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Abstract

Aortic Dissection is a rare, life-threatening disease affecting the aortic wall layers.
Research regarding aortic dissection is crucial to better understand the development
and causes of the disease and to develop suitable treatment and recovery plans.
Part of this research are in-silico studies and computational fluid dynamics (CFD)
simulation that need varying datasets to perform their experiments. These datasets
are difficult to obtain because of the disease’s rarity and concerns regarding the
sharing of patient information between institutions. Synthetically generated datasets
can be a way to mitigate this problem and help researchers obtain large databases
consisting of varying aortic dissection datasets. To this end, we explore approaches
for the generation of aortic dissection datasets: a generative adversarial network
(GAN), a statistical shape model (SSM), and two autoencoders in the form of a
variational auto encoder (VAE) and adversarial auto encoder (AAE). The GAN uses
voxelized input data of aortic dissection point clouds, the SSM uses a parameterized
representation of the aorta consisting of centerlines and radii, and the autoencoders
receive point clouds of the true and false lumen walls. We conclude that the SSM
and autoencoder are best suited for the task of generating aortic dissection datasets
with some approach-specific drawbacks that can be improved in the future.





Kurzfassung

Die Aortendissektion ist eine seltene, lebensbedrohliche Erkrankung, die die Wand-
schichten der Aorta betrifft. Forschung im Bereich der Aortendissektion ist von
entscheidender Bedeutung, um die Entstehung und die Ursachen der Krankheit
besser zu verstehen und geeignete Behandlungs- und Therapiepläne zu entwick-
eln. Ein Teil dieser Forschung sind In-silico-Studien und Blutflusssimulationen, die
zur Durchführung ihrer Experimente unterschiedliche Datensätze benötigen. Diese
Datensätze sind aufgrund der Seltenheit der Krankheit und Bedenken hinsichtlich
der Weitergabe von Patientendaten zwischen Institutionen nur schwer zu beschaf-
fen. Synthetisch erzeugte Datensätze bieten eine Möglichkeit dieses Problem zu
bewältigen und Forschern große Datenbanken mit Datensätzen zur Aortendissektion
zur Verfügung zu stellen. Zu diesem Zweck untersuchen wir folgende Ansätze für
die Erstellung künstlicher Aortendissektionsdatensätze: ein GAN, ein SSM und
zwei Autocoder in Form eines VAE und AAE. Das GAN verwendet voxelisierte
Eingabedaten von Punktwolken einer Aortendissektion, das SSM verwendet eine
parametrisierte Darstellung der Aorta, die aus Mittellinien und Radien besteht, und
die Autoencoder erhalten Punktwolken der echten und falschen Lumenwände. Unsere
Ergebnisse zeigen, dass das SSM und die Autoencoder am besten für die Aufgabe
geeignet sind, allerdings mit einigen ansatzspezifischen Nachteilen, die in Zukunft
verbessert werden können.
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1. Introduction

Vascular diseases are a large research field in medicine. The causes and effects of
various vascular diseases have been researched for decades. With the introduction
of computers to the field of medicine new approaches could be utilized to further
investigate them. Vascular surface models in combination with CFD were and are
an important part of understanding the disease complications and progression in
the vascular anatomy. To drive research in these areas a massive amount of data
is needed. Using patient data always poses data privacy concerns [89]. To mitigate
this problem machine learning models have been utilized in the past years to create
synthetic databases tailored to the specific disease.

Currently, no large databases of 3D models of aortic dissection exist that could
be used by researchers to develop and test new approaches in the domain of aortic
dissection. This problem could be alleviated by creating a database of synthetic
aortic dissection data having similar properties as data of real aortic dissection. This
thesis aims to investigate the suitability of various generative approaches to create
such a synthetic database of 3D aortic dissection models. To our knowledge, no
comparable effort has been made to date to incorporate a second flow channel during
the generation of aortic geometry. Recent and past approaches mainly focus on the
generation of 3D vessel geometry with a single flow channel using a wide range of
machine learning approaches and statistical shape modeling.

1.1 Aortic Dissection
Aortic dissection is a life-threatening cardiovascular disease [121]. The rare disease

with an incidence of 15 in 100,000 patient years and in-hospital mortality of 39% [66]
occurs most often in patients between the ages of 65-75 [55]. It is characterized
by the separation of the aortic wall layers into two flow channels called the true
and false lumen. The aortic wall is comprised of three layers: the intima facing the
bloodstream, the media, and the outer adventitia. The separation is caused by a
tear in the intimal layer of the aorta or by bleeding within the aortic wall Fig. 1.1.
Complications following the separation can be aortic rupture, pericardial tamponade,
and branch vessel malperfusion [15].
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Figure 1.1: Aortic dissection is caused by a tear in the intimal layer of the aorta (a)
or by bleeding within the aortic wall (b). Reproduced with permission from Springer
Nature from [81].

The disease can be classified into type A aortic dissection and type B aortic
dissection using the Stanford classification Fig. 1.2. Type A aortic dissection affects
the ascending aorta and requires immediate surgical repair while type B aortic
dissection affects the descending aorta and is treated using endovascular repair or
medical therapy [81].

1.2 Synthetic Databases
In recent history computational models have become an important part of clinical

research and practice [65]. Part of these computational models are virtual 3D models
of the anatomy. These models are used in many medical applications like in-silico
studies, active shape modeling, image analysis, education of patients and students,
modeling of anatomical function, disease and outcome prediction, and many more.

Creating surface meshes of a dissected aorta starts with acquiring imaging
data. Such data usually comes from computer tomography (CT) data. Subse-
quently, the aorta is segmented, either manually by specifying cross-sections, or
semi-automatically [126]. From the segmentation, a 3D model can then be generated.
Surface models of aortic dissections are mainly used to perform CFD simulations to
assess the effect of wall and dissection flap deformations on hemodynamic features
such as false lumen flow rates, pressure differences, and wall shear stress [15]. Models
of aortic dissection are characterized by the complex anatomy of the disease and
the aorta itself. These models include important landmarks indicating locations of
branching vessels, entry and exit tears, and fenestrations, as well as 3D volumes of
the outer vessel wall and the dissection flap, and a centerline for each lumen.

Rare diseases that affect changes in anatomy and physiology often do not have
sufficiently large databases of anatomical models that allow researchers to properly
develop and test new clinical research prototypes. Synthetic databases can help to
overcome this problem by providing a large number of artificially generated test
subjects created from a small population of real subjects. Such synthetic databases
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Figure 1.2: Following the Stanford classification aortic dissection can be categorized
into type A (or DeBakey type I and type II) and type B (or DeBakey type IIIa and
type IIIb) aortic dissection. Type A affects the ascending aorta while type B affects
the descending aorta. Reproduced with permission from Springer Nature from [81].

are designed to share the same statistical and anatomical properties of the underlying
population while having a large number of unique entries.

To find suitable generative models for the generation of synthetic 3D aortic
dissection datasets an extensive state-of-the-art review has been conducted. The
most important ones are presented in the sections Section 2.2, Section 2.3, and
Section 2.4. Based on this review, we decided to investigate the following three
different models: a GAN using voxelized input data, a SSM using a centerline-based
representation of the aorta, and an autoencoder working on point cloud data. These
models are based on approaches used to generate 3D point clouds of the heart [6],
surfaces of the aorta [94; 110], and surfaces of blood vessels [25] respectively. In the
subsequent paragraphs, we briefly describe each model.

A GAN is a deep neural network that performs a two-player minimax game where
one deep neural network called the generator creates synthetic data that imitates the
real input data. A second deep neural network called the discriminator, is trained
to distinguish between the data created by the generator and the real input data.
The generator and discriminator are trained separately using the same loss function
which the generator tries to maximize and the discriminator tries to minimize. In our
approach, the GAN receives voxel representations of aortas as input and is tasked to
produce synthetic voxel representations as output.
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A SSM is a statistical approach analyzing the geometrical properties of a set
of input shapes [51], [23]. A principal component analysis (PCA) is performed on
the covariance matrix of the input shape parameterization relative to a mean shape
calculated from the set of input shapes. We chose a centerline-based parameterization
encoding the aorta and the true lumen using their respective centerlines and radii.

We investigate two types of autoencoders: a VAE and an AAE. A VAE employs
a neural network, called the encoder approximating the underlying posterior distri-
bution of the input data with a variational distribution encoding it in a so-called
latent space. A second neural network called the decoder is then tasked to generate
new synthetic data by sampling from the latent space. An AAE overcomes some
limitations a VAE exhibits by extending the model with a third neural network called
the discriminator. Our autoencoder models receive point clouds of aortas with points
labeled true and false lumen and are tasked to generate synthetic point clouds of
aortas with the labeled lumen.

1.3 Machine Learning
This section gives an overview of machine learning, focussing on subjects and

terms that arise later in this thesis. Machine learning falls under the more general
term of artificial intelligence, which uses computers to emulate the problem-solving
and decision-making capabilities of the human mind. Machine learning models try to
imitate how humans learn by steadily improving their precision during each training
cycle (epoch). These models are supplied with a large amount of data and tasked to
find patterns or to make predictions.

Data for the training of machine learning models is split into training, test, and
validation data. Training data is used to train the parameters of a model. Validation
data is used to tune the hyperparameters of a model, such as the learning rate of a
model or the batch size of the data. Test data is independent of the training data
while having the same probability distribution. It is used to check if a model overfits
the training data by analyzing its performance. If the model performs better on the
training data while the error on the test data is increasing overfitting has taken place.

Machine learning is distinguished into supervised learning, unsupervised learning,
and reinforcement learning. Supervised learning uses labeled training data, which
is used to train models to predict outcomes or classify data. Unsupervised learning
tries to detect patterns or to group data into clusters, without the need for human
input. During reinforcement learning a model learns over time to perform the right
actions through trial and error and receives rewards if a task has been completed
successfully.

A sub-field of machine learning is deep learning. It uses artificial neural networks
that try to mimic the human mind using neurons combined into numerous stacked
layers. Deep learning is especially focused on finding hidden patterns and learning
underlying distributions and connections in the data. Each neuron is governed by
its activation function and its assigned weights. A weighted sum is calculated based
on the input a neuron receives using its weights. The value of the weighted sum
is put through the activation function which determines the output of the neuron.
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The training of an artificial neural network is performed in epochs. In each epoch,
data is fed through the network’s stacked layers to calculate the output. This output
is compared to the ground truth using a loss function. This loss is then used by
an optimizer to adjust the weights of the model before the next epoch is started.
This procedure is performed until the model has converged and the loss is minimal
without overfitting the training data.

Neurons can be combined in different ways into layers, resulting in distinct
layer types with different functionalities. For tasks such as image analysis or 3D
geometry analysis, convolutional layers are used. Pooling layers are used to condense
information by reducing the size of the data. Normalization layers normalize the
output of previous layers that might be scattered across a large interval.

Loss functions are task-specific functions that calculate the error between the
output (predicted values) of the model and the actual values of the ground truth.
Depending on the task, various loss functions exist, such as the mean squared error
for regression problems, cross-entropy for classification problems, minimax GAN
loss for GANs, and the KL divergence for autoencoders. The results of the loss
functions or parts inside of loss functions are often log-normalized to make the
training more numerically stable avoiding underflow when multiplying very small
numbers. Optimizers use the calculated loss to update the parameters of the model,
minimize the loss in the next epoch, and improve the model’s performance.

The activation function governs a neuron’s output. The simpler ones are the
binary activation function:

f(x) =
0, if x < 1

1, otherwise
(1.1)

and the linear activation function:

f(x) = x. (1.2)

Non-linear activation functions enable the stacking of layers. If multiple linear layers
are stacked the whole network can be described by combining all layers into one using
a single linear activation function. Therefore, the last layer of an artificial neural
network consisting of stacked layers of linear or binary activation functions would
be a linear or binary function of the input of the first layer. Examples of non-linear
activation functions are leaky ReLU:

f(x) =
0, if x ≥ 1
0.01 · x, otherwise

(1.3)

or the hyperbolic tangent function:

f(x) =
exp(x)− exp(−x)
exp(x) + exp(−x) . (1.4)

An optimization algorithm that is commonly used in machine learning is gradient
descent. It searches in the direction of the gradient ∇F (an) for the local minimum
of a differentiable function:

an+1 = an − γ∇F (an). (1.5)
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The optimizer takes steps of size γ in the reverse direction of the gradient and updates
the weights of the model after every iteration trying to minimize the loss function.

A loss or criterion often used in combination with GANs is the Wasserstein
criterion. It helps to make the training of the generative models more stable and
achieve better training results by replacing the discriminator with a critic that
uses the Earth Mover’s (Wasserstein-1) distance. The divergences GANs minimize
can be not continuous regarding the generator’s parameters but the Wasserstein-1
distance has the benefit of being continuous everywhere and differentiable almost
everywhere [44].

For the evaluation of point cloud-based models, commonly used metrics are the
Jensen-Shannon Divergence (JSD), the minimum matching distance, and coverage.
The JSD is defined as:

JSD(P,Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M), (1.6)

where M = 1
2
(P + Q). DKL is the Kullback-Leibler divergence and P and Q are

distributions of points in the reference and generated sets, respectively. P and Q
are approximated by voxelizing the point clouds into a 283 grid [1]. Coverage (COV)
helps to detect mode collapse and is measured as the fraction of point clouds in
the reference set Sr being matched to at least one point cloud in the generated set
Sg [123]:

COV (Sr, Sg) =
|{argminY ∈Sr D(X,Y )|X ∈ Sg}|

|Sr|
. (1.7)

Minimum matching distance (MMD) is a measure of quality for the generated point
clouds determined by calculating the similarity between two point cloud sets [123]:

MMD(Sg, Sr) =
1

|Sr|
Y ∈Sr

min
X∈Sg

D(X,Y ). (1.8)

For both, coverage and minimum matching distance, the Chamfer distance (CD) or
Earth Mover’s distance (EMD) can be used for D(·, ·) and are calculated between
two sets of points S1, S2 [125]:

CD(S1, S2) =
1

2

1

|S1| x∈S1
miny∈S2 x− y +

1

|S2| y∈S2
minx∈S1 y − x ,

EMD(S1, S2) = min
φ:S1→S2

x∈S1

1

2
||x− φ(x)||22,

(1.9)

where φ is a bijection.

1.4 Structure of the Thesis
This thesis is structured in the following way: First, a review of the state-of-

the-art regarding aortic dissection, GANs, SSMs, autoencoders, and visualization
techniques is performed. Next, the methods to generate the synthetic datasets are
discussed in detail starting with the GAN, followed by the SSM, and autoencoder.
Afterwards, the results and limitations of the approaches are discussed and lastly, we
conclude with our recommendation regarding the focus of future work.



2. State-of-the-art

This thesis investigates multiple ways to generate synthetic 3D datasets of aortic
dissection. The generative models we focus on are GANs, SSMs, and autoencoders.
These models are used in medicine for a multitude of applications such as classi-
fication, denoising, image-to-image translation, reconstruction, segmentation, and
generation [33]. This section starts with an overview of work done regarding aortic dis-
section Section 2.1, then covers the three models Section 2.2, Section 2.3, Section 2.4,
and closes with the visualization background of aortic dissection Section 2.5.

2.1 Medical Background
This section provides an overview of various research performed on the topic of

aortic dissection including epidemiological studies and CFD analysis.

Juraszek et al. [58] review recently developed concepts regarding the diagnosis,
classification, and treatment of aortic dissection. The discussed new classifications
of aortic dissection based on the Stanford classification are TEM (type, entry,
malpferfusion) [104] and STS/SVS (Society of Vascular Surgery/Society of Thoracic
Surgeons) [71]. Furthermore, treatment options like the frozen elephant trunk
approach and thoracic endovascular repair are reviewed.

Rudenick et al. [97] performed in silico, in vitro, and in vivo studies to investigate
true lumen and false lumen hemodynamics in chronic aortic dissection. They focused
on pressure and wall shear stress as important hemodynamic parameters. They
concluded that the combination of measurements from imaging and computational
analysis enables researchers to obtain a more detailed view of these hemodynamic
parameters.

Bonfanti et al. [12] developed an in vitro and in silico framework to perform
personalized studies of type B aortic dissection incorporating personalized pulsatile
flow and dynamic boundary conditions. The framework can be used for intervention
planning, the assessments of hemodynamic markers, and support the development of
medical devices.
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Kim et al. [60] discussed the risk of aortic dissection in ascending aortas that
are dilated up to a diameter of 55 mm. They carried out a competing risk analysis
to assess the risk factors of aortic dissection and aortic rupture on a dataset of 586
individuals. Their findings indicate a correlation between aortic diameter and the
age of patients with dilated aortas.

Harris et al. [49] investigated the mortality of 5131 patients shortly after presenting
acute type A aortic dissection. Patients were split into two groups: surgically treatable
patients and those who could not be operated on because of various circumstances.
The mortality of all patients during the first 48 hours was found to be 5.8%. Among
patients who were medically treated the mortality was 23.7%, and 4.4% in patients
who received or were supposed to receive surgical treatment. They conclude that
their study warrants improvements in the recognition of aortic dissection and the
transfer and surgical treatment protocols.

Gudbjartsson et al. [43] reviewed acute type A aortic dissection discussing the
various surgical procedures available depending on the presentation and aortic
pathology. They determine that short and medium-term outcomes are improving.
Zhu et al. [131] investigated the development of type A aortic dissection repair
over the last 50 years. Finding that the technical complexity of the procedure
has increased and long-term survival after it has improved. Sen et al. [101] study
the epidemiology of aortic dissection reviewing its risk factors and presentation in
a historical context. Their review includes type A and type B aortic dissection
focusing on clinical presentation, risk factors, screening and prevention, diagnosis,
and management. They conclude that despite advancements in treatment procedures,
morbidity and mortality have only slightly improved.

Braverman et al. [13] examined the clinical features and outcomes of pregnancy-
related acute aortic dissection. 29 women who experienced aortic dissection during
pregnancy or up to twelve weeks postpartum were studied regarding aortopathy,
aortic size, type of aortic dissection, timing of dissection, hypertension, and previous
aortic surgery. They found that most aortic dissection occurring during pregnancy is
the result of a former undiagnosed aortopathy concluding that monitoring the aorta
during pregnancy might lessen the involved risks.

2.2 Generative Adversarial Networks
GANs are one of the first machine learning models focussing on the synthetic

creation of 3D datasets. Coming from 2D GANs working on images to create synthetic
images of faces or numbers the idea of using a kernel to extract information from
them was translated into 3D. 3D input data of various forms was voxelized into a 3D
voxelgrid and 3D kernels were used to extract information and create synthetic voxel
representations.

The idea and general network structure of a GAN was first proposed by Goodfellow
et. al. [39]. The network is based on game theory containing a generator model
and a discriminator model. These two models compete in a two-player minimax
game to train a generator that can fool the discriminator. In this adversarial process,
the generator tries to capture the underlying data distribution of the input data
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to generate new synthetic samples with properties based on the input distribution.
The discriminator tries to discern if a sample is picked from the real input data or
if it is a synthetic sample coming from the generator. The discriminator outputs
a confidence value determining how likely the sample is to be created from the
generator. During training the accuracy of the discriminator in discerning real from
synthetic data is used to compute the loss of the model and update the weights of
the generator and discriminator. They evaluated their approach using various 2D
datasets including MNIST [27] (handwritten digits), the Toronto Face Database [108]
(faces), and CIFAR-10 [64] (color images in ten different classes). After training
was completed the generator was able to produce synthetic images based on the
original data distribution. They concluded that their proposed model was better or
at least competitive in creating synthetic data compared to other state-of-the-art
models [8; 9].

Wu et al. [120] proposed a convolutional Deep Belief Network adapting the idea
of Deep Belief Networks [53] to 3D voxel data. They represented their input data of
3D geometric shapes as a probability distribution of binary variables on a 3D voxel
grid. The model supports object recognition and shape completion from 2.5D depth
maps. To train their model the authors created a large database of voxelized CAD
models, called ModelNet.

Girdhar et al. [37] propose a generative vector representation that can be used to
generate 3D structures in voxel space and to reconstruct 3D models from RGB images.
They propose the TL-embedding network for this task which takes voxelized objects
and 2D RGB images as input. The voxelized objects are fed into an autoencoder
network which condenses them to a 64-dimensional embedding space and reconstructs
them back to the voxel representation. The images are processed using a deep
convolution neural network which maps them to the same 64-dimensional embedding
space. They evaluate their model using average precision as an evaluation metric and
compare it to objects that were reconstructed using PCA to access the reconstruction
ability of their network. The evaluation of the proposed model shows that the
reconstruction ability of the autoencoder outperforms PCA by a large margin and
that new objects generated using the autoencoder contain finer details. Furthermore,
reconstructing an object from an image gives promising results in capturing details
such as reconstructing the right amount of legs of a table.

Wu et al. [119] present a 3D Generative Adversarial Network (3D-GAN) to
generate 3D objects and combine it with a VAE [62] (3D-VAE-GAN) to reconstruct
a 3D object from a 2D image. The generator of the 3D-GAN consists of multiple
3D convolution layers and produces a 64 × 64× 64 voxel output from a randomly
sampled 200-dimensional latent vector, while the discriminator creates a confidence
value deciding if a 3D object is real or synthetic. The structure of the discriminator
mirrors that of the generator. To reconstruct 3D objects from 2D images they extend
the 3D-GAN with a VAE mapping a 2D image to the latent space using an encoder
which consists of multiple 2D convolution layers. Compared to Girdhar et al. [37] and
Sharma et al. [102], their approach can generate objects with much higher quality
and more fine-grained details. Additionally, their approach outperforms Girdhar et
al. [37] in object reconstruction from 2D images.
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Baumgartner et al. [5] use Wasserstein GANs [4] to create a feature attribution
technique that generates a visual attribution map based on an input image. This
attribution map highlights areas in the image that are specific to the class the image
belongs to. In the case of images of a brain affected by Alzheimer’s disease, the model
should learn to understand the different stages of the disease. Wasserstein GANs
are characterized by replacing the discriminator with a critic that has no activation
function in its final layer. Their training data consists of neuroimaging data of
128x160x112 voxel size which are fed to the map generator network which is based on
the U-Net [95]. The critic is modeled as a fully convolutional network that is based on
the C3D network [112]. Testing showed that their method produced the most localized
disease effect maps compared to other state-of-the-art methods [105; 107; 128].

Fid-Adar et al. [34] train a CNN to classify different types of liver lesions (cysts,
metastases, and hemangiomas). To overcome the problem small datasets pose
regarding overfitting, they test two approaches to generate more training data:
Classic data augmentation (translation, rotation, scaling, flipping, and shearing)
and synthetic data augmentation using a GAN. Results are evaluated using 3-fold
cross-validation with case separation at the patient level. Classification accuracy
increased across all three lesion types using the synthetic data augmentation to train
the CNN compared to the classic data augmentation. Furthermore, experts could
only distinguish a real from a synthetic lesion 60% of the time.

Rezaei et al. [90] propose a conditional generative adversarial network (cGAN)
for the segmentation of brain tumor images. The cGAN consists of a generator
that takes 3D MR or CT images and a random vector z as input and outputs a 3D
semantic segmentation. This semantic segmentation is fed to the discriminator along
with the ground truth, which then outputs a confidence value of whether an object
is real or synthetic. Their evaluation determines that their approach is currently not
able to outperform ensemble training approaches like [36; 80] that combine multiple
networks for the segmentation task.

Danu et al. [25] generate synthetic blood vessel surfaces using GAN and VAE ap-
proaches. Input data in the form of surface meshes is voxelized to a size of 128x32x32.
The VAE consists of an encoder and a decoder which are both convolutional neural
networks. The encoder condenses the voxelized input data to a latent space vector
from which the decoder samples to generate new voxelizations. The GAN consists
of a generator and a discriminator which are made up of fully convolutional layers.
The generator produces new voxelizations from a random input vector and the
discriminator tries to distinguish if a voxelization comes from real data or was created
by the generator. Their models generate 2D images of vessel-like structures, 3D
voxelizations of vessel-like structures, and 3D voxelizations of real anatomical models
reconstructed from medical images. During testing on real data, only the GAN
produced good results while the VAE failed to converge during the training process.

Rusak et al. [98] generate synthetic MRI volumes using partial volume maps as
input for a GAN to enlarge limited data sets for the training of brain segmentation.
Partial volume maps distinguish themselves from binary maps by assigning partial
affiliation values regarding a single class to a voxel in the image instead of binary
maps which assign either a one or a zero. This is beneficial, especially at the borders
of tissues where the voxel resolution might not be high enough when only using a
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binary map. Their model is based on Pix2Pix [57], which is a cGAN with a generator
based on the U-Net [95] and a discriminator based on PatchGAN [57]. The generator
contains skip connections between the sampling layers and the discriminator compares
patches of images instead of the whole image. Using partial volume maps instead
of binary maps results in a higher accuracy of the tissue borders in the synthesized
image and even fine changes introduced in the partial volume maps are reflected in
the synthetic images.

2.3 Statistical Shape Models
SSMs are used to create statistical models of input data consisting of point

locations in space. The statistical model is created using a PCA and is used
to approximate shapes based on the calculated principal components (PCs) and
eigenvalues. SSMs are used in active shape models and active appearence models
which use the approximated shapes to find corresponding shapes in the respective
space. The SSM can also be used to just generate new shapes which can be used to
populate a synthetic database.

Heimann and Meinzer [51] performed a general review of the techniques required to
create and employ 3D SSM in medicine. The review presents the various approaches
input data can be represented, how shape models can be reconstructed, how shape
correspondence is inferred, how appearance models are built from shape models, and
covers how search algorithms use these shape models to find matching anatomy in
the input data.

De Bruijne et al. [26] propose various modifications to conventional active shape
models of tubular structures. To create the active shape model, an SSM is built from
a set of training examples. A training example is described by the coordinates of n
landmark points corresponding between shapes. The SSM is extended by modeling
the axis and cross-sectional shape deformation separately, resulting in elongated
structures being modeled more flexibly. Furthermore, by adding synthetic covariance,
a supplementary smooth deformation is introduced, which is decoupled in x, y, and z
direction. Lastly, a non-parametric multi-class model replaces the linear one-class
gray value model that is usually used in active shape modeling. The shapes are then
aligned using Procrustes Analysis using the landmark points to find correspondences
and transformed to the tangent space of the mean shape. Performing a PCA on the
aligned shapes results in eigenvectors, which represent the modes of shape variation.
New shapes can be generated by multiplying each mode with a factor and adding
them to the mean shape. Their results show that using their modifications shape
approximation errors were reduced and the segmentation accuracy was significantly
improved.

Bruse et al. [14] employ SSM for the hierarchical clustering of healthy and
pathological aortic arches. 60 aortic arch anatomical models were divided into three
subgroups of healthy aortic arches, arches post aortic coarctation repair, and arches
post arterial switch operation. Their meshes were aligned using iterative closest
points (ICP) and Generalised Procrustes Analysis. The aligned meshes were then
used as input for the Deformetrica code framework [29] to calculate a mean shape.
Using the framework each of the 60 aortic arches could then be parameterized by
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subject-specific transformations of the mean shape using a set of deformation vectors
βi. Therefore, the entire shape information of the population could be combined in a
matrix DFull using the deformation vectors of each subject. Performing PCA on this
matrix and sorting the eigenvectors according to their variance contribution up to
a combined variance of 90% results in the shape loading matrix DPCA. DFull and
DPCA were then used as input for the hierarchical clustering.

Duan et al. [28] employ statistical shape modeling as part of their framework to
reconstruct a 3D representation of aortic dissection from CT images. The framework
consists of image preprocessing, aorta segmentation, aortic dissection extraction,
and 3D visualization. Shapes are represented by a set of landmark points which are
manually marked by experts in each CT image and are used to build an aorta model
library. Shapes in the library are aligned using various affine transformations and a
shape model is built by performing a PCA on the shape representation and selecting
the first n eigenvectors that contain 72% of the variance. The SSM is then used
during the segmentation step to automatically adjust the posture parameters of the
initial shape of each layer in the CT images.

Liang et. al. [69] used a machine learning approach including SSM to investigate
the relationship between shape features and numerically predicted risk of ascending
aortic aneurysm subsequently. 25 cases of ascending aortic aneurysm were used
as input for the SSM. The surface of the aorta was reconstructed from the CT
images and trimmed at the ascending aorta just distal to the sinotubular junction
on the proximal end and at the descending aorta on the distal end. Additionally,
all branching vessels were removed. To obtain correspondences between meshes,
they developed a remeshing method for converting triangle meshes to quad meshes.
The quad meshes were aligned using Generalized Procrustes Analysis (GPA) and a
mean shape was calculated using PCA. The first three eigenvectors were selected
representing 80.1% of the shape variation and 729 shapes were generated. Finite
element analyses were performed on the generated shapes and based on the simulation
results machine learning-based rupture risk analysis was carried out.

Marzola et al. [75] propose a framework to automatically detect shape corre-
spondences among 3D models of cranial vaults. Point distribution models of the
cranial vault are first aligned using their bounding boxes. Next, the internal and
external crusts of the cranial vault are separately aligned using an ICP algorithm.
Corresponding points are then found using a k-Nearest Neighbor algorithm. Both
crusts are then combined in a single matrix on which the SSM is performed.

Cosentino et al. [24] studied the associations between shape and function in
a population of ascending thoracic aortic aneurysms. Aortic surface meshes were
extracted from 106 patients separated into two groups according to their aorta
morphology (tricuspid aortic valve and bicuspid aortic valve). Additionally, meshes
from a control group of 19 patients with non-aneurysmal aorta were obtained. The
meshes were cut near the brachiocephalic artery, aligned using ICP, and a mean
shape was calculated using GPA. The aligned meshes were then used as input for the
PCA. Performing strain and flow analysis and statistical analysis they found that
the resulting shape modes are related to biomechanical descriptors concerning shape
and function.
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Hoeijmakers et al. [54] studied the performance of a SSM-based meta-model
combined with CFD simulations to approximate the patient-specific pressure drop
across the aortic valve. The SSM is created by first aligning the surface meshes of the
aortic valve using GPA and subsequently calculating a mean shape from the aligned
meshes. A PCA was then performed to calculate the modes of shape variation. The
first three modes, a global scaling parameter, and flow rate were used to parameterize
the meta-model training using the Genetic-Aggregation meta-model [99] resulting
in a meta-model that could capture the behavior of the pressure drop in the aortic
valve.

Thamsen et al. [109] used SSM and a patient cohort of 154 subjects to create a
synthetic database of 2652 cases of the aortic arch. The aortic arches were represented
using centerlines and radii and aligned by minimizing the sum of squared distances
of corresponding points. A mean shape was computed and a PCA was performed
on the covariance matrix. The SSM was used to generate a synthetic database of
>10000 cases on which CFD simulations were performed. When generating new
shapes using the SSM the PCs might be weighted in a way that produces unrealistic
non-physiological shapes. To eliminate these non-physiological cases a step wise
filtering approach was applied resulting in the final database of 2652 cases. Shapes
were discarded when the CFD simulations performed on the generated shapes resulted
in urealistic pressure values and shapes where discarded when the stenosis degree
was below a certain threshold. Agglomerative hierarchical clustering was performed
on the real and synthetic cases identifying three clusters having unique properties
but no direct correlation with clinically introduced types of the aortic shape.

Catalano et al. [17] developed a SSM of ascending thoracic aortic aneurysm using
a cohort of 106 patients equally split into two groups with bicuspid aortic valve and
normal tricuspid aortic valve. The 3D surface models of the ascending thoracic aortic
aneurysm excluding branching vessels were aligned using ICP and modes of shape
variation were calculated using PCA with the first seven modes capturing 90% of the
shape variation. New shapes were generated by multiplying the shape modes with
a factor and adding them to the mean shape. Performing CFD simulations on the
generated geometry shape modes like aneurysm size and tortuosity could be linked
to the flow parameters.

Romero et. al. [94] assessed different strategies to increase the sampling efficiency
and control statistical properties of synthetic cohorts of the thoracic aorta. The
aortic geometry of 26 cases was represented using a cubic B-spline curve of the
centerline with the respective radii following the approach of Romero et. al. [93].
A SSM was built by performing a PCA on the input population. New individuals
could then be generated by adding a feature vector containing the modes of shape
variation to the mean shape. Three sampling strategies were examined including non-
parametric sampling using bootstrapping, parametric sampling using a multivariate
Gaussian distribution and a uniform distribution, and a GAN. In total 3000 synthetic
shapes were created. The sampling strategies were evaluated using data-driven,
clinically-driven, and feature space-driven acceptance criteria. Results showed that
bootstrapping and Gaussian sampling generate trustworthy cohorts, uniform sampling
produces cohorts with maximum variability, and the GAN sampling achieves the
best acceptance efficiency in most acceptance criteria.
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Thamsen et. al. [110] generated a database of 2652 virtual cases containing
aortic morphometry and hemodynamics using statistical shape modeling to capture
the 3D shape variability of patients with coarctation of the aorta. They used a
centerline-based shape description of the aorta containing the centerline coordinates
including the three side branches of the aortic arch and respective radii. Additionally,
two SSMs of velocity inlet profiles were created one for patients with tricuspid
aortic valves and one for patients with bicuspid aortic valve defect. Using the three
SSMs a database of more than 10000 synthetic cases was created by randomizing
the weights of the modes of shape variation using a normal distribution. Next, a
stepwise filtering approach was employed removing non-physiological shapes from the
database. The shapes were filtered according to the radii, branches intersecting with
the aortic arch. CFD simulations were performed on the remaining cases generating
a cohort of synthetic models containing morphology and hemodynamic information.
2537 of these models were then used to develop a peak systolic pressure gradient
prediction model for the coarctation of the aorta that could outperform the current
Bernoulli-based approach.

2.4 Auto Encoders
Autoencoders are machine learning models used to learn encodings of the input

data, which can later be reconstructed from the encoded representation. This learned
encoding space can also be randomly sampled to create synthetic data following the
properties of the input data.

The idea of a VAE was first proposed by Kingma and Welling [62] presenting
a stochastic variational inference and learning algorithm that can scale to large
datasets. They introduced a Stochastic Gradient Variational Bayes estimator that
can be used to efficiently approximate posterior inference in almost any model with
continuous latent variables and an Auto-Encoding Variational Bayesian algorithm
to further handle independent and identically distributed datasets. The trained
posterior inference model can be used for tasks such as recognition. A VAE is derived
when a neural network is used for the recognition model. Kingma and Welling [63]
also created an in-depth introduction to VAEs with important extensions.

Bello et al. [7] introduced 4Dsurvival a supervised denoising autoencoder to learn
latent representations optimized for survival prediction of patients diagnosed with
pulmonary hypertension. Image sequences of 302 patients were processed using a
fully convolutional network trained on anatomical shape priors creating a dense
motion, model which is then used as input for the autoencoder. Beetz et al. [6]
proposed a multi-domain VAE, combining the modeling of biventricular anatomy
and cardiac electrophysiology. As training data, magnetic resonance images and
electrocardiograms (ECG) were acquired from 1300 subjects of the United Kingdom
Biobank imaging study [85]. Point clouds at the end of systole (ES) and the end of
diastole (ED) were computed from the imaging data and, together with the ECGs,
used as input for the VAE. The proposed VAE can generate realistic ECGs, ES
point clouds, and ED point clouds when randomly sampling from the latent space
distribution.

Achlioptas et al. [1] performed a study of various generative models operating
on point cloud data. They developed a deep AutoEncoder network to encode and
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decode point cloud data. Using the network various other generative models were
tested to compare their performance concerning generalization, fidelity, and diversity.
These other models included GANs operating on the raw point cloud data, GANs
trained on the latent space of the introduced AutoEncoder network, and Gaussian
Mixture Models. As evaluation metrics for the comparison of their unordered point
sets, the Earth Mover‘s distance [96] and the Chamfer distance were used. Further
evaluation metrics for the explored generative models were the JSD [76], coverage,
and minimum matching distance. Their testing showed that for each evaluation
metric, the Gaussian Mixture Models trained in the latent space of the AutoEncoder
network performed best.

Uy and Lee [113] combine PointNet [86] and NetVlad [3] to recognize large-scale
places presented as point clouds acquired using scanners such as LiDAR. PointNet
is used to extract a high-dimensional local feature descriptor from the input point
cloud which is then used as input for NetVlad. NetVlad then generates a global
descriptor for the same point cloud. For the training of their model, the authors
introduced two new loss functions, called lazy triplet and lazy quadruplet, that differ
from the original triplet and quadruplet losses by using the sum instead of the max
operator. Testing showed that their network performs better on the newly introduced
losses. Comparing their PointNetVLAD to the original PointNet trained for the
place recognition task and a state-of-the-art PointNet trained for object classification
on rigid models, their new model could outperform both.

Zamorski et al. [125] present an end-to-end solution in the form of an adversarial
autoencoder that can learn a latent space representation from 3D point clouds
and generate 3D shapes from the latent space. This is done by extending a deep
adversarial autoencoder [74] to take 3D point clouds as input and create 3D output.
The feature extraction part of the PointNet [86] is employed as an encoder, with the
Earth-Mover distance [96] utilized for the distance metric in the loss function, and
the Wasserstein criterion [44] supports the adversarial training. Their model enables
simultaneous data generation, feature extraction, clustering, and object interpolation.
They compared their model, a 3D adversarial autoencoder, to various other models:
a raw point cloud GAN, a latent-space GAN, a Gaussian Mixture Model, and a 3D
VAE. To evaluate the generative properties of these models, they employ the Jensen-
Shannon Divergence [76], coverage, and minimum matching distance. Their approach
scored highest regarding reconstruction capabilities and generative capabilities.

Yang et al. [123] present a framework for the generation of 3D point clouds by
learning a two-level hierarchy of distributions. The first level is the distribution of
shapes and the second level is the distribution of points given a shape. Their approach
can generate new point clouds with an arbitrary number of points. This is achieved
by first sampling points from a Gaussian prior and then translating them to their new
location in the target shape. The continuous normalizing flow framework [21; 40; 91]
is the base model. Chamfer distance and Earth Mover’s distance are used to measure
similarity between point clouds and JSD, coverage, minimum Matching Distance,
and 1-NNA are used to evaluate the generative abilities of the model. Their model
outperformed all models and was compared to GAN [1], latent-GAN [1], and PC-
GAN [68] regarding all metrics, while having the least amount of parameters to
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train. Regarding reconstruction ability, their model outperforms AtlasNet [41] and
l-GAN [1], using Earth Mover’s distance as an evaluation metric.

Cai et al. [16] generate point clouds by performing stochastic gradient ascent on
an unnormalized probability density. They state that a point cloud is a set of samples
from a distribution of 3D points. Therefore, the sampling procedure can be seen as
moving points from a generic prior distribution to high-likelihood regions of the shape
by modeling the gradient of log density [70]. As a result, this model can generate
point clouds with an arbitrary number of points. They model two distributions:
the distribution of shapes, encoding how shapes of the same family vary between
each other, and a mechanism to sample a point cloud from the surface of a shape.
To generate new shapes, an autoencoder takes point clouds as input and creates a
latent space that is used by a latent-GAN [1] to learn the distribution. Using the
generator of the GAN, new point clouds can be sampled. The authors evaluate the
reconstruction ability of their method using Chamfer Distance and Earth Mover’s
distance, and the quality of the generation is evaluated using minimum Matching
Distance, coverage, and the 1-NNA classifier. Reconstruction ability is compared
against AtlasNet [41], the approach of Achlioptas et al. [1] and PointFlow [123]
outperforming all of them using Earth Mover’s Distance as a metric. The generation
ability of the model is compared to r-GAN [1], GCN-GAN [114], TreeGAN [103],
and PointFlow [123], producing visually cleaner shapes.

Chen et al. [20] present a variational autoencoder framework for 3D point cloud
generation. The framework contains three parts: an encoder, a flow model, and
a decoder. To learn detailed local distance relations, they introduce adaptive-
weighted pooling in the encoder of the framework to replace the commonly used
max pooling or average pooling. The generated point clouds are evaluated with the
minimum matching distance, coverage, Jenson-Shannon divergence [76], and 1-NN
classifier accuracy [123]. Earth Mover‘s distance and Chamfer distance are used to
evaluate the reconstruction performance. Compared to state-of-the-art approaches
like AtlasNet [41], Point-Flow [123], ShapeGF [16], and DiffusionPM [73], their
framework performs better or at least competitive.

Anvekar et al. [2] introduce Venatus Geometric Variational Auto Encoder which
can capture hierarchical local and global geometric signatures in point clouds. To
capture local geometric signatures (e.g., the wings, tail, and engine of an airplane)
a newly introduced Geometric Proximity Correlator is used. Global geometry is
extracted using variational sampling of the latent space. Compared to multiple other
state-of-the-art classification approaches their method reaches competitive accuracy,
but does not outperform the best-performing approaches like Point Transformer [127]
or PCT [46].

Molnár and Tamás [78] introduced an end-to-end learning approach for Time-of-
Flight depth images, to learn the representation of discrete 3D points. Their approach
transforms the input of 3D point clouds into 2D space using the compact geometric
image representation [42] of the input data. Their network is built from a β-VAE [52]
containing the transformation and back-transformation from 3D data to the compact
geometric image representation. Chamfer distance was used as a metric to compare
the output data against the ground truth reconstruction. Regarding reconstruction
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losses, their approach outperforms 3D-AEE [125] when noise is introduced into the
data.

Feldman et al. [31] presented VesselVAE a Variational Autoencoder to create
synthetic 3D meshes of blood vessels. The network takes as input a binary tree
representation of the blood vessel 3D geometry, which is then processed using
a Recursive variational Neural Network consisting of an encoder and a decoder.
Additionally, the decoder contains a Node Classifier and the Features Decoder Multi-
Layer Perceptron. The Node Classifier reconstructs the type of the encoded node
(leaf node or internal node with one or two bifurcations). The Features Decoder
Multi-Layer Perceptron then reconstructs the attributes of each node (position
and radius). Depending on the bifurcation right and left decoder Multi-Layer
Perceptrons are employed to decode the next encoded vector in the tree. After
the decoding the method of Felkela et. al. [32] is used to generate a mesh from
the reconstructed tree which is smoothed and has its resolution increased using the
Catmull-Clark subdivision algorithm [18]. To evaluate their approach they analyzed
the tortuosity per branch, the vessel centerline total length, the average radius of the
tree, and the cosine similarity. The distributions of these metrics are consistent when
comparing synthetically generated vessels and real vessels. To qualitatively analyze
their approach, they compared their generated meshes to Wolternik et al. [118] and
Hamarneh et al. [47] determining that their approach can generate realistic blood
vessels with branches that are also modeled realistically.

2.5 Visualization
The visualization of 3D geometries of vascular structures acquired from CT and

magnetic resonance imaging (MRI) is a large research field spanning a wide array
of rendering and shading techniques. The renderings of meshes generated in this
work are based on various past contributions to this field of research. Lawonn et
al. [67] investigated illustrative visualization techniques of vascular structures in
combination with flow regarding the perception of shape and depth. Rezk-Salma
et al. [92] tackled occlusion in the visualization of 3D scalar data using opacity
peeling, making outer layers transparent to show the information internal structures
provide. Straka et al. [106] proposed a focus-and-context visualization technique
combining the visualization of meshes obtained from curved planar reformation and
direct volume rendering.

Ostendorf et al. [83] investigated shading styles and rendering techniques for
the visualization of aortic dissection meshes. The main problem when rendering
aortic dissection meshes is the simultaneous rendering of multiple wall layers and the
dissection flap which distinguish aortic dissection. Their work concluded that Fresnel
shading is a suitable technique to achieve a focus and context visualization of the
wall layers and dissection flap like that used in the ghosted views approach of Glaßer
et al. [38]. Shading styles with controllable surface roughness, like Oren-Nayar [82]
shading for the ambient lighting and Cook-Torrance [22] shading for the specular
lighting, were rated best to render the surfaces of aortic dissection meshes.

This thesis parameterizes the 3D geometry of aortic dissection using voxels as
input for the GAN Section 3.2, a centerline-based representation using ellipses as
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cross-sections as input for the SSM Section 3.3, or point clouds as input for the
VAE Section 3.4. Another possible parameterization is presented by Mistelbauer et
al. [77] who implicitly model patient-specific 3D meshes of aortic dissection using
elliptic Fourier descriptors.



3. Methodology

In this thesis, we investigate the suitability of a GAN, a SSM, and an autoencoder
to generate aortic dissection datasets. The work is motivated by the difficulty of
obtaining a large number of datasets to perform research interested in the cause
and progression of aortic dissection. This is caused by privacy concerns, the rarity
of the disease, and institutions not combining their information and resources. To
overcome this problem the generation of synthetic datasets might be a way to create
the needed databases. We implemented two machine learning models (GAN, VAE)
and an SSM in a Python framework developed for this thesis. The machine learning
models are implemented using PyTorch.

The GAN is based on the approach of Wu et al. [119]. Using voxelized point
clouds of the aorta, the true lumen, and the false lumen as input, the GAN learns
to generate new datasets with similar distributions. This results in the output
of synthetic datasets containing voxel representations that have similar statistical
properties as the input data while being different enough from the input to be
considered unique.

The SSM approach uses a PCA to extract PCs and weights that can be combined
to generate new synthetic shapes. Therefore, the approaches of Romero et al. [94] and
Thamsen et al. [110] are extended to include a second flow channel. We parameterize
the aorta and the true lumen using their respective centerlines and radii.

The autoencoders are inspired by Beetz et al. [6] and Zamorski et al. [125]. Beetz
et al. encoded 3D point clouds of the heart captured during systole and diastole
together with ECG data in a latent feature space using the encoder of a VAE. The
decoder generates realistic virtual point clouds of the heart and the ECG data by
sampling from the latent space. We use 3D point clouds of aortic dissection, with
points labeled either as true or false lumen to, generate synthetic point clouds of aortic
dissection. Additionally, we extend the VAE approach with the AAE introduced by
Zamorski et al. to investigate if the VAE benefits from the improvements an AAE
provides, such as sharper transitions between shapes in the latent space.
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The results of this thesis are limited by the nature of machine learning, which is
influenced by the size of the training database, the quality of the training data, and
the time spent on the actual training of the models. We aim to lay the groundwork
for further research by showing which approaches are promising to be investigated
in the future to generate a database of synthetic aortic dissection datasets possibly
moving in the direction of implicit modeling [77].

3.1 Data Preprocessing
To perform the various machine learning approaches, a database consisting of

ground truth, test, and validation datasets is needed. The medical data sets were
acquired at Stanford School of Medicine, and approved by the institutional review
board (IRB#41660). From a total of 28 datasets two are removed due to the bad
quality of their segmentation. Each dataset consists of three centerlines (aorta, true
lumen, false lumen) located in physical coordinate space (PCS), a 3D segmentation
mask of the true and false lumen located in the multi planar reformation (MPR),
and matrices to transform points from PCS to MPR [116].

The process to extract the MPR representation of the aorta is described by
Mistelbauer et al. [77] (Section 3.1) who straighten its centerline and center it at the
origin of the MPR space. The centerline is then sampled at equidistant intervals
(Figure 3.1a) resulting in n centerline points. Perpendicular to these points, the
3D segmentation mask is resampled. This sampling leads to a new voxel mask
consisting of n stacked lumen slices (Figure 3.1i) aligned with the corresponding
centerline points (Figure 3.1d). The voxel mask contains unique values, representing
the background (0), the true lumen (1) and the false lumen (2).

The provided data is then further processed. First, the voxel mask is separated
into point clouds representing the true and false lumen (Figure 3.1b and Figure 3.1c).
To generate a point cloud from a voxel mask, we only save the voxels containing the
index of the lumen of interest while removing voxels containing the background and
the other lumen. This results in a set of n 3D point coordinates located in MPR
space that represent the respective lumen:

Slumen =






(x0, y0, 0)
...

(xn, yn, n)





. (3.1)

Because we are currently operating in MPR space the z-coordinate represents the
indices of the sampled centerline points. Therefore, the points of each slice can be
assigned to the respective centerline point by comparing the z-coordinate.

Some of the datasets contain errors in the 3D segmentation mask, which result
in artifacts of mislabeled lumen data. These artifacts occur with some distance
to the lumen of interest which helps in removing them by simply calculating the
mean distance dmean of the points in a slice to the corresponding centerline point
and removing all points that lie outside dmax: dmax = dmean + dmean/3. The removal
distance was found through testing performed on the datasets. We compute this
maximum distance for each slice separately, as this local outlier removal leads to better
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Figure 3.1: Surrounding a centerline transformed to the MPR space (a) are points
corresponding to the true lumen in red (b) and false lumen in blue (c). Combining
both lumen results in (d). Below each MPR representation the respective PCS
transformation of the points is shown. A slice inside of each representation consisting
of true and false lumen points is shown in (i). Each slice corresponds to one centerline
point.
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results than setting a global maximum distance for the entire dataset. Additionally,
this approach automates the process of finding the outlier removal distance, which
we had to set manually earlier.

We want to directly work on input data located in PCS and generate output
data located in PCS, therefore the points located in MPR space (xmpr, ympr, zmpr)
have to be transformed to PCS (xpcs, ypcs, zpcs). This is done using the provided
transformation matrices. Because the points of each slice can be related to their
corresponding centerline point each point in the slice can be transformed using the
transformation matrix of the corresponding centerline point:





xpcs
ypcs
zpcs
1



 =





a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
xc yc zc 1



 ·





xmpr
ympr
zmpr
1



 . (3.2)

The locations of the centerline point location in PCS (Figure 3.1e) are saved in
the matrix as xc, yc, zc. a11 to a34 encode the needed transformations for the true
and false lumen points. The transformation from MPR space to PCS is performed
for each dataset, resulting in 26 point clouds of true and false lumen (Figure 3.1f and
Figure 3.1g) that are then converted to the representations needed for the generative
approaches.

3.2 Generative Adversarial Network
As a baseline, we use the approach of Wu et al. [119] who employ a Deep

Convolutional Generative Adversarial Network (DCGAN) [88] in their model which
in turn is based on a GAN. A GAN is a deep learning model specialized to generate
output data that is similarly distributed as the input data. In the example of facial
images, a GAN produces similar-looking faces compared to the input data. The
network was first proposed by Goodfellow et al. [39], introducing it as a two-player
minimax game in which a generator tries to fool a discriminator. The generator G
creates synthetic data from a randomized seed which the discriminator D has to
distinguish from real data. This is described by the value function V (D,G):

min
G
max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (3.3)

Dis trained to maximize the probability of correctly distinguishing real from synthetic
data, where D(x) describes the probability that x came from the real data and
Ex∼pdata(x) is the expected value of the real data. G is trained to minimize log(1−
D(G(z))) where Gz is the random sample produced by the generator from the random
noise seed z and D(G(z)) is the estimate of the discriminator of the probability of a
data sample being real or synthetic. Ez∼pz(z) is the expected value over the random
noise input to the generator. D and G are both multilayer perceptrons whose weights
can be trained.

A DCGAN extends the GAN using 3D convolutional layers and batch nor-
malization in the discriminator and 3D transposed convolutional layers and batch
normalization in the generator and rectified linear unit (ReLU) is used as an activation
function in the generator, except for the output which uses tanh.
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3.2.1 Input Data

To train the DCGAN we need to transform the previously processed datasets
(Section 3.1) to a voxel-based representation of size (64× 64× 64). For each dataset,
this is done by voxelizing the point cloud data into a (64 × 64× 64) dataset, where
1 represents foreground and 0 background. After each dataset is voxelized they are
aligned using ICP [11]. ICP is performed as many times as we have input datasets
using every dataset as a target and comparing the alignment errors. The best-fitting
alignment is then chosen as the input data alignment. Example datasets are shown
in Figure 3.2.

3.2.2 Network Architecture

We follow the idea of Wu et al. [119] with some minor adjustments in the setup
and training of the model. The generator is set up to receive a 200-dimensional
noise vector and tasked to create a voxelized representation of either an aorta, a true
lumen, or a false lumen. The noise vector is passed through the generator network
consisting of 3D transposed convolutional layers, batch normalization layers, and
ReLU layers with a sigmoid layer at the end. The architecture of the generator is
shown in Figure 3.3a.

The 3D transposed convolutional layers are used to upsample the size of the input
processing the 200-dimensional noise vector into a 64× 64× 64 volume. They achieve
this by multiplying each input value element-wise by a 3D kernel. The output of
each 3D transposed convolutional layer is governed by the number of channels of the
input, the kernel size, the padding, and the stride the kernel takes. The kernel sizes
(ks) are (4× 4 × 4) with strides (s) of (1, 2, 2, 2, 2) from the first to the fifth layer
and padding (p) of size 1 is used. Dilation (d) and output padding (pout) are set to 0.
The hyperparameters ensure the correct 3D output size which is governed by the
following equation for a cube of size S × S × S:

Sout = (Sin − 1)× s− 2× p+ d× (ks − 1) + pout + 1. (3.4)

The 3D batch normalization layers normalize the output of the convolutional layers
which leads to a faster and more stable training [56]. ReLU is chosen as an activation
function because of its good performance on sparse inputs which is ideal for a GAN.
The last sigmoid layer is used to produce values between 0 and 1 which is used to set
the content of the voxel to either contain data or be empty. From the 200-dimensional
noise vector, the output sizes of the different layers are as follows: The first layer
outputs a 512 × 4 × 4 × 4 vector, the second a 256 × 8 × 8 × 8 vector the third a
128 × 16× 16× 16 vector, the fourth a 64 × 32× 32 × 32 vector and the last the
final voxelized representation of size 1 × 64× 64× 64.

The discriminator inverts the architecture of the generator and receives either a
1× 64× 64× 64 voxelization of a real dataset (aorta, true lumen, or false lumen) or
a fake voxelization created by the generator. The data is then passed through the
discriminator consisting of 3D convolutional layers followed by 3D batch normalization
layers and leaky ReLU layers. The 3D convolutional layer is again only followed by
a sigmoid layer. The architecture of the generator is shown in Figure 3.3b.



24 3. Methodology

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.2: Voxelized aortas and lumen (d - i) which are used as input for the GAN
approach. A Column presents the aorta (a - c) with the according true lumen (d - f)
and the false lumen (g - i).
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Figure 3.3: The generator and discriminator architectures of the GAN. The generator
(a) receives a 200-dimensional noise vector as input which is passed through multiple
3D transposed convolutional layers (convT) followed by 3D batch normalization (bn)
and ReLU(relu). The last 3D transposed convolutional layer is followed by a sigmoid
(sig) layer instead of batch normalization and ReLU. The output of the generator
is a synthetic voxelization of either an aorta, a true lumen, or a false lumen. The
discriminator (b) receives a voxelization of size 1 × 64 × 64 × 64 as input which
is passed through multiple 3D convolutional layers (conv) followed by 3D batch
normalization (bn) and leakyReLU (lrelu). The last 3D convolutional layer is only
followed by a sigmoid (sig) layer instead of batch normalization and leakyReLU. The
discriminator produces a confidence value whether a voxelization is synthetic or real.

The 3D convolutional layers are used to condense the data to a single value
which is the confidence value the discriminator returns to classify a voxelization
as either real or synthetic. Just like the 3D transposed convolutional layers the
output of 3D convolutional layers is governed by the number of channels of the
input, the kernel size, the padding, and the stride of the kernel. The kernel sizes are
(4× 4× 4) with strides of (2, 2, 2, 2, 1) and padding of size 1. LeakyReLU is chosen
over ReLU because it fixes the dying ReLU problem. Dying ReLU occurs when a
neuron that is part of a ReLU layer becomes inactive and only outputs 0 for any
input [72]. This results in the neuron having no further impact on discrimination
between real and fake inputs because its weights do not get updated anymore. This
is especially problematic when trying to discriminate input [122] which is the case in
the discriminator of a GAN. Leaky ReLU helps these inactive neurons to recover
back to an active state. The sigmoid layer in the discriminator returns a single value
distinguishing if a voxelization was created by the generator or if it was real data. For
a 1× 64× 64× 64 voxelization, the output sizes of the different layers are as follows:
The first layer outputs a 64× 32× 32× 32 vector, the second a 128 × 16× 16× 16
vector the third a 256× 8× 8× 8 vector, the fourth a 512× 4× 4× 4 vector and the
last a single confidence value between 0 and 1.
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3.2.3 Training

The model is trained using the loss function from Equation 3.3 with x being a
voxelization of size 1× 64× 64× 64 and z being the 200-dimensional noise vector.
The loss of the generator Gloss is dependent on the performance of the discriminator
in discerning the synthetic data xfake created by the generator from real data xreal:

Gloss = log(1−D(G(z))). (3.5)

In each training iteration, the generator is tasked to create synthetic voxelizations
for which the discriminator has to output a confidence value. If the discriminator
performs poorly and cannot tell if a voxelization is real or synthetic, the output value
is around 0.5. In such a case the generator is performing well and the discriminator
is underperforming. If the discriminator can accurately discern real from synthetic
voxelizations, the discriminator is performing well and the generator is underperform-
ing. The discriminator loss Dloss consists of two parts: the accuracy on real data
D(xreal) and synthetic data D(xfake):

Dloss = log(D(xreal)) + log(D(xfake)). (3.6)

The loss is then used by the optimizer to update the weights of the generator and
discriminator to minimize the loss in the next iteration. The training is performed in
alternating steps for each batch. First, the discriminator is trained to distinguish the
true samples from the fake samples generated by the generator, then the generator is
trained to fool the discriminator with the synthetic data samples. As suggested by the
original approach of Wu et al. [119], we use the Adam [61] optimizer which is the most
common optimizer used in machine learning tasks due to its low memory requirements
and fast convergence [50]. We initialize Adam with β1 = 0.9, β2 = 0.999, and = 1e−8

and set the learning rate of the generator to 0.0025 and that of the discriminator
to 0.00001. The discriminator usually learns faster than the generator resulting in
bad feedback for the generator. If the discriminator gets too good at differentiating
between real from fake data the generator has no basis for what to improve and
continues to create fake data that is easily distinguished by the discriminator. For
that reason, Wu et al. suggest limiting the weights of the discriminator to only being
updated when its accuracy drops below 80% to enable the generator enough time
to sufficiently learn to fool the discriminator. Our testing showed that we get the
best result when we stop the discriminator training even earlier at 97% accuracy.
Furthermore, we use our entire training database of 25 datasets during each epoch.

3.3 Statistical Shape Modelling

SSM uses PCA to generate synthetic shapes from the input data. It is generally
performed by calculating a mean shape and relating each input data to this mean
shape in a process called registration. Next, PCA is performed on the shape descriptor
matrix resulting in the shape modes of the input shapes. The mean shape and the
modes of shape variation can then be used to create new synthetic shapes.
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3.3.1 Registration and Parameterization

We consider two possible registration approaches: registering each point of
the point clouds to other points of the 3D point clouds (pc-to-pc registration) or
parameterizing the true and false lumen of the aorta and registering the parameteri-
zations (parameterization-to-parameterization registration). Pc-to-pc registration
would result in a more accurate representation of the lumen physiologies than
parameterization-to-parameterization registration.

To perform an adequate pc-to-pc registration we select one point cloud as our
starting mean shape and then correspond each other point of the other point clouds to
the points of our starting mean shape. The starting mean shape is then transformed
using generalized Procrustes analysis creating a new shape that minimizes the
distances of the points in the other point clouds to the mean shape. This process is
repeated until further iterations do not decrease the average distances of corresponding
points. Unfortunately, we were not able to adequately determine correspondences
between point clouds due to every point cloud having a varying number of points
caused by the true and false lumen physiology being very complex and different in
shape. This makes establishing 1:1 correspondences impossible. Each point cloud has
on average 204000 points for the true lumen and 168000 points for the false lumen.
We tried randomly downsampling the point clouds to an even number of points but
this resulted in some sections of the physiology being represented by more points
than others, which led to worse 1:1 correspondences. Further steps that could be
taken to achieve pc-to-pc registration are discussed in Chapter 5.

In the second registration approach, we parameterize the aorta and true lumen
with a centerline-based representation using the radii of the cross-section along all
curves perpendicular to the centerline curve like recent approaches dealing with
statistical shape models of aortas [94; 110; 117]. Each dataset of an aorta consists
of the aorta and true lumen centerline points and respective lumen points already
located in the MPR space of the centerline of the aorta. To properly parameterize the
aortic dissection we only need to use the centerline and radii of the aorta and the true
lumen to calculate the SSM. The false lumen can simply be determined by subtracting
the true lumen representation from the aorta representation. This approach is also
helpful in capturing the mostly concave, half-moon-shaped cross-section of the false
lumen which could not be properly represented using only radii of ellipses but would
need elliptic Fourier descriptors [77] or comparable approaches which would in turn
complicate the SSM.

The centerline points of the aorta and the true lumen are already evenly-spaced
along the z-axis of the MPR space along with their respective lumen points perpen-
dicular to the z-axis Section 3.4. Each centerline consists of 431 to 672 centerline
points. By considering the centerline points separately we can simplify the problem
to two dimensions. For each centerline point, we calculate the ellipse defining the
cross-section of the respective lumen at this point. An ellipse can be defined using
the following equation:

x2

a2
+
y2

b2
= 1, (3.7)



28 3. Methodology

with b being the semiminor axis to the semimajor axis a if b < a. We calculate a
by finding the lumen point l = [x, y]T in the set of lumen points L that has the
maximum distance to the centerline point c = [x, y]T we are currently interested in:

a = max
i

c− Li . (3.8)

We denote the lumen point with the maximum distance to c as la. Additionally, we
denote the vector which points from c to la as vcl: To calculate b we need to find
the point lb which is the point with the maximum distance from c when we search
along v⊥cl . Because we can not be certain to directly hit a point when searching in
the positive and negative direction of v⊥cl we consider points in the vicinity of v

⊥
cl .

First we calculate vcl:

vcl = c− la. (3.9)

Next, we find a vector v⊥cl that lies perpendicular to vcl by swapping the x and y
coordinates of vcl and swapping the sign of the x coordinate:

v⊥cl =
vcly
−vclx

. (3.10)

We then define the endpoints e1 and e2 of a line containing the vector v⊥cl as:

e1 = v⊥cl · a+ c,

e2 = −e1,
(3.11)

and can calculate the distance dl of a lumen point l to this line using the cross
product:

dl = (e2 − e1)× (c− e1). (3.12)

This is repeated for every lumen point in the slice. By defining a maximum distance

dmax from the points in the slice to the line v⊥cl we create a subset Lbmax of the
points Lb by removing every point that is further away from the line than dmax:

Lbmax = {Lb|Lbi < dmax}. (3.13)

The set Lbmax now contains the candidate points for the point lb which defines the
distance b. Lastly, we just need to compute the distance of every point in the set
Lbmax to the centerline point and set b as the maximum distance:

b = max
i

c− Lbmaxi . (3.14)

This procedure is needed because we cannot guarantee to find a point directly on the

line v⊥cl . Therefore, we have to search in the vicinity of the line for the candidates of
b.

We perform this process for the aorta and true lumen centerline and can then
represent a single dataset D using the centerline coordinates in PCS of the aorta
ca = [xca , yca , zca]

T and true lumen ctl = [xctl , yctl , zctl ]
T and the respective radii of
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the aorta aa, ab and the true lumen atl, btl. This results in a representation of size
N × (ca + aa + ba + ctl + tla + btl) with N being the number of centerline points:

D =




(xca, yca , zca , aa, ba, xctl, yctl, zctl, atl, btl)0

...
(xca, yca, zca, aa, ba, xctl, yctl, zctl, atl, btl)N



 (3.15)

To achieve 1:1 correspondences between the parameterizations of the synthetic
dissection datasets, the centerlines need to be represented by the same amount of
points. To this end, we use the shortest centerline in our dataset as a baseline and
set the number of points of this centerline to be our target for the downsampling.
For every dataset, we interpolate the centerline by fitting a cubic spline through
the centerline points and sample the curve at evenly-spaced intervals to finally
receive centerlines with their respective radii, where each is defined by the same
number of centerline points as our shortest centerline. Having established the 1:1
correspondences, the PCA can be performed.

3.3.2 Principal Component Analysis

After creating the representations of the aortic dissection datasets in the form
of centerline points and radii for the aorta and the true lumen we calculate a mean
shape from the 26 datasets. Every dataset is reshaped from the matrix representation
of D (Equation 3.15) with size N × 10 to a row vector D with (N × 10) entries.
Using the vector representations of a dataset we can then combine all 26 datasets in
a single matrix M :

M =




D0
...

D25



 . (3.16)

The mean shape Smean can then be calculated by:

Smean = 1/26 ∗
25

0

Di (3.17)

By subtracting the mean shape Smean from M and scaling each column of the
resulting matrix with the standard deviation σM of the columns of M we receive the
correlation matrix Mcorr:

Mcorr = (M − Smean) 1/sM . (3.18)

By performing a singular value decomposition on the correlation matrix we receive
the PCs (eigenvectors) Λ and their respective eigenvalues λ. The explained variance

vM of each Λ can be obtained from λ:

vM = λ/|λ|. (3.19)

We can then sort the principal components according to their explained variance
and a synthetic shape S can be reconstructed by multiplying the principal components
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Λ with weights ω randomly sampled in the interval [−λ, λ] and adding them to the
mean shape Smean:

S = [ω0, . . . , ωi]




Λ0
...

Λi



 + Smean. (3.20)

We experimented with various bounds for the interval taken from the related work
which varied between −3λ and 3λ. Testing showed that the chosen interval of [−λ, λ]
produced the best results for our input data with smaller and larger bounds leading
to the generation of too many non-physiological datasets.

3.3.3 Mesh Generation

From a synthetic parameterization of an aortic dissection consisting of the center-
lines and radii we then generate surface meshes. For the true lumen wall and the
aortic wall, we generate a separate mesh by sampling evenly-spaced points on the
radii. This results in the walls now being defined by point clouds which can be used
as input for various meshing algorithms such as alpha shapes [30], ball pivoting [10],
or screened Poisson surface reconstruction [59]. After testing we determined that the
best meshes for our approach can be generated using Poisson surface reconstruction.
Examples of the resulting point clouds and generated meshes are shown in Figure 3.4.

3.4 Autoencoders

The third approach we explore is to create synthetic aortic dissection datasets
utilizing autoencoders in the form of an AAE [74] and a VAE [61]. Autoencoders are
deep learning networks that consist of two main parts: the encoder and the decoder.
The encoder creates an encoding of the input data by learning a low-dimensional
latent space representation of it. The decoder is trained to reconstruct the input
data from the latent space. If the network is sufficiently trained, the latent space
can be randomly sampled to generate output data that is similar to the underlying
probability distribution of the input data.

Our goal is to have the autoencoders learn the unique properties that define
the relations between the true and false lumen of aortic dissection. Then, we can
sample the latent space and create new synthetic datasets with realistic true and false
lumina. As a baseline, we chose the approaches of Zamorski et al. [125] and Beetz
et al. [6]. Zamorski et al. explored the usage of AAEs and VAEs to recreate and
randomly sample point clouds of the ShapeNet [19] and ModelNet40 [120] databases,
while Beetz et al. explored the creation of synthetic biventricular anatomy and
electrocardiograms using a VAE. We combine both approaches by using a slightly
modified network architecture from the approach of Zamorski et al. with the loss
function introduced by Beetz et al. to create multiclass point clouds. An overview of
our approach for both networks is shown in Figure 3.5.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: From the parameterization of the aorta and the true lumen respective
point clouds are generated (a, c). From the point clouds the respective meshes are
generated using screened Poisson surface reconstruction (b, d). The complete dataset
is obtained by combining both meshes from their respective point clouds (e, f).
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Figure 3.5: Overview of the VAE and AAE network architectures and components
shared between both approaches. The VAE only uses the encoder and decoder
to construct the latent space z using the Kullback-Leibler divergence. The AAE
additionally uses the discriminator to generate the latent space overcoming the
limitations the regularization term enforces on the Kullback-Leibler divergence.

3.4.1 Variational Autoencoder

A VAE uses variational inference [35] to create the latent space by approximating
the underlying data distribution of the input data. The most important part of the
underlying theory of a VAE is the calculation of the lower variational bound.

Using Bayes’ theorem, we can calculate the posterior distribution:

pθ(z|x) =
pθ(x, z)pθ(z)

pθ(x)
, (3.21)

where we have observations x, hidden variables z, and parameters θ governing the
distribution. The normalizing constant pθ(x) can be computed as:

pθ(x) =
z

pθ(x|z)pθ(z)dz. (3.22)

The posterior distribution links the data and model but is not easily computable.
Therefore, variational inference tries to approximate pθ(z|x) using a second distri-
bution qφ(z|x) as a proxy for the posterior distribution and fits its parameters φ to
closely match its performance to that of the target posterior distribution. In the
context of VAEs, qφ(z|x) can be viewed as the encoder because given an observation
x it produces a distribution over the possible values of the latent space z. The
decoder is defined by pθ(x|z) because using the latent space z produces a distribution
over the corresponding values of x.

To calculate the similarity of qφ(z|x) and pθ(z|x) the Kullback-Leibler divergence
DKL is used:

DKL(qφ(z|x)||pθ(z|x)) = Eqφ log
qφ(z|x)
pθ(z|x)

. (3.23)
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The goal is to minimize DKL(qφ(z|x)||pθ(z|x)) to closely approximate pθ with qφ.
Minimizing the Kullback-Leibler divergence is an intractable problem, therefore, the
evidence lower bound (ELBO) is introduced:

log pθ(x) = log
z

pθ(x, z)dz

= log
z

pθ(x, z)
qφ(z)

qφ(z)

= Eqφ log
pθ(x, z)

qφ(z)

≥ Eqφ [log p(x, z)] − Eqφ [log qφ(z)].

(3.24)

The variational lower bound of the VAE is obtained by using the ELBO and Kullback-
Leibler divergence:

Lθ,φ(x) = Eqφ [log pθ(x|z)] −DKL(qφ(z|x)||pθ(z)). (3.25)

To solve this type of problem, the Monte Carlo estimator is usually used. But when
approximating the gradient of the lower bound Lθ,φ(x) regarding φ, the estimator
exhibits a very high variance. Therefore, the reparameterization trick is used to
express the random variable z̃ ∼ qφ(z|x) by sampling a noise variable ∼ p( ) from
a simple distribution p( ), like the normal distribution N(0, 1). This noise variable is
then mapped to a more complex distribution gφ( , x):

z̃ = gφ( , x). (3.26)

This distribution can now be used to calculate the gradient:

∇φEqφ(z|x)[f(z)] = ∇φEp( )[f(gφ( , x))]

≈ 1

L

L

l=1

f(gφ( l, x)),
(3.27)

which can be applied to the variational lower bound:

L̃θ,φ(x) = −DKL(qφ(z|x)||pθ(z)) +
1

L

L

l=1

log pθ(x, zl). (3.28)

3.4.2 Adversarial Autoencoder

An AAE is a neural network that extends the general idea of an autoencoder by
adding a third component to the aforementioned encoder E and decoder DE: the
discriminator D. The discriminator in an AAE has a similar task as the discriminator
in a GAN (Section 3.2). It distinguishes if a data sample in the latent space comes
from real or fake data. AAEs try to solve the limitations VAEs have due to the
regularization term requiring specific prior distributions pθ(z) for the Kullback-Leibler
divergence to be tractable. Additionally, the latent space of an AAE exhibits sharp
transitions indicating that the coding space is filled, which is useful when interpolating



34 3. Methodology

on it to generate new samples. An AAE imposes the prior distribution pθ(z) on the
latent space z by defining an aggregated posterior distribution of qφ(z):

qφ(z) =
x

qφ(z|x)pθ(x)dx. (3.29)

The AAE uses an adversarial network on top of the latent space to guide qφ(z) to
match pθ(z) and the autoencoder tries to minimize the reconstruction error. The
encoder of the autoencoder can be seen as the generator of the adversarial network,
which tries to fool the discriminator that the latent space z comes from the true
prior distribution pθ(z). We choose a Gaussian posterior for the encoder qφ(z|x) and
use the reparameterization trick (Equation 3.26) to optimize the network.

The training of the adversarial network can be again expressed as a minimax
game between the encoder (comparable with the generator in a GAN) and the
discriminator with value function V (E,D):

min
E
max
D

V (E,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(E(z)))]. (3.30)

where the encoder and decoder are trained alternately. The loss of the discriminator
LD is defined by:

LD = −V (E,D). (3.31)

and the loss of the encoder and decoder LE,DE by:

LE,DE = Lrecon + V (E,D). (3.32)

3.4.3 Network Architecture
Following the approach of Zamorski et al. [125] we construct the VAE by param-

eterizing qφ(z|x) with the encoder network E that maps point clouds of aortas to
the latent space z. The distribution qφ(z|x) is assumed to be normally distributed
with: qφ(z|x) = N(Eµ(x),Eσ(x)), with x representing point clouds. Like Beetz et
al. [6] and Zamorski et al. [125] we use the PointNet model [86] to generate the same
distribution for all possible permutations of the input points in a point cloud set.

PointNet takes unordered sets of points as input and learns to summarize an
input point cloud by a sparse set of key points. The network learns several functions
f(x) [f1, . . . , fK ], where x are the points in a point cloud, to aggregate information
from all points learning the properties of the point cloud. f(x) is approximated by a
symmetric function g(h(x)) where h(x) is a mapping from RN to RK with K < N :

f(x1, . . . , xn) ≈ g(h(x1), . . . , h(xn)). (3.33)

with f : 2R
N → R, h : RN → RK , and g : RK×. . .×RK → R. PointNet approximates

h using a multi-layer perceptron and g with a single variable function and a max
pooling function. We use the output of the max pooling layer to construct the latent
space z. Next, the reparameterization trick is applied approximating µ and σ of
the normal distribution using two multi-layer perceptrons. This way, the encoder E
outputs the latent space z, µ, and σ. The architecture of the encoder is shown in
Figure 3.6.
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Figure 3.6: The encoder net-
work of the VAE and AAE ap-
proach receives 25 point clouds
of size 4 × 10000 points as in-
put with each point containing
the 3D coordinates and the clas-
sification into true and false lu-
men. They are passed through
a PointNet-like architecture con-
sisting of a multi-layered per-
ceptron build using multiple 1D
convolutional layers (Conv) fol-
lowed by ReLU with a max
pooling at the end (Reduce-
Max). This is followed by lin-
ear transformations (Gemm) pa-
rameterizing the standard devi-
ation σ(x) and mean µ(x). The
mean and standard deviation
are then used to approximate
the assumed Gaussian distribu-
tion of the latent space z ∼
q(z) using the reparameteriza-
tion trick drawing from a nor-
mal distribution (RandomNor-
malLike). We chose the latent
space to be of size 2048. In the
AAE the encoder only returns
z. In the VAE the encoder addi-
tionally returns µ and σ to cal-
culate the Kullback-Leibler di-
vergence LKL.
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The decoder DE tries to reconstruct the point clouds x given the latent space
representation z. Where each point distribution pθ(xj |z) is modeled using the normal
distribution:

pθ(xj |z) = N(DEi(z), 1). (3.34)

The decoder consists of six fully connected layers followed by ReLU, except for
the last layer, which outputs a point cloud set. Its architecture is shown in figure
Figure 3.7.

The encoder and decoder network architectures are the same as in the VAE
approach with the addition of the discriminator which consists of multiple fully
connected layers followed by ReLU which take as input a representation of the latent
space z and output a confidence value if the latent space was generated by the encoder
or sampled from a normal distribution. Its architecture is shown in Figure 3.8.

3.4.4 Training

Our goal is to recreate point clouds in which points are classified into true and
false lumen points. Therefore, we extend the approach of Zamorski et al. with
the loss definition of Beetz et al. and extend the points of the aorta point clouds
{Pi|i = 1, . . . , n} to have additional class information: Pi = (x, y, z, c) where c
classifies a point as either true or false lumen. The loss function for the VAE network
is defined as:

Ltotal = LKL + Lrecon, (3.35)

where LKL is the Kullback-Leibler divergence:

LKL = DKL(qφ(z|x)||pθ(z)), (3.36)

and Lrecon is split into a separate loss for the true and false lumen reconstruction:

Lrecon = LTL + LFL. (3.37)

The reconstruction losses for the true and false lumen are calculated using the
Chamfer distance CD (Equation 1.9), which measures the distance between the
reconstructed point cloud S1 and the ground truth point cloud S2. The AAE uses the
adapted loss function of Equation 3.31 and Equation 3.32 where the reconstruction
loss Lrecon is the same as in the VAE (Equation 3.37).

We use point clouds consisting of 10000 points as input for the network and task
it to generate point clouds of 4096 points. The network learns the latent space by
trying to reconstruct the input point clouds. The learned latent space representation
of the aorta point clouds with classified true and false lumen points then enables us
to create new synthetic point clouds with classified true and false lumen points.

3.5 Implementation
To create the various approaches for the generation of synthetic aortic dissection

datasets we built a Python framework using PyTorch [84] as our machine learning
framework. The machine learning part of our framework was run on Windows
Subsystem for Linux 2 under Windows 10 using Python 3.8.10 with PyTorch 2.0.0
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Figure 3.7: The decoder network of the VAE and AAE consists of a multi-layered
perceptron built from linear transformation layers followed by ReLU. The decoder
receives the latent space generated by the encoder as input and is tasked to create a
multi-class point cloud of size 4× 4096.
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Figure 3.8: The discriminator network is a multi-layered perceptron consisting of
multiple linear layers followed by ReLU. It receives either the latent space vector
or a noise vector as input and is tasked to output a confidence value of the vector
being either fake (latent space vector) or real (noise vector). The discriminator is
only used in the AAE.



3.5. Implementation 39

running CUDA version 10.1.243. We used a system with 16 GB of RAM, an Intel
Core i5-10600K 4.1 GHz, and an NVIDIA GeForce RTX 3060Ti with 8 GB VRAM.

We mostly used the voxel and point cloud data structures provided by Open3D
(V0.16.0) [130] to handle the preprocessing of our data (Section 3.1) and to convert
the synthetic point clouds of our three approaches to meshes. Matrix and vector
calculations were performed using Numpy (V1.24.2) [48] and Scipy (V1.10.0) [115].





4. Results and Discussion

This section evaluates the feasibility of the tested approaches and discusses the
quality of the generated synthetic aortic dissection datasets. Each of the approaches
is evaluated on its own regarding its achieved results in the context of comparable
approaches in its domain as well as in the bigger scope of all three approaches. We
will show the limitations of each approach and discuss how these can be overcome
in the future. As the goal of this thesis is to establish a baseline trying to find
suitable approaches for the generation of synthetic aortic dissection datasets, we
did not perform an extensive qualitative evaluation questioning multiple domain
experts. The approaches still have multiple drawbacks that can be improved that be
able to generate more realistic datasets, which would then warrant a more extensive
evaluation. We questioned two domain experts one CFD expert and one medical
doctor in an open discussion to give us their opinion on the current quality of the
generated datasets.

4.1 Generative Adversarial Network
The GAN can generate synthetic voxel representations of size 64 × 64× 64 from

the learned latent space z. The latent space is generated from 26 input datasets which
are converted into their respective voxel representations of size 64 × 64× 64 before
being used as input for the network. The network is trained on the representations for
the whole aorta, the true lumen, and the false lumen separately. The approach is not
able to create representations of the true lumen, false lumen, and the aorta that are
dependent on each other. Training the network for 5000 epochs took approximately
8 hours on the employed hardware setup (Section 3.5). The training process of the
adversarial training including the generator and discriminator is shown in Figure 4.1.

The generator and discriminator perform the minimax game where both first
converge to a loss near 1. During the training, the nature of the minimax game can
be observed with one of the two networks gaining the upper hand regarding the
training loss and the other one having to catch up in the next epoch. GANs are
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Figure 4.1: Loss of the generator and discriminator of the GAN network competing
in the minimax game. The generator and discriminator slowly converge to around a
training loss of 1 and keep further training until they reach the max training epoch.

(a) (b) (c)

Figure 4.2: Even when using the best-performing epoch the GAN can generate
unrealistic results: (a) aorta, (b) true lumen, (c) false lumen.

inherently hard to train [79] and a stopping criterion, apart from human intervention
is difficult to define [100]. We saved the weights of the GAN every 100 epochs and
manually examined the results for the ability of the network to generate distinct
but realistic voxel representations of the aorta, the true lumen, and the false lumen.
Even when using the weights of the subjectively best-performing epoch (4700) in
the network the generator might produce unrealistic results, see Figure 4.2. It is
noticeable that the generated voxel representation can be very similar to the input
data suggesting overfitting. This is additionally influenced by the small amount of
training data for a machine-learning approach. Comparable approaches train on
datasets that start at a minimum of 1000 entries per class while we train on 25
entries per class. Additionally, when training on batches with a size of five or smaller,
the GAN would collapse [111] and only generate a single voxel representation.

Though the aorta, the true lumen, and the false lumen are trained on the
same network with the same parameters, the generated aortas are of much higher
quality than the true or false lumen. We suspect that this might be due to the
aorta containing the voxel information of both the true and false lumen, effectively
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doubling the information. This is the reason why the aorta network performs better
on the whole aorta. The results of the networks are shown in Figure 4.3.

We also created a network that can take as input and create 128 × 128 × 128
sized voxel representation. Based on the time to train each epoch, we determined
to stop the training early due to time constraints. The training would have taken
multiple weeks on our current setup which is unfeasible for the scope of this thesis.
Additionally, the achieved quality of the created voxel representations is not sufficient
to justify the longer training time. We would have to increase the resolution of the
voxel grid by a factor of 100 to sufficiently detail the complex physiology of aortic
dissection. Comparisons of the different levels of details are presented in Figure 4.4
To fully capture the segmentation masks of our input datasets we would need to
create voxel grids with a size of approximately 150× 220× 640 which would result
in a rectangular voxel grid with 21, 120, 000 voxels. This voxel grid contains eight
times more voxels than our currently used voxel grid while being optimized for size.
We do not know how well the 3D convolutions perform on rectangular grids. This
would have to be investigated in the future. If we use a square grid to capture the
segmentation mask the grid size would increase to 640 × 640 × 640 which results
in 262, 144, 000 voxels per grid being 1, 000 times larger than our currently used
grid. Further testing could be performed to find a tradeoff between the resolution
and the ability to capture the aortic physiology in sufficient detail. When looking
at Figure 4.4 one could argue that Figure 4.4b or Figure 4.4c might already be
sufficiently detailed.

4.2 Statistical Shape Modelling
The SSM performs a PCA on the covariance matrix of centerlines for the aorta

and true lumen with their respective radii. We compare the PCA combining the true
lumen and aorta with a PCA that was only performed on either, the aorta, or the
true lumen to get insights into the behavior of the SSM. The PCA was performed
using 25 datasets with an additional test data set of 15.

From our 25 training datasets, we extracted 25 PCs. The explained variance for
the PCA performed on the aorta combined with the true lumen started from the
first PC at 48.7% reaching 90% at 7 PCs. The reconstruction errors on the training
data decreased from 15.4% down to 4.6% at 5, reaching 1.5% at 10 PCs. Errors on
the test dataset decrease from 20.9% at 1 PC to 9.5 at 5 to below 5% at 13 PCs.

Performing the PCA only on the aorta results in a higher explained variance
using less PCs. The first PC encodes 51.9% reaching 90% already at 5 PC. The
reconstruction errors on the training data amount to 6.9% at 1 PC and decrease
below 1% at 6 PCs. On the test dataset, the errors are 9.6% at 1 PC decreasing
below 5% at 4 PCs.

The PCA performed on only the true lumen encodes less variance in the first PC
with 46% reaching 90% at 8 PCs with reconstruction errors on the training data of
8.4% at 1 PC decreasing below 1% at 10 PCs. Errors on the test dataset decrease
from 11.3% using 1 PC for the reconstruction to below 5% at 6 PCs. The explained
variance of the three PCAs can be seen in Figure 4.5 and the losses on the training
and test data are presented in Figure 4.6.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Different voxel representations generated by the GAN approach: (a) and
(b) show generated aortas, (c) and (d) are generated true lumen, and (e) and (f)
are generated false lumen. It has to be noted that true and false lumen can not be
generated for a single combined synthetic dissection voxel representation.
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(a) (b)

(c) (d)

Figure 4.4: The current voxel grid resolution of our input data for the GAN network is
shown in (a). Going from (b) over (c) to (d) the resolution is increased exponentially
until we reach (d) which is the one that would capture the aortic physiology in its
entirety.
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Figure 4.5: The cumulative variance of all 25 principal components of the PCAs
performed on the parameterizations of only the aorta, only the true lumen, and the
combined approach with true lumen and aorta.

These results suggest that SSM can capture the statistical variance even when
combining the encodings for the aorta and the true lumen. The true lumen generally
seems to have a bigger influence on the model compared to the aorta, which might be
caused by its more complex physiology due to its stronger varying radii and centerline.
The performance of the model on the test data suggests good generalizability with it
being able to capture the physiological properties of a more general population of
the aorta and true lumen.

Next, we analyze the PCA combining the aorta and true lumen in more detail
regarding centerline and radii information. The reconstruction errors on the training
and test data are mostly influenced by the centerline information suggesting that the
first PCs mainly contain centerline information. Examining the combined approach,
we find that the centerline of the true lumen causes the higher reconstruction error
with the radii of both aorta and true lumen only contributing a negligible amount to
the error shown in Figure 4.7.

The reconstruction errors on the training data decrease from 6.2% using 1 PC
down to below 1% at 6 PCs for the aorta centerline. The reconstruction error for the
aorta radii starts at 0.7% plateauing at 10 PC with 0.2%. The true lumen centerline
error decreases from 7.3% using 1 PC down to below 1% at 9 PCs. The true lumen
reconstruction error starts at 0.8% using 1 PC also plateauing at 10 PCs with an
error of 0.02%.

The reconstruction errors on the test data behave similarly, again indicating a
good generalizability to the whole population of aortic dissection. The reconstruction
error for the aortic centerline decreases from 8.8% using 1 PC down to 1.8% at 10
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(a)

(b)

Figure 4.6: Comparison between the reconstruction error of the PCAs performed
on the aorta, the true lumen, and the combined approach. The performance of the
model on the training data is shown in (a) and on the test data in (b).
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(a)

(b)

Figure 4.7: Comparison of the reconstruction error of the combined approach consid-
ering the centerlines and radii of the aorta and the true lumen in the training data
(a) and the test data (b).
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PCs. The error for the radii does not change significantly, staying below 1%. The
true lumen centerline reconstruction error decreases from 10.5% at 1 PC down to
6.9% at 10 PCs. Interestingly, the reconstruction errors of the radii on the test data
do not change noticeably when increasing the PCs. This might indicate that the
physiology of aortic dissection is mostly influenced by the centerline information of
both the aorta and true lumen. Figure 4.8 and Figure 4.9 show how the meshes
created from the centerline and radii representations change when increasing the
number of PC to reconstruct the aorta and the true lumen in the combined SSM.

Three synthetic meshes generated from the parameterization are shown in Fig-
ure 4.10. By varying the weights of the PCs, new distinct aortic dissection
representations can be created. The synthetic shapes vary in centerline length and
shape for aorta and true lumen as well as showing varying radii. The true lumen cen-
terline generally follows the aortic centerline but varies sufficiently to create a realistic
representation. Overall, this approach manages to create believable representations
of aortic dissection. Our two experts agreed with that sentiment but indicated some
problems. They concluded that the representation of the aorta looked realistic but
the true lumen often tends to protrude through the aortic wall which is unrealistic.
Additionally, the true lumen exhibits a much more uneven surface than that of the
aorta. Furthermore, the true lumen can be located right in the middle of the aorta
surrounded by what would be the false lumen. This case can occur physiologically
but is very rare and arises too often when generating new synthetic representations.
The weights that are randomly generated within the interval [−λ, λ] (Section 3.3.2)
can also lead to the generation of non-physiological shapes, as demonstrated in
Figure 4.11a. Therefore, a validation method to filter non-physiological shapes has
to be developed.

To demonstrate the current state of the model when automatically generating
synthetic representations and meshes of aortic dissection, we present all meshes
of this approach with as little human correction and postprocessing as possible.
From the random generation of the representation, over the generation of the mesh
from the calculated point clouds, we only intervened manually to select realistic
representations, and to remove meshes when the Poisson surface reconstruction
failed. A completely synthetic mesh created with further human intervention can be
seen in Figure 4.11b. We carefully selected a synthetic representation that has a
realistic aorta and true lumen shape, with the true lumen running properly along
one side of the aorta. We chose proper parameters for the surface reconstruction
and applied multiple postprocessing steps using Laplacian smoothing to improve
the uneven surface of the true lumen. This step also helped in keeping the true
lumen confined to the aorta. Aside from sophisticated validation methods, this
demonstrated that further postprocessing steps could be employed to increase the
quality of the generated representations and meshes. Especially, a constraint keeping
the true lumen inside the aorta is detrimental to creating realistic dissection shapes.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: The training data reconstruction error of the aorta reconstruction (a, c,
e) and the true lumen reconstruction (b, d, f) when using 5 (a, b), 15 (c, d), and 25
(e, f) PCs of the combined approach. The grey shape should be reconstructed with
the red shape. When using all PCs, the reconstruction is perfect on the training
data, which is to be expected.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: The test data reconstruction error of the aorta reconstruction (a, c, e)
and the true lumen reconstruction (b, d, f) when using 5 (a, b), 15 (c, d), and 25
(e, f) PCs of the combined approach. The grey shape should be reconstructed with
the red shape. Even when using all 25 PCs the reconstruction is not perfect but
generalizes well enough to the whole population.
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(a) (b) (c)

Figure 4.10: Randomly selected aortas from the SSM approach. The model can
generate diverse aortic dissection representations that can be used to create surface
meshes of the aorta and true lumen with varying diameters and centerline lengths.
The translucent grey surface is the aortic wall and the red surface is the true lumen.
Brighter red regions indicate the true lumen protruding through the aortic wall
surface.

4.3 Autoencoders
The VAE and AAE were both trained on a training dataset of 25 aortic dissection

point clouds with 10000 points labeled as either true or false lumen. Additionally,
we used a test dataset of 5 point clouds. The points were only located on the surface
of the respective lumen. We evaluate the performance of the autoencoders across all
epochs using the JSD to determine the best-performing epoch of both models on the
test and training data. Additionally, we examine the models for the development of
their reconstruction loss on the test and training data. Each evaluation is performed
on the labeled point clouds evaluating if the model can assign the correct lumen to
each point and on unlabeled point clouds to compare how the labeling affects the
reconstruction.

In the training data, the VAE is plateauing fairly quickly at a reconstruction loss
of 0.013 for the true lumen, 0.0142 for the false lumen, and 0.0009 for unlabeled point
clouds at 6000 epochs. Continuing the training, the loss experiences some spikes
but mostly stays consistent until we terminate the training at 30000 epochs with a
reconstruction loss of 0.0138 for the true lumen, 0.0148 for the false lumen, and 0.0012
for unlabeled point clouds. The lowest reconstruction error for the labeled point
clouds is reached at 23500 epochs and 18500 epochs for the unlabeled point clouds.
The reconstruction loss of the AAE behaves more linearly, consistently decreasing
until it reaches its lowest score at epoch 27000 with 0.0196 for the true lumen and
0.0359 for the false lumen. The best epoch for the unlabeled point clouds is epoch
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(a) (b)

Figure 4.11: The randomly generated weights can lead to unrealistic shapes where
the Aorta and the true lumen are too narrow at the abdominal aorta (a). An aortic
dissection model created with multiple manual steps results in a more realistic shape
(b). Here the surface reconstruction was manually controlled and multiple smoothing
steps were performed to constrain the true lumen to the inside of the aorta. Bright
red sections only minimally protrude through the aorta surface.

28000 with a loss of 0.0095. Surprisingly, at the end of the training at 30000 epochs,
the training loss spikes. Training the model further might decrease the loss again,
like it did in the spikes before. This should be investigated further in the future. The
development of the reconstruction loss on the training data for both the VAE and
the AAE is shown in Figure 4.12.

The JSD behaves similarly to the reconstruction loss for both models. The VAEs
best epoch for the true and false lumen reconstruction is 18500, with a loss of 0.0754
for the true lumen, and 0.0918 for the false lumen. The best-performing epoch of the
unlabeled point clouds is 19000, with a loss of 0.049. The AAE is performing best on
epoch 28500, with a loss of 0.0992 for the true lumen and 0.1289 for the false lumen.
The unlabeled point clouds were reconstructed with the best loss of 0.0531 at epoch
29000. Diagrams plotting the JSD across the epoch are shown in Figure 4.13 and
reconstructed point clouds in Figure 4.14.
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Even though the performance on the training data indicates that the model is
learning the physiology of aortic dissection and can label the true and false lumen
points to a sufficiently accurate degree, the generalizability of the model is not
supported by its performance on the test data. Generally, the autoencoders have
more trouble reconstructing the true lumen compared to the false lumen. This might
be because the true lumen has a larger volume and more complex shape compared
to the false lumen. The reconstruction loss of the VAE on the test data does not
change much when the model is trained for more epochs. The best-performing epoch
for the true and false lumen is 500, with a loss of 1.8657 and 1.2112. The unlabeled
point clouds are reconstructed best in epoch 500, with a loss of 0.0795. The AAE
exhibits the best reconstruction loss for the true and false lumen in epoch 26500 at
1.3298 and 1.318. The best epoch for the unlabeled point clouds is 9000, with a loss
of 0.0759. Diagrams for the reconstruction loss on the test data for both models are
shown in Figure 4.15.

The JSD for the VAE was best on epoch 26000, with a score of 0.5354 for the true
lumen, and 0.5618 for the false lumen. The unlabeled point clouds were reconstructed
best in epoch 20500, with a score of 0.2398. Using the JSD on the AAE, the best
epoch for the true and false lumen point clouds is 6000, with a loss of 0.5311 and
0.546819. unlabeled point clouds were reconstructed best in epoch 12500, with a loss
of 0.2553. The development of the JSD for both models is shown in Figure 4.13 and
reconstructed point clouds in Figure 4.17.

Even though the performance of the model on the test data indicates a bad
generalizability of the model we do not think the theory behind the model is the cause
but rather the small amount of training datasets. We only train the autoencoders
on a training dataset size of 25 samples, which is a sample size suitable for SSM
approaches, but machine learning approaches generally use databases with thousands
of datasets. Comparable approaches are usually trained on ShapeNet, which has
1000+ samples per class, and Beetz et al. [6] trained on 850 datasets. A finding
supporting the lack of training data is the poor performance of the model on unlabeled
test point clouds. The network architecture is very close to the original approach of
Zamorski et al. [125] who trained their network on unlabeled point clouds using the
ShapeNet and ModelNet which both have 1000+ datasets per class. Additionally,
we notice severe overfitting to the training data, supported by the findings that
reconstructed point clouds from the test data look like point clouds from the training
data.

Though the VAE seems to perform better than the AAE regarding the recon-
struction of the input point clouds, the generative ability of the AAE seems to be
superior. When sampling from the latent space using both models, we notice that
the AAE produces realistic samples more often than the VAE. The points generated
by the VAE often do not lie on the outer wall of the respective lumen but inside
of it and are also often mislabeled. Therefore, we assume that the ability of an
AAE to construct a latent space with sharper transition seems to hold for our data.
Generated point clouds for the true and false lumen are shown in Figure 4.18.

Only our medical expert evaluated the autoencoder approach. They determined
it to produce realistic physiologically correct results. They highlighted the benefit
of this approach to directly produce true and false lumen point clouds compared to
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the SSM approach. Because we did not post-process the point clouds and showed
the direct output of the model, the expert noted typical errors these models can
produce: some points were located arbitrarily in space not close to the aorta, or
they were not located directly on the wall of the respective lumen. Additionally, the
model still mislabels points of the point clouds resulting in single points of either
true or false lumen located on the true or false lumen surface. Analogously to the
SSM approach, we need to develop a method to validate generated synthetic samples
regarding their realism, because these models also sometimes fail to generate realistic
shapes; especially regarding the point labeling as can be seen in Figure 4.19.
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(a)

(b)

Figure 4.12: Reconstruction loss of the VAE (a) and AAE (b) on the training data
using the Chamfer distance.
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(a)

(b)

Figure 4.13: JSD of the VAE (a) and AAE (b) on the training data.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14: Combined point clouds (a, b) of the true (c, d) and false lumen (e, f)
reconstructed from the training data.
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(a)

(b)

Figure 4.15: Reconstruction loss of the VAE (a) and AAE (b) on the test data using
the chamfer distance.



60 4. Results and Discussion

(a)

(b)

Figure 4.16: JSD of the VAE (a) and AAE (b) on the test data.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.17: Combined point clouds (a, b) of the true (c, d) and false lumen (e, f)
reconstructed from the test data. The model currently fails to properly reconstruct
test data point clouds.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.18: Synthetically generated point clouds of aortic dissection (a, d, g) with
points labeled as true (b, e, h) and false lumen (c, f, i).

(a) (b) (c)

Figure 4.19: Both models might produce unrealistic results with misplaced and
mislabeled points: (a) combined point clouds of true (b) and false lumen (c).



5. Conclusion and Future Work

This thesis aimed to set a baseline regarding the creation of a database consisting of
synthetic datasets of aortic dissections, including the true and false lumen along the
entire length of the aorta, i.e., from the aortic root to the abdominal aorta. Excluded
were the branching vessels and locations of entry and exit tears. Three approaches
were examined including a GAN, a SSM, and autoencoders such as a VAE and
AAE. The SSM and autoencoders are both able to generate realistic aortic dissection
datasets with some model-specific drawbacks that have to be improved in the future.
The GAN does not seem to be suitable for the creation of aortic dissection datasets.

5.1 Generative Adversarial Network
Though we would not suggest looking further into the GAN approach, several

improvements could be made if a GAN is used in some preprocessing or evaluation
steps. The resolution limitations of the voxel grid on our hardware and the resulting
training times might be improved by using a rectangular voxel grid fitted to the
bounding box of the largest aorta in the dataset and not a square one. This would
increase the ratio between voxels in the grid that contain the shape information
and voxels containing background information reducing the needed computational
power. For this approach, the network architecture regarding kernel sizes, voxel grid
sizes, strides, and paddings would have to be adapted. We have already mentioned
the increased training times when increasing the voxel resolution, but the approach
would only be viable when the resolution could be increased to a resolution that
could capture the same details as the point cloud approaches. Example voxelizations
for higher resolutions are shown in Figure 4.4.

5.2 Statistical Shape model
The SSM is currently the best-suited approach for our small number of training

datasets. The approach is already able to create realistic aorta and true lumen
representations that can be converted to a surface mesh. The most significant
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drawbacks of this approach are that the true lumen wall is protruding through the
aortic wall and that the true lumen surface is fairly uneven.

To fix the true lumen protrusion the SSM approach could be extended to constrain
the calculated radii and centerlines to the inside of the aorta when generating new
shapes. To improve the uneven surface of the true lumen, the radii could either be
interpolated between the different centerline points of the lumen or the generated
mesh could be smoothed like we manually did in Figure 4.11b. We would suggest
first working on improving the parameterization of the aortic dissection by directly
working on the centerline and radii and only then using mesh processing algorithms
because those need a significant amount of manual intervention to create sufficient
meshes. Additionally, we are currently creating the meshes in a cumbersome way
by first creating points lying on the circumference of the ellipse defined by the radii
and then performing the Poisson surface reconstruction. This should be improved
by directly generating a mesh from the parameterization without taking a detour
by creating points on the surface. A suitable approach might be that of Zhou et
al. [129].

The most important part of automating the generation of a synthetic database
would be the automatic evaluation of the generated parameterizations or meshes.
Past approaches that generated synthetic databases of aortas use acceptance criteria
defined on the clinical biomarkers of the aorta [94] or performed CFD simulations
on the generated meshes [117]. Some of our datasets currently contain information
regarding the location of specific landmarks, which we can use to create such criteria.
Future approaches should also look into including more information into the model:
such as the modeling of branching vessels, entry and exit tears, and CFD informa-
tion. Furthermore, we would like to experiment with performing the PCA on the
true and false lumen and combining the generated parameterizations to a coherent
representation of aortic dissection. Also, with performing the PCA on the aorta and
the false lumen, this time excluding the true lumen. Performing the PCA on the
aorta and the false lumen might be beneficial to simplify the model because the false
lumen is usually smaller than the true lumen and the true lumen is entirely captured
when subtracting the false lumen from the aorta representation.

Looking into point cloud-to-point cloud registration is another promising avenue
to achieve a more accurate SSM. Therefore, better sampling strategies for the points
have to be investigated to achieve 1:1 correspondences. The available landmark data
could also be used to calculate corresponding points. To increase the accuracy of the
current parameterization of centerlines and radii the downsampling step could be
exchanged for an upsampling step keeping more information of the longer centerlines
while interpolating the shorter ones. Possible errors in this upsampling step could be
evaluated by comparing it to the current approach.

5.3 Autoencoders
The autoencoder-based approach is currently the most promising approach to

generate realistic aortic dissection datasets, because of its ability to generate the
aortic dissection point clouds describing the surfaces of the true and false lumen
without further processing. The biggest drawback to properly evaluate this approach
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is the lack of training data which is not an easy problem to fix. Nevertheless, multiple
improvements can be made to the model starting with the preprocessing of the input
data. We currently sample the points describing the true and false lumen surfaces
randomly using a normal distribution. This random sampling can lead to some areas
of a lumen being denser populated by points than others which might hinder the
correct learning of the underlying distribution of the aortic dissection database. To
overcome this issue we could sample the point clouds using Poisson disk sampling [45]
resulting in a more even sampling.

We are currently using PointNet to encode and learn a latent space represen-
tation of aortic dissection. In the future, we would like to experiment with the
PointNet++ [87] architecture in the encoder of our models. PointNet++ is an ad-
vancement of PointNet and might be able to better capture the underlying distribution
describing aortic dissection.

The current output of the model are point clouds consisting of 4096 points. To
increase the number of points, an upsampling network like FoldingNet [124] could be
trained. Such higher-resolution point clouds could then be used to create surface
meshes of the true and false lumen.

The model could also be extended by encoding CFD measures such as wall shear
stress and pressure, to generate point clouds with points containing that information.
Additionally, the input data could be tagged with keywords describing the type
of aortic dissection and further information describing the disease. If all of this
information gets encoded, a model could be created that allows users to create
specific types of aortic dissection depending on the input keywords.

Furthermore, like in the SSM approach, we would need a method to evaluate the
generated point clouds regarding their realism. We could adapt the aforementioned
acceptance criteria described in Section 5.2 to work with point clouds and use these
to evaluate the generated synthetic point clouds. These acceptance criteria might
even be directly included in the model, forcing it to only generate realistic point
clouds.
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