, effectively
reducing the visibility of lines with certain high or low parameter values. By mapping
the residence time of a pathline in an aneurysm to opacity and thickness, for example, it
is possible to highlight pathlines that stay inside the aneurysm for a larger amount of
time (Figure 4.27). Instead of implicitly filtering pathlines using thickness or opacity, the
user can explicitly select parameter ranges in a scatterplot or parallel coordinates view of
the current pathline bundle. The scatterplot displays two parameters from the currently
selected pathline bundle and allows the user to draw a selection rectangle. To allow
filtering based on more than two parameters at the same time, we included a parallel
coordinates diagram. The user can select which parameters are shown in this diagram
and change their order. For each enabled parameter, they can interactively specify a
range to filter pathline vertices.

Both the scatterplot and parallel coordinates diagram are synchronized. When the user
performs a range selection on one parameter in a diagram, the selection is propagated to
the other. In the parallel coordinates diagram, all lines belonging to a selected vertex are
highlighted. To quantitatively compare two pathline bundles, they can both be plotted
in a line chart (Figure 4.29). Here, one parameter of each bundle (such as speed) is
plotted either over time or flow distance with respect to their average, minimum and
maximum value as well as their 25% quantile, median and 75% quantile. Each of these
metrics can be individually toggled by the user. Figure 4.29 shows the area between the
average speed as well as the 25% and 75% quantile of two line bundles (red and yellow)
and the complete set of pre-integrated pathlines (grey) plotted over the flow distance.
The graphs use the same color as the pathlines in the 3D visualization.

Figure 4.27: Visualization highlighting long-residing flow in an aneurysm by mapping
residence time on line width, opacity and color (temperature scale) at the same time.
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Figure 4.28: Scatterplot and parallel coordinates view showing four parameters (in-
tegration time, residence time within the aneurysm, velocity in m/s and distance from
the seed point) for each vertex of the same line bundle with synchronized selection. The
scatterplot has residence time mapped to the x axis and velocity mapped to the y axis.

Figure 4.29: Line chart comparing two pathline bundles with the global set of pathlines
with respect to their speed and flow distance.
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Once the user has performed a selection in any of the diagrams, the 3D view will be
updated accordingly. There are several ways in which highlighting or culling a certain
parameter range can be performed (Figure 4.30). The first method is vertex-based
selection (Figure 4.30a and 4.30d). In this mode, only vertices matching the selected
parameter ranges will be kept. While this approach represents the user’s selection exactly,
it tends to produce very short line segments in some areas (Figure 4.30a). The line-
based selection mode keeps an entire line if at least one vertex fits the parameter range
(Figure 4.30b and 4.30e). This solves the problem of having very short line segments,
but can lead to confusion as to which exact part of a pathline actually lies within the
parameter range. The third mode is a combination of both previous modes. Like in the
line-based mode, the entire line is kept. Additionally, vertices matching the parameter
range are highlighted with white outlines (Figure 4.30c and 4.30f).

(a) (b) (c)

(d) (e) (f)

(g)

Figure 4.30: The six different combinations of filtering settings; vertex-based selection
(a,d), line-based selection (b,e) and line-based selection with vertex highlights (c,f).
Vertices / lines outside the selected parameter range are removed completely (a,b,c) or
have their opacity reduced to 20% (d,e,f). Icons used to represent these options in the
user interface (g)

.
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In addition to these three modes, the user can also choose how vertices or lines that
do not match the parameter range are handled. They can either be removed from the
visualization completely (Figure 4.30, a-c) or be shown with strongly reduced opacity
(Figure 4.30, d-f). Completely removing them reduces visual clutter, but may also remove
context information about the flow surrounding the selected areas. To support the mode
selection and convey these rather technical options to the user in an understandable way,
they are represented in the user interface by expressive icons (Figure 4.30g).

Reverse Surface Selection: The usual workflow involves selecting an interesting
surface region and then extracting pathlines that pass this section closely. In some
situations, however, physicians would not only be interested in which flow structures
cause a specific surface feature, but also what other surface features the selected flow
structure may pass. Therefore, it is possible to select additional surface regions based on
their distance to an already extracted pathline bundle (Figure 4.31). This is implemented
similarly to the way the pathline bundles are selected, except now the pathline vertices
are written to the KD tree and compared against the surface vertices. By default, the
same distance threshold is used, although this can be adjusted. The user can then map
any parameter to the generated surface to look for other interesting surface features
(Figure 4.31, right). Since we found the black outlines around the different shades of the
color scale to be distracting in a view that also includes pathlines, we disabled them by
default.

Flow Statistics Calculation and Report Generation: Originally, we designed
our software to primarily support the visual exploration of flow structures. Based on
feedback from our collaborating physicians, we added the option to calculate various
quantitative measures concerning both the selected patches and associated pathline
bundles, and export them in a standardized manner. Quantification of the exploration
results allows physicians to perform statistical data analysis, thus further supporting
them in gaining new insights. For the patches, we calculate the surface area and average
values for all available hemodynamic parameters over the entire patch. For the pathline
bundles associated to the patches, we calculate the average flow velocity over all pathlines
that are part of the bundle. As the physicians are often specifically interested in the flow

(a) (b)

Figure 4.31: Original surface patch used to select a pathline bundle (a); additional
surface regions extracted using the same bundle, with wall shear stress mapped to the
color scale (b).
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velocity within the aneurysm, we additionally compute the average flow velocity of the
pathline sections between entering and leaving the aneurysm. The average velocity of
pathline bundle sections that are close to the respective surface patch are also displayed.
By default, this is calculated with ten distances between 0.1mm and 1.0mm, although
this can be freely configured. These values can be calculated individually for each surface
patch and exported together with an automatically generated screenshot of the patch
and pathlines as a PDF file. Additionally, the quantitative data from any pathline bundle
used to create the scatterplot, parallel coordinates and line chart can be exported as
a CSV file. This allows the user to employ an external application of their choice to
perform further analysis.

At any point during the described workflow, the user can go back to previous tasks
without losing any information. For example, if the pathline filtering pointed the users
to possibly interesting surface regions they have not yet selected, they can return to the
surface patch selection mode and add additional patches. The already existing patches,
pathlines and filtering settings will remain unchanged.

Results

To evaluate our methods, we asked two experienced neuroradiologists and an expert
in flow simulation to apply it to nine aneurysms and recorded their findings. Two of
these datasets were from a longitudinal study, acquired three years apart from each
other. We also asked for general feedback in an informal interview afterwards. The
first neuroradiologist and the flow expert were able to use the software themselves after
a short introduction and demonstration on one dataset. The second neuroradiologist
participated over the internet, using remote control. While she gave precise instructions
on which patches to select, the actual interaction with the application was performed by
us.

All three experts described our method as an advancement in the field of explorative
flow visualization. They were able to quickly find interesting surface regions that almost
always yielded interesting flow patterns such as vortices when selected. The color-coding
proved especially useful for assessing which adjacent vessels a particular flow pattern
drains into. According to the experts, a precise selection of specific flow patterns based
on their relation to surface features has previously not been possible. They highly
appreciated the visualization of splitting flow. Overall, our combination of interaction,
visualization and filtering techniques allows for systematic exploration and qualitative
assessment of flow structures.

The first neuroradiologist was primarily interested in patches with either high or
low normalized wall shear stress or high OSI. His main goal was to correlate vortex
structures in the flow with specific hemodynamic parameters on the vessel wall. To
facilitate comparability between datasets, the expert used similar or identical parameter
ranges for the placement of surface patches and the extraction of pathlines. In a few
cases, the expert made use of the function to manually draw patches, for example when
a patch would otherwise “bleed” into the parent vessel. The expert also used the line
chart to determine if a pathline bundle contains more than one actual vortex structure.
To correlate features from the line chart with the 3D visualization, the expert used
vertex-based filtering (Figure 4.30a). He also used the line chart to determine if a pathline
bundle contains more than one actual vortex structure by plotting the residence time
over flow distance. Figure 4.32 shows an example of such a situation from the evaluation.
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The red line bundle contains two different vortices, which is not instantly obvious due to
the complex nature of the flow in the 3D visualization, but clearly visible in the line chart.
With this information, the expert was able to add another patch that captures a flow
bundle only passing through one of these vortex structures (green line bundle). Placing
a single patch took the expert between 24 and 110 seconds, depending on the complexity
of the vessel geometry and if he had to manually draw a patch. Since settings, such as
mapped surface parameter, number of color scale shades or custom parameter ranges
were reset to a default value when switching between datasets, he wished for a way to
change the default values or create custom presets to accelerate the process of placing
patches. Figure 4.33 shows two pathline bundles that the first neuroradiologist selected
in an aneurysm. The red bundle was selected based on a local pressure minimum, the
green bundle based on a wall shear stress minimum. Both the red and green vortices
only appear after the blood flow hits the vessel wall. The flow decelerates when entering
the aneurysm and accelerates when leaving it (Figure 4.33b). Although the aneurysm is
located at a bifurcation, the flow from both vortices drains exclusively into only one of
the adjacent vessels. The second and third dataset were acquired from the same patient
at different points in time. The neuroradiologist was therefore interested in visualizing

(a) (b)

(c)

Figure 4.32: Using the line chart plotting average residence time over flow distance to
differentiate multiple vortices from a complex flow structure; the line chart (c) clearly
shows multiple structures being present in a flow bundle (a) and helps creating a selection
that only contains one of the structures ((b), green lines).
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the development of the aneurysm and flow. Since our application did not directly support
the comparison of datasets, he improvised by running two instances at the same time
and manually adjusting the camera to show a similar angle (Figure 4.34). Selecting a
patch at a similar location in both datasets allowed for a qualitative comparison of the
changes in flow patterns.

The second, independent neuroradiologist was primarily interested in visualizing
splitting flow in aneurysms for the purpose of optimal flow diverter placement. She
stated that highlighting the splitting flow structures can provide decision support for
the placement of flow diverters. Usually, the physician wants to place a flow diverter to
reduce pressure from the aneurysm without covering neighboring vessels completely since
this would stop blood supply via these vessels. According to the expert, experienced
neuroradiologists are often able to infer this information from the wall geometry alone.
However, visualizing the splitting flow could be a valuable help to less experienced
neuroradiologists. Since the expert had limited interest in correlating flow structures
with surface parameters, she mostly placed patches based on geometric features, such as
blebs or the aneurysm dome. When filtering pathline bundles based on their hemodynamic
parameters, this expert preferred line-based filtering with reduced opacity for filtered
lines (Figure 4.30f). We did not record the time she took for patch selection since the
interaction was not performed directly by the expert.

(a) (b)

(c)

Figure 4.33: Flow selection performed by one of the neuroradiologists from three
different perspectives; the right image has the flow velocity mapped onto the pathlines
using a temperature color scale.
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Our method proved to be stable in respect of the parameter chosen for the surface
patch selection. Interesting flow structures often manifest in multiple surface parameter
changes, either in different locations or different parameters. For example, the red line
bundle in Figure 4.33 could have also been selected using the OSI parameter. In cases
where a selection either did not yield an interesting flow structure or resulted in multiple
structures at once, the resulting pathlines usually contained clues about more promising
surface regions that could be selected instead. The ability to manually draw patches
onto the surface without regard to the underlying parameters proved to be useful when
the experts wanted to select a region based on vessel morphology that did not fully
correlate to any surface parameter. A point of criticism was that manually adjusting
the surface color scales was often necessary. The color scale domain is initialized using
the global parameter minimum and maximum, yet the physician is generally looking
for local minima and maxima. These values may not always be visible initially due
to the discrete nature of the color scale, therefore requiring manual adjustment. They
requested various (possibly customizable) presets for these adjustments to be added
to the application in order to save time when selecting surface patches with recurring
parameter configurations.

All experts expressed their interest in being able to further quantify various aspects of
their exploration results. An example for that would be the ability to measure the size
and extent of detected structures. More complex measures, such as the amount of flow
that passes through a certain structure or directly underneath a surface patch, would
be desirable as well. Calculating additional quantitative measures for each line bundle
would allow the physician to gain a deeper understanding of the flow patterns. Another
requested feature was the ability to place a plane into the parent vessel of an aneurysm
and map the attributes and spatial positions of pathlines passing through it. This would
generate a flow profile depicting which regions of the vessel cross-section feed or drain
into different flow structures. A potential use for this kind of information would be the
optimization of stent placement.

Discussion

The feedback from all experts shows that our method can support the visual exploration
of blood flow and its relation to surface features. According to their feedback, we were

(a) (b)

Figure 4.34: Comparison of the same aneurysm acquired in 2011 (a) and 2014 (b);
the residence time is mapped onto a temperature color scale.

87



CHAPTER 4. EXPLORATION AND COMPARISON OF BLOOD FLOW DATA

able to fulfill the previously presented requirements. The use of a discrete color scale
allows for a fast localization of extreme hemodynamic parameters. Unlike previous
approaches such as [110, 157, 204], the local flow structures associated to an interesting
surface structure can be visualized with only a few mouse clicks. Further exploration of
the resulting pathline bundles is possible by either mapping their parameters onto a color
scale for filtering them in real-time using a parameter scatterplot, parallel coordinates
view or line chart. Both the extraction of pathline bundles as well as the additional
filtering can be performed in real-time. Color-coding the selected patches and associated
pathlines allows for an easy visual assessment of the entire course of a bundle, similar to
van Pelt et al. [110].

We have presented a set of intuitive techniques to allow for an interactive exploration
of local blood flow based on surface features. Both clinical and the flow simulation
expert appreciated the local selection techniques to analyze blood flow characteristics in
combination with surface parameters. In fact, both stated that they were missing this
opportunity in their respective known tools. They also were interested in the visualization
of the flow splitting and appreciated the presentation of the pathlines for the entire vessels.
Furthermore, the sophisticated real-time filtering techniques including parameter-based
filtering and usage of parallel coordinate views as well as the scatterplot could fulfill all
of their requests regarding the selection of specific blood flow characteristics. At the
moment, the selection of interesting surface regions is performed manually. Automatic
suggestions for regions, similar to Neugebauer et al. [160], could potentially increase the
reproducibility of our approach and prevent details from being missed. To facilitate such
a selection, a measure for interesting-ness could be generated by calculating the local
deviation of multiple geometric features and hemodynamic parameters. Although tailored
to cerebral aneurysms, our methods can be easily adapted to other applications both in-
and outside of the medical field. All that is required for our software to work is a surface
model and a set of arbitrarily generated pathlines. Having quantitative parameters
mapped to them extends the filtering possibilities, but is not strictly required for our
application to be used. Problems could arise when working with complex intertwining
surface models, since occlusions might hinder the user’s ability to select certain parts
of the surface. Possible solutions in this scenario would be to use semi-transparent
surfaces in combination with an automated selection algorithm, as presented by Mühler
et al. [205].

At the moment, our software is focused on the exploration of a single dataset. There
are, however, many scenarios in which physicians would like to compare different datasets.
For example, a physician may want to see how a treatment they have performed affected
the blood flow in comparison to a dataset acquired before the procedure. To support
these comparisons, further quantitative values in addition to the existing ones should be
extracted, for example about the flow directly underneath a patch or the patch itself.
Instead of simply showing multiple datasets side by side in isolated views, an integrated
visualization would be desirable. This would require translating either the surface patches
or the seed points for a selected pathline bundle to highlight how the flow has changed
between datasets.
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Evolutionary Pathlines for Blood Flow Exploration
in Cerebral Aneurysms

4.3.2

The content of the following section is based on:
Benjamin Behrendt, Wito Engelke, Philipp Berg, Oliver Beuing, Bernhard
Preim, Ingrid Hotz, and Sylvia Saalfeld. “Evolutionary Pathlines for Blood Flow
Exploration in Cerebral Aneurysms”. In: Eurographics Workshop on Visual
Computing for Biology and Medicine. The Eurographics Association, 2019

In addition to the methodes described in this publication, we added a pathline
clustering based on DBSCAN to automatically extract different flow structures
within the set of generated pathlines. Another addition is the option to display all
pathlines without occlusion in a 2D pathline overview plot.

In the previous section, we limited our prototype application to work with pre-integrated
pathlines. This was to ensure that all interactions with the tool can be performed
in real-time. However, this approach may be unsatisfactory in some situations. For
example, if the users feel that a certain interesting area lacks details due to a low number
of pathlines, they may want to dynamically add more detail by seeding additional
pathlines in that specific region. Finding a suitable set of pathlines representing the
most important flow patterns while avoiding visual clutter is challenging. Pre-computing
sets of lines using dense seeding on a regular 2D grid in the inflow area of the respective
vessel subsection followed by filtering is a typical solution. However, the seed points
for interesting pathlines are often sparsely distributed in the seeding domain and can
therefore easily be missed, even when seeding a high amount of pathlines. Thus, high
computational costs are required for pathlines that will never be shown, while still having
no guarantee to find the features of interest.

Recently, Engelke et al. [143] introduced evolutionary streamlines for the analysis
of steady flows. They formulated the task of finding representative lines in a steady
flow field as an optimization problem, achieving high-quality results while requiring
significantly fewer line computations than traditional filtering approaches. They also
managed to overcome under-sampling, since the approach is not tied to a predefined
sampling resolution. We extend this method to evolutionary pathlines for unsteady flow
analysis in complex vascular domains including pathologies by

• Extending the algorithm to support time-dependent data and produce pathlines
instead of streamlines.

• Adapting the fitness function to specific requirements for blood flow analysis in
cerebral aneurysms, including the ability to incorporate properties of the vessel
surface into the fitness calculation, inspired by our previous work (recall Section
4.3.1).

• Embedding this technique into a framework designed to support clinical research
and treatment decisions for cerebral aneurysms.

The generation of feature-sensitive sets of pathlines is integrated in an exploration
framework for individual patients as well as the comparison amongst patients. A set of
predefined fitness functions supports an automatic extraction of flow patterns of patient
groups with high anatomical variations and aneurysm shapes, including aneurysm blebs or
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strongly lobulated shapes. 3D visualization of the pathlines gives the anatomical context
required for improved treatment planning. Mapping properties of the evolutionary
algorithm, such as fitness, onto the pathlines supports the comprehensibility of our
approach. An easy specification of general optimization criteria for entire patient groups
is possible, thus allowing simulated cerebral blood flow data to be batch-processed. Our
method has been technically evaluated with respect to convergence behavior, stability
of the results and computational efficiency. A case study shows the usefulness for
the analysis of hemodynamic flow in cerebral aneurysms for treatment planning. The
feedback of the domain experts suggests that the approach is superior to previous seeding
and analysis strategies. Thus, the main contributions of our work can be summarized as:

• A new approach for analysis of medical blood flow data based on evolutionary
pathlines.

• An efficient pathline seeding strategy to achieve high line coverage, detecting even
sparse and highly localized features without relying on a complete field analysis.

• A technical evaluation of the algorithmic properties with respect to convergence,
reproducibility, performance and line coverage, as well as an evaluation of the
usefulness of the approach with domain experts.

Background

For pathline visualization, even a dense seeding at the parent vessel’s inlet or the
ostium cannot ensure to entirely represent the intraaneurysmal flow, whereas further
increasing the amount of pathlines yields visual clutter. A characterization of blood
flow patterns [106] as well as an aggregation into meaningful clusters [163] prevent
visual clutter, but depend on pre-integrated lines and cannot account for strongly
lobulated aneurysm shapes with blebs. Seeding directly in the region of interest and then

(a) (b) (c)

Figure 4.35: Illustration of line coverage using different seeding methods. Traditional
Seeding (a) is under-sampling the aneurysm bleb. Backward Integration (b) leads to
incorrect vortices due to large temporal differences. In contrast, our method (c) generates
pathlines with identical start times and reveals complex vortices when searching for
pathlines passing a specific area on the vessel surface.
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performing both forward- and backward integration generates pathlines in the desired
region. However, these pathlines arrive at the inflow plane at different points in time
(Figure 4.35), which does not accurately represent the blood flow in the vessel and does
not meet the requirements of the clinicians. In fact, it could prevent the extraction
of complex structures like an embedded vortex. A similar problem arises when using
two-pass integration, where potentially interesting seed points for forward-integration
are determined by using backward integration, as seeding at a different time point (t0)
will produce a different pathline.

Evolutionary algorithms as meta heuristic for a guided search are based on the
principle of natural selection by Charles Darwin [207]. They can be used for optimization
problems, where an analytic solution does not exist and an exhausting exploration is not
feasible. Application areas for evolutionary algorithms include parameter optimization
(e.g. curvature of pipes) [208], packing and scheduling problems, and biological modeling.
A recent book by Kruse et al. [209] discusses evolutionary algorithms in the context of
computational intelligence. The core principle of evolutionary algorithms is to improve
initial random candidates by using evolution-motivated mechanisms such as selection,
crossover and mutation. Thus, a problem of the form:

H = {x ∈ Ω|∀x′ ∈ Ω : f(x) � f(x′)} (4.4)

can be optimized, where the goal is to find an element x in the search space Ω which
optimizes a function f : Ω→ R in Ω. This function is referred to as the fitness function
and defines a quality measure for the candidate solutions and a comparison operator �
in Ω. Furthermore, the specific implementation of the fitness function, selection, and
especially the genetic operators (i.e. crossover and mutation) are highly problem-specific.
Additional parameters for steering the algorithm are population size, crossover probability,
mutation probability, and mutation strength.

Notation: We refer to a single solution candidate as individual I. The fitness of a
specific individual Ii is referred to as f(Ii). Furthermore, a population P consists of
np individuals. Parameters for steering the evolutionary algorithms are percentages for
Elite Selection pe, Mutation pm, Crossover pc, and Insertion pi. A single iteration of the
evolutionary algorithm is referred to as a generation.

Initialization: In this step, the population P of size np is created, with each individual
I ∈ P representing one solution. The initial population contains only individuals with
random genomes.
Evaluation: During the evaluation, each individual’s fitness is calculated. With this,
we obtain a value f(Ii) with i ∈ [0 . . . np − 1].
Fitness-Based Sorting: After evaluation, the list of individuals is sorted according
to their fitness. Subsequent steps, such as elite selection, mutation, crossover, and the
calculation of convergence measures, rely on an ordered list of individuals.
Elite Selection: This step ensures that good solution candidates are kept between
generations. Transferring ne unmodified individuals to the next generation P ′ is referred
to as elite selection. These individuals are selected from the ordered list according to Ii
with i ∈ [0 . . . ne − 1] and ne = pe · np.

Crossover: The first genetic operator combines the genome of n individuals to create
n offsprings. In its simplest form, with n = 2, each offspring inherits half of each parents’
genetic information.
Mutation: The second genetic operator slightly alters each individual’s genome, whereas
the probability, type and strength of mutation are configurable. This step can be
understood as exploration of the local surrounding of a solution candidate in the search
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space Ω. A mutation is only imposed in subsequent generations if it is beneficial for the
individual’s fitness. Individuals are selected from an ordered list according to Ii with
i ∈ [nc . . . ne − 1] and nc = pc · np, ne = pe · np
Insertion: This step replaces a part of the population. For this, the pi · np individuals
in P with the lowest fitness are replaced by new individuals when inserted in P ′. Similar
to the initialization, the new individual’s genome is randomly generated. This step adds
to the genetic diversity and thus ensures further random exploration of the whole search
space.

System Design

In this section we describe our method, consisting of Pathline Generation and Pathline
Visualization. We start by providing an overview of the associated workflow for different
types of users. The visualization and analysis system is composed of three layers: the
Technical Layer that represents the computational backbone of the system, the Advanced
Layer targeted at researchers and the Clinical Layer targeted at physicians. Additionally,
there is a Preprocessing Layer, which details the data processing before being imported
in our system (Figure 4.36).

Preprocessing Layer: Our software was developed for cerebral aneurysm surface
models who are typically extracted from contrast-enhanced 3D rotational angiography.
For the cases presented in this work, a threshold-based segmentation approach was applied
to the 3D DSA images, followed by marching cubes to obtain a triangulated surface mesh
using MeVisLab 2.7 (MeVis Medical Solutions AG, Bremen, Germany) [210], similar to
the approach described by [76]. For the separation of an aneurysm from the parent vessel,
we used a semi-automatic neck curve detection [211]. Based on the segmented aneurysm
surfaces, hemodynamic simulations were carried out using STAR-CCM+ 13.04.

Technical Layer: This layer contains the main computational components, mainly
the evolutionary algorithm with its integrated pathline integrator and the DBSCAN
clustering algorithm. It is only targeted towards the developers and maintainers of the
system and receives its configuration and data from the other layers.

Advanced Layer: This layer is targeted towards researchers in the medical domain
and provides a variety of exploration options. It is designed to support the creation of
non-dataset-specific presets for use in the clinical layer. Thus, it allows the configuration
of the fitness function as well as the genetic parameters for the evolutionary algorithm.
The Fitness Function Editor enables the user to create a fitness function using a weighted
combination of configurable properties. Similarly, the Genetic Parameter Editor allows
to configure the parameters for the evolutionary algorithm, such as the mutation rate or
number of individuals. The fitness function together with genetic parameters can be saved
as a named, dataset-independent preset for specific clinical use cases, e.g. extracting flow
structures close to regions with high WSS or OSI. To support the comprehensibility of
the evolutionary algorithm, it is possible to explicitly filter pathlines in the 3D view based
on their overall fitness value. Comprehending why the evolutionary algorithm converges
to specific pathline bundles can be a valuable aid in designing fitness functions for clinical
use. For a more in-depth analysis, users may also view the previous generations of
pathlines, thus allowing them to trace how the evolutionary algorithm generated the
final result. Additionally, the advanced layer also allows to freely configure the pathline
visualization with respect to mapping attributes to color scales or opacity. These settings
can also be stored as dataset-independent presets.
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Figure 4.36: Overview of the workflows and layers within our framework.

Clinical Layer: This layer is reduced to a minimum of interaction, especially tailored
to the clinical users and designed to support treatment decisions. It allows for a selection
of datasets from the preprocessing layer and presets from the advanced layer. A manual
configuration of the fitness function, genetic parameters or visualization settings is not
available. Thus, the configuration for a clinical workflow needs to be prepared first within
the Advanced Layer. The user can select multiple datasets to perform batch processing
with a single preset configuration. Additionally, basic interactions like rotation and
zooming in the 3D view are supported.

Pathline Generation

We use an evolutionary algorithm to generate a set of representative pathlines for the
hemodynamics in an aneurysm based on a simulated unsteady vector field. The input
to the evolutionary algorithm is the aneurysm geometry and the simulated blood flow.
A plane is automatically fitted in the vessel inlet, which serves as seeding plane for the
pathline generation. The evolutionary algorithm details, such as the highly domain-
specific encoding of solution candidates and the genetic operators, have been specifically
designed for our application.

Individuals: The genome of the individuals encodes a single seed point, which
uniquely defines a pathline with respect to the integration settings. Thus, the search
space Ω is defined by the integral lines’ seeding domain. The individuals are stored
as two-dimensional points Ii = (xi, yi) in the local coordinate system of the seeding
plane, with xi, yi ∈ [0, 1]. For the integration process, they are transformed into world
coordinates. New individuals are always initialized with random values in their genome.

Mutation: In this step, we add a weighted displacement vector ~d ∈ [−1.0, 1.0]d to
the individual’s genome; here, d is the dimension of the search space. Furthermore,
we facilitate a generation-dependent weight which decreases with increasing generation
count by a constant value, ensuring that with increasing average fitness of the population,
solution candidates are altered less.
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Evaluation: To evaluate the fitness of an individual, the entire pathline has to be
integrated from its seed point. We use Shepard interpolation with four samples to acquire
the velocity vector from the flow field. The integration is performed using fourth-order
Runge-Kutta (RK4 ) and a fixed step size of 0.25, although, at the end of the integration,
only every fourth point is kept to speed up the visualization and evaluation of the lines.
Our collaborating physicians prefer a fixed seeding time to prevent visual confusion from
pathlines seeded at different time points being visible simultaneously (recall Figure 4.35).
Furthermore, this better mimics the clinical time-dependent data using contrast agent,
which arrives in the vessel as a bolus. Therefore, we always seed at the first time step
(t = 0). The fitness function f(Ii) is assembled from a set of local properties f1..fn. The
properties can be grouped into two categories:

• Line properties produce fitness information based on pathline geometry, such as
length or curvature.

• Surface properties produce fitness information based on attributes of the vessel
surface close to the pathlines, such as pressure, WSS and OSI.

Both length and curvature of a pathline can indicate the presence of vortex structures,
as a pathline is often longer and has higher curvature when passing through a vortex.
In cases where a separation of the aneurysm from the parent vessel is available, the
residence time of a pathline within the aneurysm can also be used. Thus, only lines
in specific regions are favored and thereby implicitly filtered in a spatial manner. To
obtain surface properties in the context of a pathline, the closest vertex on the surface is
efficiently determined using a KD tree for each line vertex. Then, the selected attribute
from the surface vertex is normalized and assigned to the pathline vertex as a fitness
indicator. Optionally, a distance penalty can be used to reduce the fitness indicator value
after a certain distance from the surface to focus on near-wall features.

Aneurysm geometry: If the aneurysm in the dataset is segmented, all indicator
values for pathline vertices outside a specific region can be disregarded, effectively
preventing surface attributes outside of the aneurysm from contributing to the fitness of
a line.

fp(Ii) =
|Ii|⊙
j=1

(vij) (4.5)

f(Ii) =
n∑
p=1

(fp(Ii) · wp) (4.6)

Pathline fitness: Each local pathline property fp(Ii) is assembled from the per-
vertex fitness indicators vij , depending on the number of vertices |Ii| in the line (Eq. 4.5).
Depending on the user configuration, � is interpreted as sum, avg or max. Using
the sum of the individual indicator values tends to prefer longer lines, as each vertex
contributes to the overall fitness even if it has low fitness indicators. Using the average
favors short lines, as each vertex with lower fitness indicators reduces the overall line
fitness. Using the highest indicator eliminates the length of the line as a fitness factor.
The final fitness value for a pathline is the weighted combination of all its pathline
properties (Eq. 4.6). While individual weights (wp) may be useful and add flexibility
for advanced fitness function configurations, we do not explore this aspect and thus use
the default value of 1 to weight all pathline properties. When using a fitness function
f(Ii) with respect to multiple surface attributes, normalization is important to avoid a
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bias, as the local fitness values may have different value ranges. Thus, we equalize the
value ranges by normalizing all attribute values to the range [0, 1]. The user can further
constrain this range, e.g. treating all values below or above a given threshold as zero.
During the pathline integration, per-vertex fitness indicators and the overall line fitness
are stored as attributes and thus are available for exploration and visualization purposes
in the Advanced Layer.

Pathline and Context Visualization

Similarl to our previous approaches, pathlines are visualized as a strip of view-oriented
quads inside a semi-transparent vessel model. The opacity of the vessel wall is calculated
using a combination of the Fresnel and Phong terms to highlight both the vessel boundaries
and the surface shape [151]. It is possible to map a scalar attribute, such as velocity
magnitude, line curvature, or per-vertex or global fitness indicators onto the pathlines
using a color map, opacity, or thickness (Figure 4.37).

2D Pathline Plots

We implemented a 2D representation of each line set generated by the evolutionary
algorithm to facilitate a comparative visualization for multiple sets of evolutionary lines.
The lines are straightened and stacked onto each other (Figure 4.38). An attribute,
such as flow velocity, can be mapped onto the lines using a color scale. The ordering
of the lines in the diagram can be sorted according to fitness, overall length and length
before the first aneurysm entry point. Additionally, the lines can also be clustered (see
Section 4.3.2). Clusters are represented by colored bars on the left side of the plots.
When batch-processing multiple datasets, the overview plots for each result are displayed
in a grid view. The attribute color scale for each individual view is synchronized and
displayed on top of the grid. The overview plots give insights to both the evolutionary
algorithms and the clustering. When displaying multiple plots side by side, e.g. using
different configurations for the evolutionary algorithm, they allow for a quick estimation
of the differences and similarities between the generated line sets.

Clustering

The set of pathlines resulting from the evolutionary algorithm is often a composition of
different flow structures. To automatically separate these flow structures, we cluster the
pathlines based on pathline attributes along the line (Figure 4.39). We employ a density-
based spatial clustering of applications with noise, i.e. the DBSCAN algorithm [212]. This
approach was preferred against a hierarchical clustering algorithm as these algorithms
require either manual interaction or an estimate of the number of expected clusters.
DBSCAN requires a metric to measure similarity between individual lines. Due to the
varying distance between line vertices as a result of the integration, a direct comparison
of the lines is not possible. We therefore resample the lines so that the vertices of all lines
have the same distance, with the longest line always having 64 vertices. We empirically
determined 64 vertices to be an acceptable trade-off between computation time for the
clustering and accuracy of the data representation.

To determine the similarity between two lines, we calculate the average difference sv
between the normalized attribute values v1..vn at the first n vertices of both lines La and
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Lb, whereas n is the number of vertices in the shorter of both lines (Eq. 4.7). However,
this tends to group very short lines together with larger ones, as only a few vertices of the
long line are taken into account. Therefore, we also calculate the difference between the
normalized length l of both lines. The final similarity measure s ∈ [0..

√
2] is calculated

from sv and the line length difference, ensuring that all lines in a cluster have similar
length (Eq. 4.8).

(a)

(b)

Figure 4.37: Different parameter mapping options for pathlines. In (a), the residence
time inside the aneurysm is mapped to the opacity and the flow velocity is mapped onto
color using a temperature scale (white is slow). In (b), the per-vertex fitness indicator is
mapped to color (green-to-red-scale) and the overall line fitness is mapped to thickness.
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sv =
∑n
p=1 |vp(La)− vp(Lb)|

n
(4.7)

s =
√
sv2 + |l(La)− l(Lb)|2 (4.8)

Evaluation

In this section, we analyze our approach at first with respect to technical quality and
performance, and discuss the method from an application point of view. First, we
analyze our evolutionary algorithm with respect to its convergence and reproducibility
to evaluate the Technical Layer of our workflow. Afterwards, we perform comparisons
between our algorithm and a uniform seeding approach regarding the coverage of lines
and its performance.

Convergence: The evolutionary algorithm empirically converges against an ideal
result with respect to its fitness function. The convergence speed and the number of
iterations needed to reach a sufficiently good result depends on the characteristic behavior
of the fitness function within the search domain. There are two main parameters that
control the trade-off between the quality of the result and the computation time. These
are the population size and the number of generations. To determine a good default
value for the number of generations and the population size, we have run the algorithm

Figure 4.38: Two-dimensional overview plot for a line set generated by the evolutionary
algorithm, with the flow velocity mapped onto the line color. The lines are sorted by length
and grouped into clusters. Lines classified as noise by DBSCAN are grouped together at
the bottom of the stack.
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(a) (b) (c)

Figure 4.39: Clustering result: Pathlines forming a central vortex in the aneurysm
(a), pathlines flowing into the bleb on top of the aneurysms (b) and pathlines leaving the
aneurysm quickly without forming significant vortex structures (c).

on several datasets with different settings and have recorded the fitness values for each
generation. Representative values are obtained by averaging the fitness values from ten
runs for each population size.

The developments of the maximum fitness and different averages of the best lines are
shown in Figure 4.40 for two datasets. The convergence speed and maximum fitness for
the different population sizes is similar in both datasets, suggesting that the population
size mainly influences the number of lines the algorithm produces. As a reference, the
fitness reached by a uniform seeding approach for 1,000 line computations is plotted. In
the first case (Figure 4.40a), the uniform seeding produces a single line with a higher
fitness than all lines generated by the evolutionary algorithm. However, the 10%, 20%
and 50% best lines by the evolutionary algorithm exceed those of the uniform seeding
approach after only a few iterations. In the second case, the peak fitness value of the
evolutionary algorithm soon exceeds the reference values (Figure 4.40b). After a few
additional iterations, even the average fitness of the 10% best lines from the evolutionary
algorithm comes close to the fitness of the best uniformly seeded line. This shows that
better results as with the standard approach can be achieved even though areas with
high fitness values are sparse and localized.

A fitness map shows the projected fitness of each individual on the seed plane for
a single run of the evolutionary algorithm (Figure 4.41a). The projection is achieved
by rendering a Voronoi diagram, where each seed point creates a cell that is colored
according to the fitness of that point. With the given settings (np = 200, pe = 30%,
pc = 0%, pm = 30%, pi = 40%), the evolutionary algorithm integrated 8, 120 pathlines
in total. The map shows that the sampling rate automatically adapts to the fitness
function. The resolution of the map is noticeably lower in areas with lower fitness, as
the algorithm generally favours the exploration of high-fitness areas. To compare the
result with fitness maps created using uniform seeding, we first use the same number of
lines (Figure 4.41b). Then, we increase the number of lines to 106 lines to obtain a map
that is close to the ground truth (Figure 4.41c). In regions with lower to medium fitness,
the evolutionary algorithm is very close to the comparative run with the same number
of lines. In areas with high fitness, it is almost identical to the densely sampled map
(compare highlighted regions in Figure 4.41). The fitness values reached by all three
approaches are summarized in Table 4.1. For both uniform sampling computations the
fitness values are very similar. Integrating 106 lines leads to a better peak fitness due to
a more exhaustive sampling of the seeding space. The evolutionary approach reaches
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Figure 4.40: Average fitness curves (max fitness, top 10%, top 20%, top 50% and
all lines) for 10 respective runs on two datasets a and b with identical configuration
(pe = 30%, pc = 0%, pm = 30%, pi = 40%), but different population sizes (100 and 500).
Horizontal lines indicate max fitness, top 10% and top 20% reached with uniform seeding
of 1000 lines. Note that the best lines’ fitness might be higher with uniform seeding
compared to the evolutionary algorithm (see a), the averages are far below. Even after a
couple of generations the evolutionary algorithm produces more lines with higher fitness
than the uniform seeding approach.

nearly the same peak fitness as the dense seeding, despite integrating significantly fewer
lines. However, the 10%, 20% and 50% best lines have a significantly higher fitness than
both of the uniform approaches.

To understand the influence of the population size on the convergence and thus the
total number of lines that have to be computed, we recorded the fitness reached for
identical configurations, but different population sizes (Figure 4.42). As expected, a
greater number of individuals for each generation increases the speed at which the
evolutionary algorithm converges, but also increases the computational effort.

Reproducibility: Due to the random nature of both the mutation and initialization
of new points, two runs of the evolutionary algorithm with identical configuration will
generate different line sets. To analyze the sensitivity of the results to this randomness,
we performed multiple runs with identical configuration. Visually, the resulting pathline
sets are highly similar (Figure 4.43). Additionally, we compare the fitness maps from 20
runs with different seed values and highlight regions with a relative fitness above a given
threshold. The resulting images are thresholded and used to compute the mean pairwise
Sørensen-Dice coefficient (DC ) using the DC calculator by Tom Lawton [213]. DC is
a summary measure of spatial overlap to compare the similarity of two binary images,
where 0 means no overlap and 1 refers to complete overlap. For regions with a relative
fitness above 0 (i.e. the seed regions that produce pathlines entering the aneurysm), the
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(a) (b) (c)

Figure 4.41: Fitness map of the seed plane from the evolutionary algorithm and a total
of 8120 line computations (a), a uniform sampling using the same number of lines (b)
and 106 lines (c). Darker colors indicate higher fitness values, whereas in white areas the
resulting pathline did not pass the aneurysm and therefore no fitness value is assigned.
Seeding 106 lines takes multiple hours and thus is unfeasible in practical applications,
hence uniform seeding approaches would likely miss the isolated and spatially confined
maxima on the plane.

Ev. algorithm 8, 120 lines 106 lines
Fitness Max 112.1 113.6 119.1
Fitness Avg. 10% 96.7 60.5 60.3
Fitness Avg. 20% 90.6 51.6 50.9
Fitness Avg. 50% 64 36.4 34.9
Fitness Avg. 100% 32.2 23.4 22.6

Table 4.1: Fitness comparison between our evolutionary approach and uniform seeding
with 8,120 and 106 pathlines, respectively.
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Figure 4.42: Varying population size in comparison. Blue graphs show generations
needed until the best 25 lines reach 50, 60 and 70% of the maximum fitness, respectively.
Red graphs show total the amount of performed line computations.

DC reached a value of 0.87. The DC for regions with a relative fitness above 25% and
90% of the maximum reached 0.72 and 0.42, respectively. Visual inspection shows that
the differences are mostly located around the edges of the detected regions. Increasing
the threshold lowers the overall size of the regions, thus increasing this effect and lowering
the DC. Yet, regardless of the threshold, overlaying all 20 fitness maps shows that the
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detected regions are visually similar (Figure 4.44). Thus, we can conclude that, despite
the variances in the results, the algorithm acts in a predictable and stable way. However,
as exact reproducibility may be important in some use cases, our framework exposes
the seed value for the random number generator to the user. Running the evolutionary
algorithm twice with an identical configuration and random seed value will always yield
identical results.

Coverage: Uniform seeding strategies on the inflow plane suffer from poor line-
coverage in hard-to-reach parts of the aneurysm, especially in blebs. To demonstrate the
ability of our algorithm to reach these areas, we compared it against ParaView (version
5.5.0) as well as our own line integrator using a uniform seeding strategy. In all cases,
we seeded 300 individual lines. Both ParaView as well as our application used uniformly
distributed seed points at the inlet for the uniform seeding approach. As we were not
able to entirely replicate our own integration parameters in ParaView, the resulting
lines are slightly different. The evolutionary algorithm was configured with np = 300,

(a) (b)

Figure 4.43: Pathlines from two evolutionary algorithms using the same configuration,
but different random seeds.

(a) (b) (c)

Figure 4.44: Average projection of the 20 thresholded seed plane fitness maps with the
same fitness function, but different random seed values. Thresholds for the relative fitness
were set to 0% (a), 25% (b) and 90% (c)
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pe = 30%, pc = 0%, pm = 30%, pi = 40%, using the total length of each line in the
aneurysm as its fitness function and iterated over 30 generations. Both uniform seeding
approaches produce similar results (Figure 4.45a and 4.45b), with the top part of the
aneurysm nearly entirely empty. The evolutionary seeding, on the other hand, manages
to capture the flow in the entire aneurysm (Figure 4.45c).

Performance: The most time-consuming part of the evolutionary algorithm is the
evaluation of the fitness function, as it requires the full integration of a pathline and subse-
quent calculation of the fitness indicators for each pathline vertex. Figure 4.46 presents a
comparison between the result from a uniform seeding approach with subsequent filtering
and our evolutionary algorithm using an identical fitness criterion. For the uniform
approach, 1, 000 lines were seeded in total, whereas 23 lines remained after filtering
(Figure 4.46a). For the evolutionary approach, 460 lines were seeded in total (np = 100,
pe = 30%, pc = 0%, pm = 30%, pi = 40%) over ten generations and the best 47 lines were
used (Figure 4.46b). 53 lines with a fitness value of 0 were discarded. Despite seeding
less than half of the amount of lines than with the uniform approach, the evolutionary
algorithm produces a denser set of lines fulfilling the criterion. Integrating the 1000 lines
using the uniform approach took 53 seconds (without performing filtering) on an Intel
i5-6500 with four cores clocked at 3.2 GHz, whereas the evolutionary algorithm took 45
seconds (including the evaluation of the fitness function). Integrating and evaluating
pathlines to computing the densely seeded map from Figure 4.41c took eight hours. Since
only small areas on the seeding plane result in lines with a high fitness value (Figure 4.41),
the uniform seeding approach struggles to position a sufficient amount of seed points in
these areas without strongly oversampling areas with lower fitness. Based on the results
(Figure 4.42), we concluded that a population size of 200 or 300 is the best trade-off
between fast convergence, total amount of line computations including evaluation and
run stability, i.e. less variations between runs with different random seeds. While a

(a) (b) (c)

Figure 4.45: Comparison of expressive line sets for an aneurysm: We compare the
output of a uniform seeding approach using ParaView 5.5.0 (a) and our in-house integrator
(b) with our evolutionary algorithm (c). In both a and b, almost no lines reach the dome
and therefore leave it heavily underpopulated, whereas the dome is densely covered in c.
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(a) (b)

Figure 4.46: Comparison of line coverage using uniform seeding methods (a) and our
method (b) when searching for pathlines passing near a specific area on the vessel surface
(arrow).

population size of 100 also provides reasonable convergence speed and stability, the total
amount of generated lines may be insufficient to facilitate a dense 3D visualization.

We performed a general evaluation with an experienced neuroradiologist (Physician A),
who was also involved in the design process of our framework. Afterwards, we conducted
a more specific evaluation of the Clinical Layer of our workflow with three additional
neuroradiologists (Physician B, Physician C and Physician D), who were not familiar
with our tool, to validate its clinical usefulness with respect to treatment planning. As
suggested by Preim et. al, such a procedure is crucial to achieve meaningful evaluation
results [214]. Our goal was to evaluate

1. which fitness function configuration produces the most satisfactory line bundles for
this purpose.

2. whether the visualization of hemodynamic information using evolutionary pathlines
influences the treatment decision.

To answer question 1, we asked Physician A to compare the resulting lines of different
fitness functions. The comparison consisted of pathlines optimized for length and to pass
by surface areas in the aneurysm with high and low wall shear stress (WSS) as well as
high and low oscillatory shear index (OSI). The physician was able to easily identify
differences between line bundles optimized with respect to high or low OSI. Interestingly,
he was able to infer the location of high and low OSI or WSS values on the surface
by comparing their respective line bundles. To evaluate the blood flow for treatment
decisions, he preferred the length-based fitness function, as it ensured that the entire
aneurysm was filled with pathlines. He did not find significant differences in the pathline
bundles created using the OSI-based fitness function in comparison to the WSS-based
fitness function. This could be explained with the fact that the OSI is derived from the
WSS. Therefore, both attributes lead to similar line bundles.

In clinical practice, the placement of stents with or without coiling to treat aneurysms
is carried out based on the patient-specific anatomy. To assess a benefit in treatment
planning, we had to identify well suited test cases first. Therefore, we conducted a quick
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(a) (b) (c)

(d) (e)

Figure 4.47: Selected cases for our evaluation comprising four aneurysms at the anterior
communicating artery: Case 1 – male, 36 years (a); Case 2 – male, 63 years (b); Case
3 – male, 86 years (c); Case 5 – female, 38 years (e) and one at the bifurcating middle
cerebral artery: Case 4 – female, 59 years (d).

survey of a database containing more than 100 cerebral aneurysms with Physician A, who
had been treating these patients. We selected five cases with a challenging anatomy, i.e.
aneurysms that are located at bifurcations with almost symmetrical outlet configurations
(Figure 4.47).

To answer question 2, we presented the other experts (Physician B-D) with these
five cases. They varied with respect to their work experience of endovascular treatment,
including the hospital director (20 years of neurointerventional experience), a senior
physician (9 years) and a novice physician (1 year). They were blinded to the applied
treatment and patient outcome, but provided with clinical information such as the
patients’ sex and age.

The first visualization only depicted the vessel surface without any hemodynamic
information. The physicians were asked about their treatment decision based on the
given visualization. Afterwards, we presented them with the same dataset using our
visualization techniques, including pathlines extracted by the evolutionary algorithm,
and asked whether they would revise their decision. In both cases, they had full control
of the viewing direction. For this evaluation, we chose a fitness function based on both
line length and residence time of the flow inside the aneurysm, as it achieves a pathline
coverage superior to uniform seeding approaches and covers the whole aneurysm. The
results are provided in Table 4.2.
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Physician B Physician C Physician D
Case 1 - before C & S C & S Y – S
Case 1 - after C & S C & S C & S
Case 2 - before Y – S C & S Y – S
Case 2 - after Y – S C & S Y – S
Case 3 - before C C & S Y – S
Case 3 - after C Y – S C & S
Case 4 - before Y – S C & S Y – S
Case 4 - after Y – S Y – S Y – S
Case 5 - before Y – S C & S Y – S
Case 5 - after Y – S Y – S Y – S

Table 4.2: Results of our evaluation for physicians B, C and D, when only seeing the
3D view for anatomical information (before) and after seeing our pathline visualization
(after). Treatment decisions were: stent-assisted coiling (C & S), y-stenting (Y–S), i.e.
implanting two stents, and coiling without stenting (C). Changes in treatment decisions
are highlighted via color-coding.

In four of five cases, at least one physician changed his or her treatment decision after
exploring our evolutionary pathlines. These changes were motivated by an improved
understanding of the intra-aneurysmal flow and its splitting into the outlets, including
flow patterns. In three cases, these changes lead to more consistency in the final decision
between the physicians. The third aneurysm was the most challenging one, as two
physicians changed their minds and the final decisions are not consistent between them.
On the one hand, their initial decisions were similarly inconsistent, but on the other
hand, we selected challenging cases. Interestingly, the most experienced physician never
changed his mind.

Discussion

We presented an adaption of the recently developed evolutionary lines to the domain of
medical blood flow analysis by carefully adjusting the genetic operators to fit clinical and
research requirements. We showed the usefulness of an evolutionary algorithm for seeding
pathlines in cerebral blood flow data. Our approach shows significant improvements over
existing seeding strategies, both in terms of computational effort and quality of results.
Better coverage of hemodynamically interesting regions, such as aneurysm domes or
blebs, is the major advantage over previous work. Thus, flow patterns can be identified
in a more reproducible manner, which is essential to assessing the aneurysm rupture risk.

We mainly examined the feasibility of using evolutionary lines to visualize hemody-
namics in cerebral aneurysms. The design of our fitness functions is tailored towards the
examination of simulated blood flow in cerebral aneurysms, but could also be adapted to
fulfil the specific research requirements for other blood vessels or data acquisition methods.
An interesting extension would be the introduction of a normalization between the fitness
value ranges of surface and pathline properties, in order to allow more combinations of
properties and thus increase the flexibility of the fitness function. Further improvements,
especially with respect to the conversion speed, could be achieved by an in-depth analysis
of the parameter space of the genetic operators.
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Currently, each individual in our evolutionary algorithm represents a single pathline. For
the future, we plan to support additional types of structures, such as streaklines or line
bundles. The evolutionary algorithm treats and optimizes each individual as a separate
entity, therefore increasing the fitness of singular lines, but not guaranteeing diversity
between the resulting lines. By using line bundles instead of singular lines as individuals,
the coverage within the aneurysm could be further improved. A different solution to
this problem could be the usage of seed plane fitness maps, which are generated as a
side-product of the evolutionary algorithm, for a final seeding step.
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VICTORIA - An interactive online tool for the
Virtual neck Curve and True Ostium Reconstruction
of Intracranial Aneurysms

4.3.3

The content of the following section is based on:
Benjamin Behrendt, Samuel Voss, Oliver Beuing, Bernhard Preim, Philipp
Berg, and Sylvia Saalfeld. “VICTORIA - An interactive online tool for the VIrtual
neck Curve and True Ostium Reconstruction of Intracranial Aneurysms”. In: Proc.
of Bildverarbeitung für die Medizin (BVM). 2020, pp. 209–214

To evaluate these quantitative values of intracranial aneurysms, such as wall shear
stress, the separation of the aneurysm from its parent vessel is required. Furthermore,
therapy planning requires a detailed knowledge of the individual aneurysm neck size
to select an appropriate treatment strategy and device, respectively [216]. In addition,
a virtual separation of the aneurysm from the parent vessel allows for the extraction
of parameters from a 3D model rather than 2D-projected images, which are used in
clinical routine and suffer from increased user as well as viewing angle dependency [217].
The separation of the aneurysm from the healthy parent vessel is often realized using a
planar cut-plane [218, 219], which might be error-prone for complex aneurysm shapes. A
fundamental problem of this concept is the missing ground truth as studies report strong
variations for this procedure between medical experts, yielding increased interobserver
variability for subsequent evaluations. This might lead to insufficient analyses and in
consequence to unreliable conclusions.

To make further steps towards consensus, we initiated the VICTORIA (VI rtual
neck Curve and T rue Ostium Reconstruction of Intracranial Aneurysms) project. We
developed a web-based solution, combining a client based on HTML and JavaScript and
a server part utilizing PHP and the Matlab Runtime environment. Within this study,
participants are requested to identify the neck curve of five virtual intracranial aneurysm
models and manipulate the resulting ostium surface to model the wall of the original parent
artery. For the definition of these neck curves and ostia, highly experienced physicians are
required. Since their availability for user studies is limited due to the clinical work load,
the application is available over the internet, solely requiring a up-to-date web browser.
Thus, we can gather expert-knowledge from physicians as well as biomedical engineers.
The study has been successfully launched at https://VICTORIA.cs.ovgu.de/.

Method

Within the VICTORIA study, participants are requested to identify the neck curve of
patient-specific IA models extracted from 3D digital subtraction data. The study is
conducted using a specialized application, consisting of two parts: a web-based client
written in HTML and JavaScript, and a server written in PHP and using Matlab runtime
environment. Thus, the VICTORIA study can be accessed via the internet using a
web browser. Between client and server, the data is exchanged in the JSON format,
which is highly flexible and well supported by both browsers and PHP. The server stores
user-submitted data in a relational database, thus allowing for easy sorting and filtering
of the data (Figure 4.48).
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In order to keep the motivation to participate high, the user is directly presented with
five datasets and two tasks, respectively. For both tasks, a surface mesh of an intracranial
aneurysm and its parent vessel is shown. The rendering is performed using the WebGL2
API, which is available in most current desktop browsers. To increase shape perception,
the mesh is illuminated using the Phong lighting model. The user has control over the
camera (rotation, zoom and panning), although the interaction range is limited to ensure
that the neck region is always visible and centered in the image.

For the first task, the user is asked to draw a neck curve onto the vessel mesh by
selecting surface vertices (Figure 4.49b). These vertices can be selected in an arbitrary
order and also be individually removed, as to allow the user to apply corrections and
increase usability. To connect the selected vertices to form a neck curve, we are looking
for the shortest circular path that connects all points. Therefore, the surface triangle
mesh is interpreted as a bidirectional graph and the shortest paths between the selected
points are then calculated using the A* algorithm by Hart et al. [220]. However, the
A* algorithm is only designed to find the shortest path between two points, not the
shortest path connecting a list of unordered points. Therefore, we sort the list of points
automatically using a distance matrix storing the length of the shortest path between all
points (Algorithm 2). Whenever a new point is added to the matrix, the distances to all
other points are determined using A*. To remove a point, the corresponding row and
column is deleted from the matrix.

After each change to the matrix, the list of points is sorted. We begin with a list
containing only one randomly chosen point. As long as there are points that have not
been added to the list, we take the last entry, look up the closest point (based on the
distance matrix) that has not been added yet, and add it to the back of the list. After
all points have been processed, the resulting list contains the shortest path connecting
all neck points selected by the user. The last and first point in the list will only be
connected if their distance is shorter than the longest path between any of the other
adjacent points in the list (Figure 4.49c). This prevents the neck curve from closing
before the user has finished adding all desired points. The sorting and path finding
algorithms are implemented in JavaScript and are performed entirely on the client side.
Even on less powerful devices, they run interactively without any noticeable delay.

After submitting the neck curve, the server calculates the associated ostium surface
mesh. To not overstrain the client hardware, this step is calculated on the server using
a Matlab script based on the work of Saalfeld et al. [211]. The Matlab script receives
the previously selected surface meshes and downsamples them to a predefined threshold

Figure 4.48: Illustration of the different parts of the VICTORIA web application.
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(Figure 4.50a). For the illustration, the neck curve points are resampled to 32 points.
The ostium triangulation is analytically defined and centered around the origin, with all
z-coordinates set to 0 (Figure 4.50b). Next, the border points are replaced by the neck
curve points and simple Laplacian smoothing (50 iterations, σ = 1.0) is applied to all
vertices except the border points, resulting in the smooth ostium surface (Figure 4.50c).

The second task consists of the adjustment of the previously calculated ostium surface
(Figure 4.49d). This is important, as a better approximation of the inflow area allows to
better approximate the parent vessel’s original geometry in further postprocessing steps.
During this task, only the backfaces of the vessel are rendered to reveal the ostium. The
user can grab and drag any vertex of the ostium surface that is not part of its border
(Figure 4.49e). To keep the interaction as simple and straightforward as possible, the
vertices can only be moved in the direction of the average surface normal of the ostium,
i.e. up and down. As moving one vertex at a time would be tedious, dragging one vertex
by a distance of v also moves the surrounding vertices by a distance of vn based on their
normalized Euclidean distance dn to the original vertex (Figure 4.49f). The parameter
a controls the size of the affected area. We empirically determined a value of 1

3 of the
average radius of the neck curve to result in an interaction that feels natural. This second
task can be considered optional, as it is possible for the user to directly accept and
submit the ostium surface generated by the server without performing any modifications.

(a) (b) (c)

(d) (e) (f)

Figure 4.49: The different steps of the ostium definition; 3D visualization of the surface
model with WebGL (a). The user can interactively select points on the aneurysm surface
(b), which are automatically connected. If the first and last points are close to each other,
the neck curve is automatically closed (c). In the second step, an automatic ostium
triangulation is provided (d). The user can hover over the points and the active point is
highlighted (e). The point can be moved (including a reduced movement of its neighbors)
until the user is satisfied with the ostium shape (f).
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Algorithm 2 Pseudocode to sort the list of points
G← mesh . Use mesh as bidirectional graph
M ← [] . Distance matrix
points← [] . Unordered list of points
ordered← [] . Ordered list of points

procedure addPoint(v) . Add a vert. from graph to unordered list
for all p in points do

Mvp ←Mpv ← A∗(G, p, v) . Use A∗ do calc. dist. betw. p and v in G
Mvv ← 0 . Diagonals of distance matrix are always 0

end for
Add v to points
ordered← sortPointList

end procedure

function sortPointList . Produce an ordered list as neck curve path
u← points . Points that have not been visited
o← [] . Empty ordered list
Add pop(u) to o . Move one element to the ordered list
while u not empty do

p0 = top( o ) . Get last point from ordered list
p1 ← closestPoint(M,p0, u) . Find closest point p1 to p0 using M
Remove p1 from u . Move p1 from unordered to ordered list
Add p1 to o

end while
return o . Return ordered list

end function

vn = v · (max(0, dn − (1− a)) ∗ a−1)0.75 (4.9)

Finally, we implemented a registration form combined with a questionnaire. Users
enter their name, e-mail address, occupation and affiliation, and answer questions about
their experience with intracranial aneurysms. With this information, an examination of
differences between user groups (e.g., physicians vs. engineers) can be conducted in the
future.

Results

The VICTORIA study can be accessed at https://VICTORIA.cs.ovgu.de/. We tested
this interactive survey sucessfully with three medical cooperation partners. Initially, they
requested more hints and icons regarding the controlling of the application, which we
included. The neck curve definition requires approximately two minutes per case and
less than ten minutes overall. The study requires the use of current versions of Mozilla
Firefox, Google Chrome or Microsoft Edge. Other less commonly used browsers, such
as Apple Safari or Microsoft Internet Explorer, do not support the required WebGL
technologies. The evaluation of the submitted ostia segmentations is not part of this
work, but ongoing research.
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(a) (b) (c)

Figure 4.50: Illustration of the ostium triangulation; The neck points are resampled to
32, p1 - p32 (a). The predefined triangulation is centered around 0 with border points
q1 - q32 (b). Next, q1 - q32 are replaced by p1 - p32 and all points undergo Laplacian
smoothing yielding the triangulated ostium surface (c).

Discussion

Currently, no neck curve and ostium ground truth is available, yet it is required for many
postprocessing steps of intracranial aneurysm models. We presented an approach that
allows for an easy participation of international field experts and physicians by utilizing
a combination of JavaScript, PHP and Matlab-programs, including 3D visualizations,
editing and modification options.

Based on a ground truth ostium definition, a precise morphological evaluation of the
3D aneurysm shape is further promoted, which is highly beneficial for the quantification
of hemodynamic flow simulations [221]. Furthermore, a 3D neck curve determination
and subsequent parameter evaluation is superior to 2D analysis [217]. Particularly, since
relevant blood flow parameters that are associated with rupture (e.g. normalized wall
shear stress, shear concentration index, oscillatory shear index [222]) need to be calculated
with high accuracy, wrong aneurysm-vessel-separation or high user-dependency can lead
to clear variations regarding the analysis.

Furthermore, we expect our survey results to be utilized as ground truth data for deep
learning-based ostium extraction approaches, e.g. similar to the MeshCNN network [223].
Finally, our architecture can be easily adapted to other medical image processing questions
that require 3D models and user interaction.
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A Framework for Visual Comparison of 4D PC-MRI
Aortic Blood Flow Data

4.3.4

The content of the following section is based on:
Benjamin Behrendt, Sebastian Ebel, Matthias Gutberlet, and Bernhard Preim.
“A Framework for Visual Comparison of 4D PC-MRI Aortic Blood Flow Data”.
In: Eurographics Workshop on Visual Computing for Biology and Medicine. The
Eurographics Association, 2018, pp. 117–121

The ability to compare and contrast multiple datasets is key to gain new insights
about the inter-relation between changes in blood flow and vessel morphology. For 4D
PC-MRI data, such a comparison is often facilitated by extracting and quantitative
measures or visualizations from each dataset. A common way to extract measurements
at medically interesting positions within the anatomy is the placement of measuring
planes, which can be used to obtain measures such as stroke volume and regurgitation
fractions [192]. However, this approach not only requires the user to know what specific
type of differences they are looking for, but it also bears the risk of overlooking possibly
valuable details. Additionally, even small changes in the positioning of the planes can
influence the resulting measurements, so the comparability of measures between different
datasets with varying anatomical shapes is limited. To solve these issues, we propose
an explorative approach to comparing 4D PC-MRI data with a flexible tool for the
analysis of multiple 4D PC-MRI datasets. In addition to exploring singular datasets,
the analysis of differences and similarities between multiple datasets can lead to further
insights, regarding not only the specific characteristics of certain pathologies, but also
the influences of data acquisition and reconstruction techniques.

(a)

(b)

Figure 4.51: Initial (a) and registered (b) flow curves of two datasets with overlapping
time steps marked in yellow.
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Figure 4.52: Two datasets with a normalized centerline area between two markers.

Method

In cooperation with our clinical partners, we developed a workflow concept for the
explorative comparison of 4D PC-MRI aortic blood flow data. The tools our partners
are currently using are focused primarily on the visualization of single datasets. They
are, however, interested in finding systematic differences between multiple datasets
that are part of an ongoing study. A core component of our concept is image-based
comparison using the juxtaposition of visualizations. Additionally, we provide feature-
based comparisons by calculating and visualizing differences in flow velocity, direction
and flow jet position of both datasets. This section presents the workflow for our toolset,
starting with the registration steps necessary for comparing datasets. Since we display
information directly related to one of the datasets as well as to comparative measures
between the datasets, we employ color-coding to distinguish these types of visualizations
(red for the first dataset, blue for the second). Comparative visualizations are generally
marked white.

Registration: For meaningful comparisons, the heart cycles depicted in both datasets
need to be matched with each other. While performing the temporal registration, both
datasets are represented by their flow curves. They are generated by adding up the flow
magnitude from all voxels inside the segmentation for each time step. The resulting
curve clearly shows the systolic and diastolic phases of the heart cycle (Figure 4.51a). In
this case, the red dataset includes more than a single heart cycle, as a second systolic
phase begins at its end. The user can manually adjust the offsets by dragging the curve
onto a new position (Figure 4.51b). Additionally, the user has the option to add a scaling
parameter to the datasets’ time frame in order to account for different heart rates. Due
to the low temporal resolution of the datasets, a pixel-perfect registration of both curves
is usually not required.

The spatial registration consists of three tasks: Visual registration, centerline nor-
malization and rotational alignment. The visual registration can be performed mostly
automatically by applying the patient matrix of each dataset to the surface and pathline
models. Next, the centerline normalization is performed by placing landmarks. Initially,
two markers are automatically placed at the beginning and end of the centerline, which
can be independently moved along the centerlines of both datasets. They are used to
crop the centerline, so that the remaining part covers the same anatomical areas in both
datasets. In most cases, this is sufficient to normalize the centerline. However, in case
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(a) (b) (c) (d)

Figure 4.53: Two planes sampled from two datasets (a, b and c, d) at the same
anatomical position colorized by mapping the flow vectors to RGB colors. The first
images (a, c) use the data coordinate system, the second images (b, d) use the local plane
coordinate system.

of deformations of the vessel shape or the presence of bypasses, additional markers can
be placed to achieve a satisfying normalization. The rotational alignment needs to be
performed manually by individually rotating each plane by up to 180◦. The easiest way
to find the correct angle is to move the planes to the supra-aortic vessel branches and
rotate one of the planes until they correctly overlap in both planes.

2D Visual Comparison: To extract 2D slices from the MRI data, multiple measuring
planes can be created and moved along the vessel centerline (Figure 4.52). The temporal
position of a plane can be adjusted using a slider. By default, planes are squares with
a side length of 4 cm, which is sufficient in most cases to cover the entire diameter of
the aorta. If the aortic diameter strongly deviates from the norm at certain points, for
example due to an aneurysm, the size of the individual planes can be manually adjusted.

Each plane is defined by their center position (~vc) and three directional unit vectors
( ~vx, ~vy and ~vz). These vectors represent the local coordinate system of the plane, with the
first two vectors spanning the plane and the last denoting its normal. The work of Köhler
et al. gives detailed information about the calculation of these vectors [192]. The sampled
velocity vector ~s is visualized on the plane either by normalizing and directly mapping
it onto RGB colors or by using a color scale. It is possible to toggle between the data
coordinate system (where the X, Y and Z axis corresponds to the respective axes of the
image grid) and the local plane coordinate system (where the coordinate system axes are
represented by ~vx, ~vy and ~vz). The rotated velocity vector ~s′ is calculated using the dot
product of the sampled vector with each of the local coordinate system axes. With the
plane coordinate system, it is easier to distinguish laminar flow (which primarily moves
in the direction of the Z axis) from non-laminar flow (showing additional motion on the
X and Y axis). This is exemplified in Figure 4.53. By switching to the plane coordinate
system, it becomes clear that one plane (c and d) shows laminar flow (colored mostly
blue due to being aligned with the Z axis), whereas the other one (a and b) does not.
The flow jet position is shown in each plane using a cross (Figure 4.53). It is calculated
from the average of all pixel positions in the plane, weighted by velocity and normalized
using the vessel diameter to reduce the influence of noise [225]. To better convey the
shape of the flow, a color overlay highlighting the 50%, 75% and 90% quantile of the flow
speed can be enabled (Figure 4.54). The opacity of the color overlay is modulated with
the ratio of the highest speed in the plane and the overall highest speed of the dataset
to deemphasize slower diastolic flow, which is more susceptible to noise (Figure 4.54c).
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In addition to showing data sampled directly from the flow fields, we also display two
feature-based 2D comparative visualizations (Figure 4.55). The first one shows differences
in flow speed and is generated by subtracting the sampled flow speed of the second
dataset from the first dataset (Figure 4.55a). In white areas, the flow speed is equal,
whereas colored areas indicate that the respective dataset (red or blue) has faster flow
at this position. The second comparative visualization shows differences in flow angles,
with a color scale ranging from yellow (0◦ angle difference) to red (180◦ angle difference)
(Figure 4.55b). The crosses highlighting the flow jet from both datasets are mirrored
in the comparative visualizations as well. The degrees of freedom in positioning the
measuring planes could easily cause details in the dataset to be overlooked, as the user
would have to manually explore the entirety of the spatio-temporal domain of the dataset.
Therefore, we added bull’s eye plots with a spatio-temporal encoding inspired by Köhler
et al. [174] and familiar in cardiology as an overview visualization.

Each point in these plots corresponds to a plane at a specific point in the spatio-
temporal domain using polar coordinates. The distance from the center of the plot
encodes the position on the centerline, the angle encodes the time-point. Clicking on the
plot will move the current measuring plane to the selected spatial and temporal position.

There is a total number of eight bull’s eye plots available (Figure 4.56). The first six
encode the flow jet displacement and regurgitation fraction (Figure 4.56 a, b, e and c),
which is an important clinical indicator for a heart valve disease. The first two plots
of each type only show information from one of the datasets, therefore their outline is
colored red and blue, respectively (Figure 4.56a and 4.56d). To calculate the flow jet
displacement, the distance of the flow jet from the vessel centerline is computed for each
plane and normalized with the vessel diameter. The last flow jet plot shows the distance
between the flow jets in each dataset (Figure 4.56b). Similarly, the last regurgitation
plot show a comparison of the regurgitation fractions of both datasets (Figure 4.56e).
Two additional plots show a comparison between flow speed and average flow angle
(Figure 4.56c and 4.56f). To support orientation, a circular grid with eight radial lines is
overlayed on top of the plot. All bull’s eye plots use discrete color scales to highlight
regions with high or low values. Different types of information (e.g. flow jet, velocity,
angle) are shown with different color scales to prevent confusion.

3D Visual Comparison: The 3D visualization shows the surface model and pathlines
of both datasets side by side using a synchronized camera, allowing for an image-based
comparison. We consider the vascular surface to be a context object, therefore we use

(a) (b) (c)

Figure 4.54: Sampled plane with (b,c) and without (a) color overlay during the systolic
(a,b) and diastolic (c) phase.
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(a) (b)

Figure 4.55: 2D comparative visualizations for flow velocity (a) and flow angle
difference (b).

the Fresnel opacity presented by Gasteiger et al. to prevent occlusion with the inlying
pathlines [151]. Parameters such as speed or pressure can be mapped onto the pathline
color or opacity. To support orientation in the dataset, the selected planes are also visible
in the 3D view. They can be individually hidden to prevent possible occlusion.

Implementation

Sampling from the velocity field is performed off-screen using a fragment shader in
combination with multiple 2D textures bound to the framebuffer. The velocity field itself
is stored as a set of 3D textures. Both the current and next time step are bound as active
textures together with an interpolation value. Once for each texel of the 2D output
texture, the fragment shader samples values from the velocity field and interpolates them

(a) (b) (c)

(d) (e) (f)

Figure 4.56: Bull’s eye plots, showing individual (a) and comparative (b) flow jet
displacement, individual (d) and comparative (e) regurgitation fraction, velocity (c) and
angle comparison (f).
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according to the interpolation value. Sampled data is written to three different textures.
The first contains the raw flow data sampled from the flow field. The second and third
textures are used for rendering and contain the data after the application of the color
scale and the flow speed overlay, respectively. In both the 2D and 3D view, the user can
switch between binding one of these textures, or both of them at the same time.

Once the user has finished the spatial and temporal registration, the flow jet and
bull’s eye plots are generated. A number of planes is automatically placed spatially
along the registered centerline with a distance of 1cm, which was chosen empirically as a
trade-off between plane coverage and required computation time. For each plane, a set
of values is calculated and stored in a single pixel of a two-dimensional image. These
values include the flow jet position as a 2D vector, the flow jet displacement in relation
to the centerline and the average flow velocity in the plane. This results in a square
image where each pixel represents a single plane at a single point in time, covering the
entire spatio-temporal domain. To display the flow jet or generate the bull’s eye plots,
this image is then sampled using linear interpolation.

Results

To evaluate our method, we performed an informal interview with three expert radiologists.
They were shown a total of four aortic datasets available for a pairwise comparison.
Two were acquired from the same volunteer right after one another using different MRI
sequences. Additionally, a dataset from a different volunteer as well as a patient dataset
were used.

Overall, the radiologists found the ability to directly compare flow datasets useful.
The amount and complexity of manual input required for the registration of the data
was deemed acceptable. One of the physicians noted that if the DICOM data contained
data about the heart rate during acquisition, this information could be used to normalize
the flow velocity for both datasets in an optional pre-processing step. A point of critique
was the lack of a way to restrict the spatio-temporal domain of the bull’s eye plots
to certain phases of the heart beat or anatomical regions that the physicians were
specifically interested in. Two of the radiologists were especially interested in comparing
data from the same patient, either at different time-points or using different sequences,
to evaluate different MRI sequences or perform follow-up examinations. The third
radiologist expressed interest in using our tool to support the extraction of standard
values regarding blood flow in patients and healthy volunteers. The comparison of the
two datasets acquired using different MRI sequences allowed the radiologists to detect
artifacts in one of the datasets (Figure 4.57). While one sequence shows primarily laminar
flow, the same anatomical region contains a vortex when acquired using a different MRI
sequence, which is clearly visible in the average flow angle bull’s eye plot (Figure 4.57e).
During the evaluation, the radiologists noticed a problem that affected the flow jet
calculation in some of the datasets. Depending on the size of the measuring planes and
the overall vessel geometry, a plane placed in the descending aorta may intersect with
the left ventricle. This may impact the flow jet calculation, causing the bull’s eye plot to
show a strong displacement that does not actually exist in the data.
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(a) (b)

(c)

(d)

(e)

Figure 4.57: Changes in flow representation (a,b) and average flow angle bull’s eye
plot (e) due to deviations in the flow field (c,d) as a result of different MRI sequences.

Discussion

In this paper, we have presented a set of tools for the comparative exploration of two 4D
PC-MRI datasets. An informal interview with three experienced radiologists indicated
the usefulness of our approach. Although we focused on the examination of aortic blood
flow, our methods should be applicable to other vessels such as the pulmonary artery
with only minimal adjustments. However, the exploration of other structures, such as
the left or right ventricle, would be more challenging since we rely on the presence of a
centerline to place measuring planes. Therefore, a different method of placing planes and
performing a spatial MRI registration would need to be implemented. Additionally, a
dynamic segmentation would be needed to account for the strong ventricular movement
during the cardiac phases.

Currently, our application only allows comparisons between 4D PC-MRI datasets. In
the future, we plan to add support for data from computational fluid dynamics (CFD)
simulations. This would enable the user to explore the differences between measured
and simulated flow in the same vessel. A key problem that would need to be solved is
the handling of data with vastly different resolution and storage format. It may also be
challenging to sample the high-resolution CFD data in real-time, requiring additional
pre-processing steps to allow for an interactive frame rate.

In addition to the visual exploration of the differences between two datasets, a tool
to process a larger number of datasets would also be useful. This would support the
systematic evaluation of a larger database of flow data. Such an approach requires a higher
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degree of automation regarding the registration as well as methods to automatically
cluster the datasets based on their similarity and extract the systematic differences
between the clusters.
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Summary 5.1

Current medical imaging modalities allow us to obtain patient-specific blood flow informa-
tion, either by means of direct measurement or hemodynamic simulation. In combination
with explorative visualization techniques, this information is an important tool in the
quest to gain a deeper understanding of the causes and progression of vascular pathologies
and, in turn, developing better individual treatment plans for patients.

During the course of my PhD thesis, we have built a flexible integrated framework that
supports both measured 4D PC-MRI data as well as simulated blood flow data. While
most of the presented techniques are applicable to both measured and simulated data,
some were specifically designed for 4D PC-MRI datasets. To gain a quick overview of 4D
PC-MRI datasets, a volume rendering which does not require a segmentation is available.
Pathlines can be integrated into this visualization by using a front-face culling algorithm
adapted for use in volume rendering. Our framework offers segmentation functionality
for 4D PC-MRI data based on the commonly used magnitude images as well as enhanced
FTLE images, incorporating directional information. This eases the task of segmenting
low-contrast images. Additionally, direct comparisons between different 4D PC-MRI
datasets offer insights into systematic differences between healthy volunteers, patient
groups and different image acquisition sequences.

To improve the spatial perception of complex vascular structures, a depth-enhancing
shading based on the pseudo-chromadepth color scale that does not inhibit the mapping
of hemodynamic parameters onto the vessel surface is available as an option for all
visualizations based on surface meshes.

A novel pathline seeding strategy based on evolutionary algorithms is available to
efficiently improve pathline density in medically interesting regions. By adjusting the
related fitness function, pathlines with different properties, such as a hight residence time
within the aneurysm or the distance to a specific anatomical region, can be targeted.
The relation of near-surface flow to the vessel wall can be explored using surface-
based filtering. By selecting surface regions either freely or based on it’s hemodynamic
parameters, associated flow structures can be highlighted.

In addition to the aforementioned integrated framework, we also developed a web-
based application to collect information from medical professionals on their definition of
the neck curve that separates an aneurysm from its harboring vessel. This application
supports the ongoing research on reaching a consensus in the medical community on the
placement of neck curves.
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Future Work 5.2

The field of blood flow visualization has by no means been exhaustively researched.
There is plethora of future research topics, some of which are detailed in the following.

Cohort exploration and visual analytics: Due to the complex and highly variable
vessel shapes, a direct visual comparison of multiple flow datasets is challenging, especially
when considering patients with different pathologies. However, examining the specific
differences and similarities in blood flow between different patients or healthy volunteers
can potentially lead to further insights into the effects and consequences of various
pathologies. Our previous work in this field only allows for the direct comparison of two
datasets and is limited to 4D PC-MRI data.
Analyzing cohorts instead of singular datasets is the next logical step towards a better
understanding of cardiovascular pathologies. Due to patient- and pathology-specific
anatomical variations, a normalization of both vascular morphology and hemodynamic
parameters is an important pre-processing step.
Visual analytics techniques allow medical professionals to gain insights into the similarities
and dissimilarities within and between groups of patients and find hidden correlations
between hemodynamic parameters and the severity or risk of vascular pathologies. Such
techniques have been used in the past to analyze cohorts [226–228]. However, they
require guidance as medical users are often unfamiliar with the underlying statistical
methods and workflows, thus being unable to exploit their full potential [229]. In addition
to exploring typical cohort definitions based on age, gender or medical history, visual
analytics can also help to uncover new possible cohort definitions by identifying outliers
or clusters within existing cohorts. It seems natural to also investigate the possibility of
creating a system that can be queried by medical researchers in order find similarities in
a database of case files in regards to a specific, new dataset.

Visualization and analysis of wall movement: Within our previous publications
and in this PhD thesis, we assumed the vessel wall to be static, which is not medically
accurate. Especially the aorta and pulmonary artery exhibit not only general movement
over each heart beat, but also changes in diameter. With 4D PC-MRI, the vascular
movement can already be captured and visualized [192]. However, the low image contrast
during the diastole makes creating a time-dependent segmentation over all time steps
challenging. Currently, the available imaging modalities for cerebral vessels do not
capture vessel movements. The movement of the vessel wall modeled withing a CFD
simulation using fluid-structure simulations (FSI ), but this requires accurate information
about the local wall thickness [230], which is not acquired in clinical practice. However,
recent developments in imaging technologies, namely intracranial optical coherence
tomography (OCT ), have the potential to reveal not only local wall thickness, but also
tissue composition [231]. Additionally, increased field strengths for MRI scanners have
the potential to make 4D PC-MRI more feasible for intracranial vessels [232]

Immersive blood flow in VR: In my dissertation, I have focussed on visualizing
blood flow data on conventional 2D screens and input methods, such as a mouse and
keyboard. However, other output devices such as Virtual Reality (VR) headsets are
naturally suited to display complex geometric structures. Unlike a normal monitor, VR
technology is capable of exploiting the ability of spatial perception. In addition, the use
of specialized input devices allow the usage of natural-feeling interaction gestures in VR
that, as opposed to artificial mouse gestures, are not limited to two dimensions. With
the ever-increasing computational power of affordable, consumer-grade workstations,
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virtual reality devices are becoming more widespread and are being used in both medical
applications and anatomy education software [233]. Forsberg et al. [234] already presented
a VR-based explorative approach for blood flow visualization in the year 2000. They
focussed on visualizing local flow phenomena, specifically the hemodynamics in the
vicinity of coronary artery grafts, by placing the user within the vessel and providing
them with several tools to explore the flow in that area.
However, VR can also facilitate exploration in entire vessel trees with multiple regions of
interest. The immersive visualization and natural interaction have the potential to allow
for a intuitive navigation and selection of vessel regions. We have already developed
a VR prototype for blood flow exploration by applying local filters [235]. The core
principle takes inspiration from the FlowLens by Gasteiger et al. [157] and other Magic
lens-based [236] approaches. Users are placed next to a floating model of the vessel
geometry, that can be freely moved, rotated and scaled by grabbing it using pointer
gestures. As mouse and keyboard are not available within the virtual environment, the
primary input method are motion controllers that work together with the headset. We
decided to use a ray cast-based interaction represented with a laser pointer that allows
grabbing near and far objects. The user interface is mounted to the virtual representation
of the motion controllers and thus can easily be moved in and out of view or brought
closer to the camera. In addition to moving around, users can create filter regions
("lenses"), which apply customizable predicate-based filters (Figure 5.1a) to vessel regions
or pathlines within them. These lenses can be freely scaled, moved and attached to the
vessel model to reveal specific flow features (Figure 5.1b). To manipulate filter value
ranges, we employ the touchpad of the controller to facilitate an interaction similar to
the adjustment of contrast in grey-value medical images ("windowing"), which would
traditionally be carried out with a mouse.
Our VR prototype is capable of performing the filtering task in real-time. As common
use cases would not require many lenses simultaneously, the main bottleneck regarding
performance is the complexity of the examined objects. We were able to show that VR
Flow Lenses are a viable concept and can support the exploration of blood flow data.
However, further improvements would need to be carried out to fully adapt this concept
to domains such as medical treatment planning, diagnosis or education.

(a) (b)

Figure 5.1: Prototype for an immersive VR-based blood flow exploration tool; definition
(a) and placement (b) of a filter region within the vessel.
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