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Abstract

Medical image registration is a process that involves aligning and matching two
or more medical images of the same patient or anatomical region. It aims to
establish a spatial correspondence between images acquired from different imag-
ing modalities or at different time points. These images can be represented as 2D
or 3D images, CT and MRI scans, and point clouds or meshes. This thesis uses
deep learning-based registration methods to focus on the point cloud registration
of Time-of-Flight (TOF) and Phase-Contrast Magnetic Resonance Imaging (PC
MRI) data. Registering these two imaging modalities is essential for aligning and
combining their respective point cloud data, enabling a comprehensive analysis
of vascular anomalies and blood flow dynamics.

The thesis demonstrates the effectiveness and suitability of the selected meth-
ods for TOF and PC MRI point cloud registration. The registration procedure
could make spotting vascular disorders such as malformations, aneurysms, and
stenoses easier. Traditional methods of point cloud registration face challenges
in handling complex and high-dimensional data, which is the case in TOF and PC
MRI data. To address this, the thesis explores and evaluates three methods that
leverage deep learning techniques: ROPNet, DIP, and C2PNet. These methods
utilize convolutional neural networks (CNNs) to extract features from the point
cloud data and optimize the registration process.
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1
Introduction

1.1 Motivation

This thesis focuses on registering point clouds obtained from TOF and PC

MRI modalities. Combining these two modalities can enhance our under-

standing of anatomical structures and vascular anomalies in the brain. For

example, according to [12], TOF MRI can show the shape and structure of

blood vessels in the brain and help detect vessel narrowings. However, it

cannot directly tell us if there is a lack of blood supply to a particular area

(ischemia). The blood flow in the brain is an essential factor in detecting

ischemic stroke [12]. In an ischemic stroke, insufficient blood flow to the

brain can lead to cerebral infarction or symptoms of a lack of blood flow.

Therefore, flow imaging techniques like PC MRI can help diagnose the risk

of an upcoming stroke [12]. In such situations, TOF MRI can initially eval-

uate narrowings in the cerebral arteries. The second technique involves

flow imaging using PC-MRI, which can measure blood flow in the cere-

bral arteries. Slow blood flow in these areas can be a significant risk factor

for a stroke [12]. Therefore, combining the two medical modalities can

achieve an imaging solution for stroke assessment. Therefore, combining

information about the structure of blood vessels from TOF MRI and blood

flows information from PC MRI could help us more accurately identify, lo-

cate, and describe vascular issues like abnormal blood vessel formations,

aneurysms, and narrowed areas.

The motivation for using the deep learning-based method comes from

its advantages compared to traditional methods. Firstly, deep learning-

based approaches allow for end-to-end learning, meaning the entire reg-

istration process can be optimized through a single neural network. Tradi-

tional methods often involve multiple stages and manual parameter tun-

1



2 CHAPTER 1. INTRODUCTION

ing, which can be time-consuming [75] and less flexible. Deep learning

models can automatically learn meaningful features from raw point cloud

data without explicit feature engineering. This enables the extraction of

complex and abstract representations that capture relevant information

for registration, potentially leading to improved accuracy. Deep learning

methods can learn to identify features invariant to noise and occlusions,

making them more robust to these challenges than traditional methods

[102]. Also, traditional methods like ICP [71] are prone to get stuck at local

minima [87, 75].

1.2 Medical Image Registration

Medical image registration is a critical aspect of medical imaging that

involves aligning and matching different medical images. These images

can be represented as 3D point clouds, 3D meshes, computed tomogra-

phy(CT) scans, MRI scans, and 2D data like X-rays and ultrasounds. It

is vital in applications like image-guided surgery, radiation therapy, and

disease progression monitoring [75]. Doctors can compare images by

overlaying them that belong to the same patient taken at different times

or by different methods. It helps them find any changes, gather essential

details, and make sure they diagnose and plan treatment correctly [75].

If the registration involves aligning images taken from the same sensor at

different points in time, it is referred to as unimodal registration. Multi-

modal registration refers to the images taken from different sensors and

vary in shape and structure. Additional challenges arise regarding multi-

modal registration. Multimodal data can demonstrate diverse character-

istics, such as different data structures, dimensions, densities, levels of

noise, and types of geometric inaccuracies [75]. A registration framework

to align medical images from different modalities is more challenging than

registering images of the same modality. Figure 1.1 shows an example of

multimodal registration using deep learning.
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Figure 1.1: Multimodal Image Registration [76]

1.3 Medical Background

One of the critical applications of multimodal registration is the diagnosis

and treatment of cerebral small vessel disease (CSVD). CSVD is a preva-

lent and significant neurological condition affecting the brain’s tiny blood

vessels. It is a collective term encompassing various pathological changes

in these vessels, leading to impaired blood flow, ischemia, and damage to

the brain tissue. CSVD is a common cause of stroke, cognitive impairment,

and other neurological symptoms [14]. CSVD is believed to result from ge-

netic, vascular risk, and lifestyle factors. Hypertension, diabetes, smoking,

hyperlipidemia, and aging are common risk factors associated with the de-

velopment and progression of CSVD [90]. These risk factors contribute to

the structural and functional changes in the small blood vessels, including

arteriosclerosis, lipo hyalinosis, endothelial dysfunction, and blood-brain

barrier dysfunction [27, 28, 33]. According to epidemiological studies as

given in [69], at least 700 million people worldwide suffer from various

forms of CSVD, which are responsible for 25% of stroke cases, 45% of de-

mentia cases, and 70% of cases of vascular dementia (VD) [65]. The pri-

mary factor behind aged people’s neurological degeneration and cognitive

decline is CSVD. CSVD, which accounts for 80% of the overall incidence, in-

creases incidence as an age-related risk factor. CSVD is more prevalent in

people over 60, and its prevalence is over 100% in people over 90 years of

age [10]. MRI is the most effective imaging diagnostic technique for CSVD,

and it plays a guiding role in this condition’s early detection, diagnosis,

and treatment [69]. In imaging the CSVD brain microstructure and micro

vascularization, MRI has produced impressive results [64].
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Anatomical three-dimensional brain images are created using MRI, a non-

invasive imaging method. It is frequently used for illness detection, treat-

ment monitoring, and diagnosis. It is based on a technique that induces

and tracks alterations in the protons’ rotational axes in the water that

makes up biological tissues [60]. During an MRI scan, strong magnets

in the machine create a magnetic field, and protons try to align with this

magnetic field. A radiofrequency pulse is applied to the protons, causing

them to spin out of alignment with the magnetic field. When the pulse

is turned off, the protons align once again by returning to their original

position and generating a signal that may be utilized to produce a picture.

A patient is positioned inside a massive magnet for an MRI scan and is

expected to maintain total stillness to guarantee quality images without

blurring. In some circumstances, the patient could have intravenous injec-

tions of contrast agents, which often contain gadolinium [60]. A brighter

picture is produced due to these agents’ assistance in accelerating the re-

alignment of protons with the magnetic field. The distinction between

white and grey matter in the brain may be made with MRI, which can also

be used to find tumors and aneurysms [60]. It is especially suitable for reg-

ular imaging requirements in the brain because it does not involve using

X-rays or other types of radiation [60]. Due to this, MRI is the method of

choice for treating and diagnosing brain-related diseases.

1.3.1 Time of Flight MRI

Time-of-flight magnetic resonance imaging (TOF MRI) is a widely used

and reliable technique for imaging blood vessels. It takes advantage of

the flow-related enhancement observed in incoming blood to generate

highly contrasted images of the vascular system, all without the need for

gadolinium-based contrast agents [48]. Figure 1.2 shows the circle of willis

segmented from a TOF MRI scan.
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Figure 1.2: Circle of Willis segmented from TOF MRI scan [81]

TOF MRI can achieve high spatial resolution, identifying and character-

izing small vascular structures as seen in figure 1.2 and abnormalities. It

is essential for detecting conditions such as aneurysms, arteriovenous

malformations (AVMs) [26], and stenoses, which require detailed visual-

ization for accurate diagnosis and treatment planning. TOF MRI primar-

ily provides information about the presence and location of blood flow

within vessels. However, it does not provide quantitative information

about blood flow velocities. Additional techniques like phase-contrast

MRI may be necessary to assess vascular function and flow dynamics

comprehensively. Also, it is susceptible to flow-related artifacts, which

can affect the quality and accuracy of the images. These artifacts can arise

from turbulent or slow-flowing blood, patient motion, or technical factors

[43, 108]. 3D TOF MRI primarily focuses on imaging arterial blood vessels

and may have limitations in visualizing venous structures [108].

1.3.2 Phase Contrast MRI

Phase-contrast magnetic resonance imaging (PC MRI) utilizes the phase

shift in moving blood after applying bipolar gradients. This technique pro-

duces angiographic images of blood vessels and enables the quantifica-

tion of velocity and pressure gradients in stenotic lesions [48]. Figure 1.3

shows the circle of Willis segmented from a PC MRI scan. When compared
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to the TOF MRI image, it can be seen that PC MRI has less resolution and

only shows large blood vessels.

Figure 1.3: Circle of Willis segmented from PC-MRI [81]

Phase Contrast MRI allows for directly measuring and quantifying blood

flow velocities and volumes in cerebral arteries [43]. It provides valuable

information about the direction, speed, and blood flow patterns, which

are crucial for assessing vascular function and identifying abnormalities

such as stenoses [43]. PC MRI of the brain for diagnosing aneurysms in pa-

tients with bleeding and assessing arteriovenous malformations is better

than TOF MRI [94].

1.4 Aim of this thesis

The primary objective of this thesis is to research and implement robust

and efficient deep learning-based methods for the registration of point

clouds acquired from TOF and PC MRI imaging techniques. The thesis

aims to study the critical challenges in registering point clouds obtained

from TOF and PC MRI modalities, the existing methods for point cloud reg-

istration, and how they perform in the context of TOF and PC MRI data.
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1.5 Structure of this thesis

For ease of understanding, an overview of the thesis and contents of each

section is described below.

• Chapter 2 provides a detailed explanation of point cloud registration

and its different techniques. It also explains the basic terminology

associated with it.

• Chapter 3 deals with related work for deep learning-based point

cloud registration.

• Chapter 4 explains the different methods implemented and the re-

lated algorithms.

• Chapter 5 provides the results and comparison of different imple-

mented methods.

• Chapter 6 summarizes the thesis and discusses future work possibil-

ities.



2
Theoretical Framework

2.1 Mesh and Point Cloud

Meshes have various applications in various fields, including computer

graphics, computational geometry, and medical imaging. In medical

imaging, meshes serve as a valuable representation of anatomical struc-

tures, allowing for the visualization, analysis, and manipulation of com-

plex geometric information [49]. A mesh is a collection of interconnected

points, lines, and surfaces. The points, called vertices or nodes, represent

specific positions in three-dimensional space. The lines, or edges, con-

nect pairs of vertices and define the structural lines or curves of the mesh.

The surfaces, or faces, are formed by connecting three or more vertices,

shaping the outer surface of the mesh. Different meshes exist, catego-

rized based on their connectivity and geometry, for example, triangular

meshes, quadrilateral meshes, and tetrahedral meshes. A point cloud

describes an object’s shape using data points scattered in a two or three-

dimensional space to create a dense representation. Each data point in

the 3D cloud has XYZ coordinates, indicating its specific position along

the axes. A point cloud can be generated from a mesh by only considering

the vertices and removing the faces. In addition to spatial information,

the points in the cloud and vertices of a mesh can also include additional

data such as normals or colors. Normals indicate the orientation of each

point’s surface and are vital for shading, lighting, and surface analysis.

Color information enhances the visual appearance and can be captured

using RGB values or other color spaces. Some additional properties associ-

ated with point clouds and meshes are (i) Density: The number of points

per unit area or volume. A higher density of points may result in a more

detailed representation of the object. (ii) Noise: Noise refers to unwanted
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variations, regions, or errors in the point cloud data. (iii) Size: It refers to

the total number of points in the point cloud. Larger point clouds may

offer more detailed representations but require additional computational

resources for classification, segmentation, or registration tasks. (iv) Data

format: Point clouds can be stored in various formats, such as LIDAR Data

Exchange Format, PLY (Polygon File Format), or XYZ.

A point cloud can be denoted as P = {
p1, p2, ..., pn

}
where p ∈ R3 if the

point are in a 3D space. However, if additional properties like curvature,

normals, and color information (RGB), the points can be represented by

a more extensive vector [51]. For example, if normals of the points are

available, each point will be represented by a 6D vector, i.e., p ∈ R6. The

mesh representation is shown in figure 2.1 while the point cloud represen-

tation is shown in figure 2.2. There are noticeable variations between the

two images when compared. Due to the faces in the mesh, the vessels are

smooth and well-defined, resulting in an aesthetically appealing form. On

the other hand, the point cloud lacks the mesh’s smooth surfaces, and the

vessels are shown in a more dispersed and disjointed manner.

Figure 2.1: TOF(red) and PC(blue) mesh.
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Figure 2.2: TOF(red) and PC(blue) point cloud.

2.2 Point Cloud Registration

Registration is the process of aligning point clouds of similar objects or

multiple samples of the same object captured at different points in time,

from different perspectives, or using different sensors in the same refer-

ence system. A registration technique involves three main components:

the transformation that establishes the relationship between the datasets,

the similarity metric that measures how similar the datasets are, and an

optimization method that calculates the best transformation parameters

based on the similarity metric [75]. A registration method aligns two

datasets by finding the best transformation that minimizes the discrep-

ancy between them, as determined by the similarity metric. During reg-

istration, two point clouds are utilized: the target point cloud and the

source point cloud. The target point cloud is the reference point cloud

that remains unchanged throughout the registration process. It is the

fixed or desired position to which the source point cloud is aligned. On

the other hand, the source point cloud transforms. Let us consider two

point clouds, S (source) and T (target), with NS and NT points, respec-

tively. The registration goal is finding a motion or pose that transforms S

to align with T .

2.2.1 Rigid and Non-Rigid Registration

Based on the type of transformation, a point cloud registration algorithm

can be classified as rigid or non-rigid. Rigid registration refers to align-
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ing two or more point clouds by applying a rigid transformation that com-

bines rotation and translation, and it preserves the distances, angles, and

shapes between points [51]. Mathematically, the rigid transformation can

be represented as p ′ = R ∗p +T where:

• p is a point in the source point cloud,

• p ′ is the same point after alignment and the corresponding point in

the target point,

• R is the matrix that describes the rotation,

• T is the translation vector that represents the displacement.

The goal is to find the optimal values for R and T that minimize the differ-

ence between the source and target point clouds by finding the transfor-

mations that minimize a specific objective function, for example, the sum

of squared distances between the corresponding points. Given source and

target point clouds, S = {
s1, s2, ..., sn

}
and T = {

t1, t2, ..., tn
}
, the rigid regis-

tration problem can be formulated as an optimization problem [51]: (1)

minimize
∑‖(R ∗ si +T )− ti‖2, where si and ti are the points in source

and target cloud respectively; (2) subject to RT ∗ R = I , where I is the

identity matrix and T represents the transpose. The objective function∑‖(R ∗ si +T )− ti‖2 represents the sum of squared distances between the

transformed source points and the corresponding target points. The con-

dition RT ∗R = I ensures that the transformation matrix is orthogonal and

preserves the source point cloud’s shape, resulting in a rigid registration.

Non-rigid or deformable registration refers to aligning two or more point

clouds or images that can undergo local deformations or shape changes.

While rigid Non-rigid or deformable registration refers to aligning two or

more point clouds that can undergo local deformations or shape changes.

While rigid registration only allows for transformations that preserve the

overall shape of the source surface, non-rigid registration allows for more

flexible transformations that can capture local deformations, such as re-

flections, rotations, scaling, and translations. However, these transforma-

tions are applied locally and not on the whole point cloud differentiating

non-rigid with affine transformation. Non-rigid registration is utilized pri-

marily for two reasons [51]: (1) to account for non-linearities and errors in
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data that result in warping of rigid objects [9, 50]. These warps occur dur-

ing the scanning phase when due to measurement inaccuracies, the point

cloud undergoes slight misalignment and has irregular deformations and

(2) to align and register deformable or moving scenes or objects that un-

dergo shape changes over time. For example, as shown in figure 2.3, there

are multiple scans of a dinosaur point cloud. Each scan differs in position

and shape of the head and tail. These clouds cannot be directly registered

using rigid transformation, and warping is required.

Figure 2.3: Example of point clouds that changes over time [53].

Non-rigid registration is a complex task with several challenges. Choosing

a suitable representation for the deformation field that balances accuracy

and computational efficiency is crucial [51]. Moreover, point clouds may

contain noise and outliers and have limited overlap where only certain

point cloud regions can be aligned. These factors can hinder the estab-

lishment of reliable correspondences between the point clouds for accu-

rate alignment [51]. After the correspondences are estimated, the non-

rigid registration process is simpler to perform [17, 11]. Additionally, in

many practical applications, performing registration efficiently, preferably

in real-time, is desirable [18].
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2.2.2 Local and Global Registration

Point cloud registration algorithms can also be classified as global and lo-

cal registration based on the transformation domain or region of interest.

While both methods aim to achieve alignment, they differ in scope and the

information they utilize.

Global registration [72, 15, 87, 1, 88, 98] aims to align the entire point

clouds by considering their overall structure and shape and seeks to find a

transformation that aligns them as a whole making these methods compu-

tationally expensive [51]. Global methods do not lead to accurate results

[8]. If there are noise and outliers in the point clouds, the algorithm will

also use these points for transformation estimation leading to misalign-

ment. RANSAC (Random Sample Consensus) [24] is a widely used global

registration method.

Local registration focuses on aligning a limited region or a subset of points

within the point clouds and typically operate on smaller patches or neigh-

borhoods. These methods can be stuck in local minima [8], meaning they

may find a good alignment for the point clouds, but there may be bet-

ter possible ones. A registration pipeline can use a global registration to

provide an initial alignment estimate followed by a local registration for

final transformation [8]. This initial estimate is then used as a starting

point for a local optimization algorithm, which can then find a better align-

ment. Examples of local registration techniques include Iterative Closest

Point (ICP) [5] algorithm, which iteratively estimates the transformation

based on closest point correspondences between local patches, and vari-

ants such as Generalized-ICP (G-ICP) [78] that incorporate additional in-

formation such as surface normals or color.

2.3 Traditional Registration Methods

Traditional point cloud registration refers to the methods and techniques

that do not use neural networks and typically rely on geometric or statisti-

cal algorithms to transform the point clouds.
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2.3.1 Iterative Closest Point

The ICP algorithm [5] is an iterative method designed to achieve accurate,

fast, and stable registration under optimal conditions. It can be seen as an

expectation-maximization (EM) problem [51], where transformations are

estimated using the correspondences between the point clouds and itera-

tively refines the registration until an error metric converges. However, it

should be noted that ICP does not guarantee to reach a globally optimum

solution [8]. ICP-based registration methods consist of two primary stages:

estimating correspondences and transforming. Correspondences refer to

pairs of points occupying the same position in an object or scene, each

originating from a different point cloud.

Correspondence step: For a given iteration number or the current itera-

tion given as k, this step aims to find the closest point q̂ (k)
i in the target

point cloud (Q) for each point (pi ) in the source point cloud (P) based on

the transformation defined by R(k) and T (k). It is done by calculating the

squared distance between the transformed source point and each point

in the target point cloud and selecting the point with minimum distance

given by equation 2.1 [101].

q̂ (k)
i = argmin

q∈Q
‖R(k)pi +T (k) −q‖2 (2.1)

Estimation step: This step minimizes the squared distance between the

corresponding points. The updated transformation R(k+1) and T (k+1) is

obtained by minimizing the objective function given in equation 2.2 [101].

(R(k+1),T (k+1) = argmin
R,T

M∑
i=1

‖Rpi +T − q̂ (k)
i ‖2 + ISO(d)(R) (2.2)

In this equation, Rpi + T represents the transformed source point and

ISO(d)(R) is a regularization term to enforce the constraint that the rotation

matrix R must belong to the group of all rotation matrices in dimension

d, known as the special orthogonal group SO(d), and M represents the

total number of correspondences between the source and target points.

The optimization is done through the singular value decomposition (SVD)

method [2].

Besl et al. [5], and Arun et al. [3] introduced a point-to-point approach for

point cloud registration. This strategy involves pairing the closest points
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in both the point clouds with each other based on Euclidean distances.

These pairs form the correspondences, as discussed in the correspon-

dence step. The sum of Euclidean distances between the matched pairs is

given in equation (2.3) [51]. The objective is to find the optimal values of

the transformation parameters R and T that minimize equation (2.4) [51].

L(P,Q) =
n∑

i=1
‖pi −qi‖2, (2.3)

L̂(R,T ) = argmin
R,T

n∑
i=1

‖pi − (Rqi +T )‖2 (2.4)

The equations, ‖ · ‖2 represent the Euclidean distance. The point pairs pi

and qi represent the i -th correspondence between source and target point

clouds P and Q, with N total pairs. The rotation matrix R belongs to the

orthogonal group SO(3), and the translation vector T belongs to R3. The

source point cloud is updated using the estimated transformation, and the

process proceeds to the subsequent computation. The ICP algorithm con-

tinues until the difference between the current error metric L̂ and the fol-

lowing error metric L̂next is smaller than a given threshold δ, expressed

as |L̂ − L̂next | < δ [51]. The point-to-point metric in point cloud registra-

tion involves finding the closest point pair as a correspondence based on

either the coordinate or feature distance. Various approaches have been

proposed to enhance this concept and obtain improved correspondence.

For instance, the ICP [5] algorithm utilizes the original point-to-point dis-

tance metric. EfficientVarICP [71] presents optimizations to speed up the

ICP process. Another method called IMLP [6] incorporates the measure-

ment noise into the transformation estimation to enhance the accuracy of

ICP.

Chen et al. [13] and Bergevin et al. [4] presented a point-to-plane ap-

proach involving the nearest point search between the point and normal

of the target and source point cloud. The goal is to minimize the sum

of squared distances between each correspondence, considering the dis-

tance from a point to a plane, given in equation (2.5) [51]. As a result, it is

less affected by outliers and noise and offers improved accuracy and faster

convergence compared to the point-to-point ICP method [101].

L̂(R,T ) = argmin
R,T

n∑
i=1

((
Rqi +T −pi

)·npi

)2
(2.5)
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To find an optimal transformation represented by the point-to-plane ICP

algorithm involves transforming the point qi using R and T and consider-

ing the normal vector npi at pi . The remaining variables remain the same

as in equation (2.4). To solve equation 3, various linear optimization tech-

niques can be applied, such as the SVD method [2], computation of or-

thonormal matrices [37], or unit quaternions [38]. Nonlinear solvers like

the Levenberg-Marquardt method [25] can also be utilized. These meth-

ods demonstrate similar accuracy and stability when minimizing the sum

of squared error metric [21].

2.3.2 RANSAC

RANSAC (Random Sample Consensus) [24] is a robust method to find

correspondences between point clouds that are noisy or with outliers. It

achieves this by randomly sampling subsets of points from each point

cloud and fitting models to these subsets. The algorithm then selects the

model with the most inliers (points that fit the model well) as the final

model. The optimal number of iterations is crucial, as it directly impacts

the likelihood of obtaining a good model. Too few iterations might not

allow sufficient time to find a suitable model, while excessive iterations

could lead to a wasteful search for inadequate models.

The complete algorithm is given in 1. In each algorithm iteration, a ran-

dom selection of three points is made from the source cloud. The next

step involves finding correspondences between source and target point

clouds by calculating the features for each point and selecting the most

similar point pairs using the estimated features. The FPFH (Fast Point

Feature Histograms) [72] method is commonly used for this purpose due

to its balance between descriptor uniqueness and computation time [35].

The third step is to estimate the transformation matrix using the three-

point pairs. It is a well-known problem in linear algebra [36]. The source

cloud is then transformed using the estimated matrix, and the algorithm

checks how many points from the source cloud lie within a particular re-

gion around each target point [47]. The algorithm continues iterating until

the ratio of inliers exceeds a specified threshold. RANSAC can provide an

acceptable registration result in the presence of noise and outliers, which

can be seen in the experiment section in this thesis. However, an opti-
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mal solution is not guaranteed, and the algorithm can have high compu-

tational time.

Algorithm 1 RANSAC [47]

1: START:
2: Set the maximum number of iterations.
3: Set the threshold for the inliers ratio.
4: Initialize the best transformation matrix; best inliers count to 0.
5: LOOP:
6: Randomly select three points from the source point cloud.
7: Find each selected point’s nearest neighbor in the feature space.
8: Estimate the transformation matrix based on the three pairs of points.
9: Transform the source cloud using the estimated matrix.

10: Count the number of inliers by comparing the transformed points to the
corresponding points in the target cloud.

11: Calculate the inliers ratio as the number of correspondences divided by the
total number of points.

12: if inliers ratio > threshold then
13: Update the best transformation matrix and best inliers count.
14: end if
15: if the number of iterations reaches the maximum number then
16: go to STOP.
17: end if
18: STOP:
19: Output the best transformation matrix and the corresponding inliers count.

2.3.3 Coherent Point Drift

Myronenko et al. developed a probabilistic method called Coherent Point

Drift (CPD) [63] for registering point clouds. CPD can be used to register

both rigid and non-rigid point clouds. CPD aims to find the transforma-

tion that best aligns two point sets by fitting a Gaussian Mixture Model

(GMM) to the data from each point cloud. A GMM is a statistical model

that can represent a probability distribution. The GMM for the first point

cloud is fitted to the data from the second point cloud. The movement of

the GMM centroids is then enforced as a coherent group. This means that

the GMM centroids are not allowed to move independently of each other.

In rigid registration, the coherence constraint is a technique used to en-

force consistency in the alignment of data points by reparameterizing the
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locations of the GMM centroids using rigid parameters [63]. It ensures that

the centroids move consistently with the rigid transformation applied to

the point clouds. This leads to a closed-form solution for the maximiza-

tion step of the expectation-maximization (EM) algorithm [63]. The EM

algorithm is used to optimize the GMM parameters iteratively. The closed-

form solution simplifies the maximization step, making it computation-

ally efficient and applicable in any dimension [63]. In non-rigid registra-

tion, the coherence constraint is imposed by a constraint that encourages

smoothness and coherence in the deformations. It is done by using varia-

tional calculus [63].

CPD assumes that the PDF can be modeled using a GMM. A GMM is a

weighted sum of Gaussian distributions, representing a potential corre-

spondence between points in X and Y . The GMM is parameterized by

the mean and covariance of each Gaussian component and the mixing co-

efficients. The GMM probability function is given in equation 2.3.3 [63].

p(x) =
M+1∑
m=1

P (m)
1

(2πσ2)D/2
exp−‖x−ym‖2

2σ2

Here D is the dimension of point cloud, N , M is the number of points,

σ2 is isotropic covariance and P (m) = 1
M for all GMM components. The

points in Y are considered GMM centroids, and X are the data points gen-

erated by the GMM [33]. Adding weights following a uniform distribution

i.e. w,0 ≤ w ≤ 1, equation 2.3.3 can be modified as [63]:

p(x) = w
1

N
+ (1−w)

M∑
m=1

1

M

1

(2πσ2)D/2
exp−‖x−ym‖2

2σ2

The complete algorithms from [63] are given in algorithm 2 for rigid CPD,

algorithm 3 for affine CPD, and algorithm 4 for non-rigid CPD.
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Algorithm 2 Rigid CPD [63]

1: Initialization:
2: Set the initial values for the rotation matrix R=I, translation vector t=0, scale

factor s=1, and weight parameter 0 ≤w≤ 1.
3: Compute the initial value for the noise variance σ2 as:

σ2 = 1

DN M

N∑
n=1

M∑
m=1

‖xn − ym‖2 (2.6)

4: EM Optimization: Repeat the following steps until convergence.
5: E-step:
6: Compute the posterior probability matrix P , which represents the proba-

bility of correspondence between points in the source and target point
sets as:

pmn = exp− 1
2σ2 ‖xn−(sRym +t )‖2

∑M
k=1 exp− 1

2σ2 ‖xn−(sRyk
+t )‖2

+ (2πσ2)D/2 w
1−w

M
N

(2.7)

7: M-step: Solve for the optimal values of R, s, t , and σ2

8: Compute the centered point sets X̂ and Ŷ by subtracting the mean vec-
tors µx and µy , respectively, from the original point sets X and Y , where
Np = 1T P1, µx = 1

Np
X T P T 1 and µy + 1

Np
Y T P1

9: Compute the matrix A = X̂ T P T Ŷ .
10: Perform singular value decomposition (SVD) on A to obtain U , S, and V .
11: Compute the rotation matrix R as UCV T , where C is a diagonal matrix

with elements (1, ...,1,det (UV T )).
12: Compute the scale factor s as the trace of AT R divided by the trace of

Ŷ T d(P1)Ŷ , where d(P1) is a diagonal matrix with the sum of each row of
P as its elements.

13: Compute the translation vector t as µx − sRµy .
14: Compute the noise variance σ2 as 1/(NP D) · (tr (X̂ T d(P T 1)X̂ ) − s ·

tr (AT R)), where N is the number of points, D is the dimensionality,
and d(P T 1) is a diagonal matrix with the sum of each column of P as its
elements.

15: Compute the aligned point set T (Y ) by applying the transformation (scale,
rotation, and translation) to the target point set Y : T (Y ) = sY RT + t T .

16: The probability of correspondence between each point xn in the source point
set and its corresponding point ym in the aligned target point set T (Y ) is
given by the corresponding element in the posterior probability matrix P .
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Algorithm 3 Affine CPD [63]

1: Initialization:
2: Set the initial values for the affine transformation matrix B=I, translation

vector t=0, and weight parameter 0 ≤w≤ 1.
3: Compute the initial value for the noise variance σ2 as:

σ2 = 1

DN M

N∑
n=1

M∑
m=1

‖xn − ym‖2 (2.8)

4: EM Optimization: Repeat the following steps until convergence.
5: E-step:
6: Compute the posterior probability matrix P , which represents the proba-

bility of correspondence between points in the source and target point
sets as:

pmn = exp− 1
2σ2 ‖xn−(Bym +t )‖2

∑M
k=1 exp− 1

2σ2 ‖xn−(Byk
+t )‖2

+ (2πσ2)D/2 w
1−w

M
N

(2.9)

7: M-step: Solve for the optimal values of B , t , and σ2

8: Compute the centered point sets X̂ and Ŷ by subtracting the mean vec-
tors µx and µy , respectively, from the original point sets X and Y , where
Np = 1T P1, µx = 1

Np
X T P T 1 and µy + 1

Np
Y T P1

9: Compute the matrix B as (X̂ T P T Ŷ )(Ŷ T d(P1)Ŷ )−1, where d(P1) is a diag-
onal matrix with the sum of each row of P as its elements.

10: Compute the translation vector t as µx − sBµy .
11: Compute the noise variance σ2 as 1/(NP D) · (tr (X̂ T d(P T 1)X̂ ) −

tr (X̂ T P T Ŷ B T )).
12: Compute the aligned point set T (Y ) by applying the transformation to the

target point set Y : T (Y ) = Y B T +1t T .
13: The probability of correspondence between each point xn in the source point

set and its corresponding point ym in the aligned target point set T (Y ) is
given by the corresponding element in the posterior probability matrix P .
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Algorithm 4 Non-Rigid CPD [63]

1: Initialization:
2: Set the initial weight matrix W to all zeros.
3: Compute the initial value for the noise variance.
4: Initialize the weight parameter w (0 ≤ w ≤ 1), the regularization parameter

β> 0, and the regularization parameter λ> 0. σ2 as:

σ2 = 1

DN M

N∑
n=1

M∑
m=1

‖xn − ym‖2 (2.10)

5: Construct the matrix G , where each element gi j represents the influence of

point yi on point y j based on their Euclidean distance. gi j = exp
−1

2β2 ‖yi−y j‖2

6: EM Optimization: Repeat the following steps until convergence.
7: E-step:
8: Compute the posterior probability matrix P , which represents the proba-

bility of correspondence between points in the source and target point
sets.

9: For each point xn in the source point set and each point ym in the target
point set, calculate the probability pmn as:

pmn = exp− 1
2σ2 ‖xn−(ym+G(m,·)W )‖2

∑M
k=1 exp− 1

2σ2 ‖xn−(ym+G(m,·)W )‖2

+ (2πσ2)D/2 w
1−w

M
N

(2.11)

10: M-step:
11: Construct the matrix A =G +λσ2d(P T 1)−1

12: Solve the linear system A ·W = d(P1)−1P X −Y , where P X represents the
matrix multiplication of P and X .

13: Compute the matrix NP = 1T P1, where T is the transpose operator given
as T = Y +GW

14: Compute σ2 as 1
NP D (tr (X T d(P T 1)X )−2tr ((P X )T T )+ tr (T T d(P1)T )).

15: The aligned point set T (Y ,W ) is obtained by adding the weighted matrix
multiplication of G and W to the target point set Y : T = Y +GW .

16: The probability of correspondence between each point xn in the source point
set and its corresponding point ym in the aligned target point set T (Y ) is
given by the corresponding element in the posterior probability matrix P .

2.4 Learning Based Registration Methods

Learning-based point cloud registration methods can be categorized into

feature learning methods and end-to-end learning-based methods.
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Feature learning methods employ deep neural networks to learn robust

feature correspondences. These methods streamline the registration pro-

cess by incorporating a one-step estimation, such as RANSAC(2.3.2), to

finalize the transformation matrix without requiring iterative steps. When

the quality of learned features is good, accurate correspondences are es-

timated, improving the registration speed and accuracy, as demonstrated

in 5.2. Developing sophisticated network architectures or loss functions in

this category aims to estimate robust correspondences based on learned

distinctive features. There are two main advantages to these methods.

Firstly, deep learning-based point features enable more accurate and reli-

able correspondence searching [42]. Secondly, accurate correspondences

contribute to achieving precise registration results using a simple RANSAC

method [42]. However, there are certain limitations associated with these

methods. Firstly, they require many training samples [42]. Secondly, the

registration performance may significantly deteriorate in unknown sam-

ples with a substantial difference from the training data [42]. Thirdly, these

methods employ a separate training process of a network to extract fea-

tures, which focuses on point-to-point matching rather than registration

[42].

End-to-end learning-based methods perform registration by employing

neural networks that optimize the transformation estimation. Unlike

feature-learning methods focusing on learning point features, these meth-

ods integrate the transformation estimation within the neural network

optimization process. The neural network directly outputs the transfor-

mation matrix. Therefore, these methods convert the registration process

to a regression problem [42]. For example, point features are learned

in [97], and the transformation parameters are estimated by regression

using the features [42]. [86] formulates the correlation using the shape

descriptors obtained by the network between the source and target point

sets and predicts the transformation based on the defined correlation [42].

Auto-encoder registration networks [22] and keypoint detection meth-

ods with simultaneous pose estimation are also explored in this category

[57]. The advantage of end-to-end learning methods is that the neural

network is specifically designed and optimized for the registration task,

leveraging the strengths of both conventional mathematical theories and

deep neural networks [42]. Also, these methods consider the local struc-
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ture information crucial for accurate registration [42]. However, there are

limitations to the current methods. Regression-based methods treat trans-

formation parameter estimation as a black box, lacking interpretability

[42]. Additionally, the distance metric used in these methods is measured

in Euclidean space, which is sensitive to noise and density variations [42].

Secondly, the feature-learning registration methods consider local struc-

ture information, which is essential for point cloud registration [42].

2.4.1 Major Architectures

In this section, the focus will be on describing and discussing several

state-of-the-art neural networks that are used for extracting features from

a point cloud.

2.4.1.1 PointNet and PointNet++

PointNet [67] is a deep learning architecture that has been successfully ap-

plied to various computer vision tasks involving 3D point cloud data, in-

cluding point cloud registration (PCR). The traditional methods for point

cloud registration often rely on handcrafted features and iterative opti-

mization algorithms. However, PointNet offers an alternative approach by

leveraging deep learning techniques to directly learn feature representa-

tions from raw point cloud data and estimate transformations end-to-end.

It takes a 3D point cloud as input, where each point has its XYZ coordi-

nates and potentially additional attributes such as color or surface nor-

mals. The input point cloud can have varying numbers of points, making

PointNet flexible for handling point clouds of different sizes. The core of

PointNet is a shared MLP network that processes each point individually.

The MLP consists of multiple fully connected layers, which can capture

local features by learning non-linear mappings from the input point at-

tributes. The shared weights across all points enable the network to cap-

ture permutation invariance, meaning the network’s predictions are not

affected by the order of the input points.

PointNet uses a max pooling function to create a global feature vector

from a point cloud. Max pooling takes the maximum value of the features

from each point in the point cloud and combines them into a single vector.

This vector represents the overall structure and characteristics of the point
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cloud. In PCR, it is crucial to consider the local geometric transformations

of points. To address this, PointNet introduces a feature transformation

network. This network learns a linear transformation for each local point

feature, aligning the features to the global coordinate system. This align-

ment improves the network’s ability to capture rotation and translation in-

variance, making it more robust to geometric transformations in the input

point cloud. The output of PointNet is a set of features representing the

input point cloud. These features can be further processed to estimate the

transformation parameters that align the source point cloud with the tar-

get point cloud. While PointNet is primarily designed for 3D classification

and segmentation tasks [23], it offers valuable insights and inspiration for

the registration task. The descriptors utilized in segmentation and object

classification tasks can be used as features to establish correspondences

in registration. PointNet is trained in an end-to-end manner using super-

vised learning. The training data consists of pairs of aligned point clouds,

where the ground truth transformations between them are known. The

model is trained to minimize a loss function that measures the difference

between predicted and ground truth transformations. Gradient descent

optimization is used to update the network parameters iteratively, improv-

ing the model’s ability to estimate accurate transformations.

Figure 2.4: PointNet Architecture [51]

PointNet++ [68] is an extension of the original PointNet framework devel-

oped to directly process raw point cloud data. It introduces learning fea-

tures by considering the local neighborhood of individual points by lever-

aging metric space distance [51]. Unlike PointNet, which focuses on learn-

ing the local features of the points and aggregating those features into a
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global feature vector of the point cloud, PointNet++ employs a hierarchi-

cal neural network architecture. The hierarchical structure of PointNet++

comprises several levels of set abstraction. Each level has three main com-

ponents: a sampling layer, a grouping layer, and a PointNet layer [51]. The

sampling layer selects a subset of points from the input data. This helps

to reduce the computational complexity and enables efficient processing.

On the other hand, the grouping layer constructs local region sets around

each point by grouping nearby points. This allows for capturing local pat-

terns and relationships within the point cloud. The PointNet layer, a fun-

damental building block of PointNet++, aims to encode the local region

patterns and produce feature vectors. It inputs the grouped points and ap-

plies operations to extract meaningful features. PointNet++ can capture

fine-grained details and local structures in the point cloud by encoding the

local region patterns. The architecture of PointNet++ is illustrated in Fig-

ure 2.5. This architecture’s input consists of N points with d-dimensional

coordinates and C-dimensional features. The number of centroid points’

neighborhoods, denoted as K, plays a crucial role in determining the local

context captured by the network.

Figure 2.5: PointNet++ Architecture [51]
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2.4.1.2 DGCNN

DGCNN (Dynamic Graph CNN) [89] is a deep learning architecture de-

signed for point cloud analysis tasks. It was proposed as an extension

of the traditional Convolutional Neural Network (CNN) to address the

unique challenges of irregular and unstructured point cloud data. DGCNN

incorporates dynamic graph structures and edge convolutions to capture

spatial relationships and local patterns within the point cloud. DGCNN

leverages the concept of graph-based representations, where the point

cloud is treated as a graph, and the relationships between points are

modeled using edges. DGCNN begins with a PointNet layer, which ex-

tracts local features from individual points. The PointNet layer processes

each point independently, capturing local information through shared

MLP networks. This allows PointNet to encode each point’s spatial and

attribute-based information individually. The next step is constructing a

dynamic graph representing the relationships between points. It is crucial

for capturing the point cloud’s spatial dependencies and connectivity pat-

terns. DGCNN achieves this by employing a k-nearest neighbors (k-NN)

algorithm to find the local neighbors of each point. These neighbors are

nodes in the graph, and edges are established between them based on

proximity. With the dynamic graph in place, DGCNN performs edge con-

volutions to capture spatial features and propagate information between

neighboring points. Edge convolutions operate on the graph structure

and are designed to leverage both local and global information. Each

edge convolution layer aggregates information from neighboring points

by considering their features and edge connections. This allows the net-

work to capture hierarchical patterns and relationships within the point

cloud. It employs graph pooling, which reduces the size of the graph while

preserving important features. Graph pooling operates by selecting repre-

sentative points based on their features and connectivity, effectively down-

sampling the point cloud. This downsampling process allows the network

to capture global context while reducing computational complexity.

After several iterations of edge convolutions and graph pooling, DGCNN

concludes with fully connected layers for higher-level feature learning and

task-specific predictions. The fully connected layers aggregate informa-

tion from the entire point cloud and produce the final output, which can

be used for various applications such as classification, segmentation, or
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object detection. DGCNN combines the strengths of graph-based repre-

sentations and convolutional neural networks to analyze point cloud data

effectively. It can capture local structures, spatial relationships, and hier-

archical patterns within the point cloud by incorporating dynamic graphs

and edge convolutions.

Figure 2.6: DGCNN Architecture [89]

The architecture of DGCNN is given in figure 2.6 where the top branch is

used for classification, and the bottom branch is used for segmentation.

The DGCNN classification model takes n points as input and computes

a feature set for each point using the EdgeConv layer. An edge feature

set contains information about the relationships between a point and its

neighboring points. After computing the edge feature sets for all points,

the model aggregates the features within each set to generate EdgeConv re-

sponses for the corresponding points. This aggregation process combines

the local information from neighboring points to enhance the feature rep-

resentation of each point. In the final EdgeConv layer, the output features

from all points are globally aggregated. This means the model considers

all points together to create a 1D global descriptor. This global descriptor

summarizes the collective information from the entire point cloud, effec-

tively encoding the overall structure and characteristics of the data. The

1D global descriptor is then used as the input for a classification layer.

The segmentation model combines the 1D global descriptor with the Edge-

Conv outputs using concatenation operation
⊕

[89]. The EdgeConv out-

puts serve as local descriptors, providing information about each point’s
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immediate neighborhood [89]. Once the descriptors are combined, the

model generates per-point classification scores for p semantic labels.

These scores represent the likelihood or probability of each point belong-

ing to a specific semantic label. The point cloud transform block aligns

an input set of points to a standard or canonical space. This alignment is

achieved by using a 3×3 matrix. To estimate this matrix, a tensor is created

by combining the coordinates of each point in the point cloud with the co-

ordinate differences between the point and its k neighboring points [89].

The EdgeConv block takes an input tensor with a shape of n × f , where n

is the number of points and f is the number of features associated with

each point. The block then uses an MLP to calculate edge features for

each point. The number of neurons in the MLP is given as
{

a1, a2, ..., an
}
,

which means there are n layers, and each layer has a different number of

neurons. After computing the edge features for each point, the block per-

forms pooling among neighboring edge features. It aggregates the edge

features of neighboring points to generate a tensor with a shape of n ×an .

2.5 Evaluation Metrics

Several evaluation metrics and distance measures are commonly used for

point cloud registration.

Chamfer Distance: Chamfer distance measures the average distance be-

tween two point clouds. It quantifies how well the points in one point

cloud align with those in the other. The Chamfer distance can be calcu-

lated using the following equation [92]:

dC D (S,T ) = 1

|S|
∑
x∈S

min
y∈T

‖x − y‖2 +
1

|T |
∑
y∈T

min
x∈S

‖y −x‖2 (2.12)

where S and T are the point clouds, |S| and |T | represent the number of

points in S and T respectively, x and y are points in S and T , and ‖ · ‖ de-

notes the Euclidean distance between two points. The equation computes

the average of the minimum distances from each point in S to the nearest

point in T and vice versa. The lower the Chamfer distance, the better the

alignment between the point clouds.

Hausdorff Distance: Hausdorff distance measures the maximum distance

between two point clouds. It captures the largest separation between cor-
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responding points in the two point clouds. The Hausdorff distance can be

calculated using the following equation:

H(S,T ) = max
(
h(S,T ),h(T,S)

)
(2.13)

where h(S,T ) represents the directed Hausdorff distance from point cloud

S to T and is defined as [74]:

h(S,T ) = max
s∈S

min
t∈T

‖s − t‖ (2.14)

Here, s and t are points in S and T , ‖ · ‖ denotes the Euclidean distance,

and the equation computes the maximum of the minimum distances from

each point in S to the nearest point in T .

Feature-match recall: The feature-match recall evaluates the proportion

of pairs of fragments that can accurately recover the pose with a high con-

fidence level. It can be expressed mathematically as follows [102]:

R f a = 1

M

M∑
s=1

1
([ 1

|Ωs |
∑

(i , j )∈Ωs

1
(
‖T ∗xi − y j‖ < τ1

)]
> τ2

)
(2.15)

In evaluating feature match recall, a scenario is considered where a total of

M fragment pairs exist. Each fragment pair, denoted by s has a correspond-

ing set of correspondences calledΩs . These correspondences contain the

3D coordinates of matching points in the first and second fragments, rep-

resented as x and y , respectively. The ground-truth pose between these

fragments is T ∗ ∈ SE3. To assess the performance of the feature-matching

algorithm, two thresholds are introduced. The first threshold, τ1, deter-

mines whether a correspondence is considered an inlier by comparing

its distance. Correspondences with a distance below τ1 are classified as

inliers, indicating a successful match. The second threshold, τ2, is the

recall threshold, which establishes the minimum fraction of inlier corre-

spondences required for a fragment pair to be deemed as having a high-

confidence pose recovery. The feature match recall can be evaluated by

comparing the correspondences Ωs with the ground-truth pose T ∗. The

percentage of fragment pairs is calculated where the number of inlier cor-

respondences exceeds the recall threshold τ2. This measurement provides

insight into the algorithm’s ability to accurately recover the pose by deter-

mining the proportion of fragment pairs with an adequate number of in-

lier correspondences above the recall threshold [102].

Registration Recall: Registration recall evaluates the performance of a

matching algorithm by considering a collection of overlapping fragments
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and comparing them to the ground truth pose. It aims to determine how

accurately the algorithm can recover the overlapping fragments. To cal-

culate registration recall, an error metric is utilized. This error metric

compares the estimated fragments
{
i , j

}
obtained from the matching al-

gorithm to the corresponding pose estimation T̂i , j . Based on this compar-

ison, a true positive is defined as [102]:

E =
√

1

Ω∗
∑

(x∗,y∗)∈Ω∗
‖T̂i , j x∗− y∗‖2 < τ3 (2.16)

The registration recall evaluates the correctness of fragment pairs by com-

paring them to the corresponding ground-truth pairs. The ground-truth

pairs are denoted by Ω∗, and their 3D coordinates are represented by x∗

and y∗. The threshold τ3 determines if a fragment pair is considered cor-

rect when they overlap. The recall metric is significant because it improves

precision by implementing more effective pruning techniques. This obser-

vation has been highlighted in various studies [32, 73].

MRAE: Mean relative angular error measures the average difference be-

tween the estimated and ground truth poses across multiple instance.

Each pose estimation instance calculates the relative rotation error to

compute the mean relative angular error. The angular difference’s mag-

nitude is measured by taking the absolute value of the relative rotation

error for each instance. The mean relative angular error is obtained by

averaging all the absolute relative rotation errors. This metric assesses

the average angular deviation between the estimated and ground truth

poses, giving insight into the accuracy of the pose estimation algorithm.

Mathematically, the mean relative angular error (MRAE) can be expressed

as [102]:

MR AE = mean
(
cos−1

( tr ace(R−1
pr e Rg t )−1

2

))
(2.17)

where Rpr e is the estimated rotation matrix and Rg t is the ground truth

rotation matrix. A lower mean relative angular error value indicates a

more accurate pose estimation algorithm, which signifies that the esti-

mated rotations closely match the actual rotations. On the other hand,

a higher value suggests more significant angular deviations and poorer

performance in estimating the poses.

MRTE: The Mean Relative Translation Error is a metric used to evaluate the

accuracy of estimated translations in point cloud registration. It measures
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the average relative difference between the estimated and ground truth

translations. The formula for calculating MRTE is as follows [102]:

MRT E = mean
(
‖tpr e − tg t‖2

)
(2.18)

where tpr e represents the predicted translation vector and tg t represents

the ground truth translation vector.

In addition to the overall evaluation of registration accuracy, other met-

rics can be used to assess registration quality. These metrics include the

mean squared error (MSE), root mean squared error (RMSE), and mean

absolute error (MAE). Ideally, in a perfect alignment, all these error met-

rics should be zero, indicating a perfect match between the ground truth

and predicted values. However, in practical scenarios, it is rare to achieve

zero error due to various factors such as noise, outliers, and limitations of

the registration algorithm.



3
Related Work

In recent years, there has been significant research in point cloud regis-

tration, focusing on leveraging deep learning techniques to improve align-

ment accuracy and robustness. This section overviews several notable pa-

pers in point cloud registration, highlighting their critical contributions

and methodologies.

PointNetLK [1] is a deep neural network framework that combines Point-

Net with the Lucas-Kanade (LK) algorithm [58]. It utilizes PointNet to gen-

erate K-dimensional vector descriptors and estimates the current transfor-

mation, 4G , through an exponential map in the LK layer [51]. This allows

for alignment estimation without the need for computationally expensive

point correspondences. The final transformation, Gest , is obtained by ag-

gregating all the incremental estimates computed during the iterative loop

[51]. Evaluation on the ModelNet40 [93] dataset shows that PointNetLK

exhibits greater robustness to noisy data and is less sensitive to the initial

position compared to the ICP algorithm [51].

Deep Closest Point (DCP) [87] was introduced as an alternative to address

the limitations of the ICP algorithm. DCP comprises three major com-

ponents: a point cloud embedding network, an attention-based module

for probabilistic soft-matching, and an SVD layer for rigid transformation

estimation [51]. Initially, the source and target point clouds are embed-

ded in high-dimensional feature vectors using PointNet or DGCNN. An

attention module is used to extract co-contextual information from the

feature vectors, and a pointer generation module is employed to establish

soft correspondences between the point clouds [87]. The transformation

between the point clouds is calculated using a differentiable SVD layer

[87]. The DCP-v2 variant incorporates an attention module, unlike DCP-
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v1. Comparatively, DGCNN-based DCP performs better in terms of accu-

racy on the ModelNet40 dataset than PointNet-based DCP [87]. However,

DCP alone may not achieve sufficient accuracy, and further refinement

can be achieved by combining it with the ICP algorithm, leveraging DCP’s

improved initialization for convergence to the global optimum [51].

Robust Point Matching Network (RPM-Net) [98] is a rigid registration

method less sensitive to initialization. RPM-Net consists of three main

components: (1) Computation of hybrid features by combining spatial co-

ordinates and geometric properties using PointNet [51]; (2) Estimating the

correspondences using a differentiable Sinkhorm layer [80] and annealing

algorithm [51]; (3) Estimating transformation using SVD [51]. To train the

network, l 1 distance between predicted and ground truth transformation

is used as a loss function.

Deep Global Registration (DGR) [15] is a registration method consisting

of three key modules. The first module is a 6D convolutional network that

estimates the accuracy of correspondences between pairwise point clouds.

The second module utilizes a weighted Procrustes solver to perform a rigid

registration based on the estimated correspondences. The final module is

an optimization module that further refines the registration by minimiz-

ing a robust loss function. DGR employs fully convolutional geometric

features (FCGFs) [16] to extract features from the point clouds and uses a

convolutional network to identify correct correspondences whose output

is the same regardless of the position of points. The Procrustes method

[31] is then employed to minimize the weighted mean squared error and

obtain the rotation and translation parameters. A fine-tuning module is

proposed to enhance registration accuracy by minimizing the robust loss

function and achieving smooth optimization in the registration space.

Partial Registration Network (PRNet) [88] addresses the challenges of par-

tial correspondence problems by leveraging self-supervised learning to

learn geometric priors. It consists of two main components: an appropri-

ate geometric representation and a keypoint detector that identifies com-

mon points and establishes correspondences. Similar to the iterative na-

ture of the ICP algorithm, PRNet is designed to perform coarse-to-fine re-

finement. Initially, PRNet detects critical points in both points clouds S

and T and then predicts a mapping and rigid transformation (mp ) from

S to T based on these critical points. The obtained transformation is ap-



34 CHAPTER 3. RELATED WORK

plied to S, which is iteratively repeated with the updated transformation

as input. Notably, to achieve sharper and approximately differentiable re-

sults compared to traditional methods, PRNet incorporates an actor-critic

approach using Gumbel-Softmax [44] to sample a matching matrix for pre-

dicting the mapping of critical points from S to T [51].

PCRNet [77] is a novel framework for point cloud registration that also

leverages PointNet features like PointNetLK to estimate the transforma-

tion between point clouds. It employs a Siamese architecture consisting

of five MLPs, similar to PointNet. These MLPs encode the point cloud into

global feature vectors that capture geometric and orientation information.

Unlike PointNetLK, which relies on traditional algorithms for transforma-

tion calculation, PCRNet utilizes fully connected (FC) layers to estimate

the transformation in a single forward pass. The input point clouds are

processed by the MLPs with 64, 64, 64, 128, 1024 filters in each 2D convo-

lutional layer, and the resulting global features are concatenated and fed

into the FC layers with 1024, 1024, 512, 512, 256, 7 filters in each layer to

obtain the translation and rotation values. Experimental results on the

ModelNet40 [93] dataset demonstrate that PCRNet achieves similar accu-

racy to Go-ICP [95] but with significantly faster computation [51].

The Non-Rigid Point Set Registration Networks [86] consists of three key

components. The first component focuses on learning a shape descriptor

tensor, a structured grid that allows for feature learning and correlation

analysis of diverse and irregularly-structured data. The second compo-

nent is dedicated to learning a shape correlation tensor, which measures

the correlation between two shape descriptor tensors of the point sets be-

ing registered [86]. This tensor is calculated by performing point-wise op-

erations on the shape descriptor tensors obtained in the previous compo-

nent. The third component involves learning the transformation param-

eters by establishing a mapping function between the space of the shape

correlation tensor and the transformation parameters. PRNet utilizes a

Convolutional Neural Network (CNN) as a regression model to achieve

this. The CNN approximates the mapping function and learns the desired

transformation parameters required for the registration process. The pri-

mary objective of the PRNet framework is to achieve statistical alignment

between the source and target point cloud sets. This is accomplished by

optimizing the geometric transformation by utilizing learned parameters.
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CorrNet3D [100] is a deep learning framework that can learn the dense

correspondence between 3D shapes without any annotated data. It first

learns point-wise features from a pair of raw point clouds. Then, it uses

a correspondence indicator to generate a correspondence matrix repre-

senting point-to-point correspondences. Finally, a symmetric deformer

is used to transform the permuted point clouds, which helps learn the

unsupervised correspondences. CorrNet3D differs from previous works

because it focuses on deformation-like reconstruction to drive the cor-

respondence matrix instead of relying on ground-truth correspondences

or functional maps. CorrNet3D can also be used as a supervised model

by removing the deformation module and using ground-truth correspon-

dences to supervise the learning of the correspondence matrix.

The Deep Graph Matching Based Dense Correspondence Learning Be-

tween Non-Rigid Point Clouds (CorrDGM) [59] is designed to learn dense

correspondences between non-rigid point clouds using deep graph match-

ing techniques. It exploits the capabilities of deep learning and graph

matching to establish meaningful correspondences between points in

different non-rigid shapes. Initially, the point clouds are represented as

graphs, with each point serving as a node and the edges representing

pairwise relationships or similarities. These graph representations are

then processed by a deep neural network that learns to encode the graph

structure and extract informative features from the nodes. The core step

involves graph matching, where the algorithm identifies correspondences

between nodes in the two graphs, effectively mapping points from one

shape to their corresponding points in the other. It is accomplished by

optimizing an objective function that quantifies the similarity or agree-

ment between the graphs. To optimize the objective function, the algo-

rithm utilizes graph-matching algorithms that consider both the graph

structure and the node features. It aims to find an optimal matching that

maximizes the similarity between the graphs. During training, the pa-

rameters of the deep neural network and the graph-matching algorithm

are learned using labeled or unlabeled data. Labeled data consists of

pairs of point clouds with known correspondences, while unlabeled data

consists of point clouds without pre-defined correspondences. The algo-

rithm establishes dense correspondences between non-rigid point clouds

through data-driven learning, enabling shape alignment, reconstruction,
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and other applications that rely on point-wise correspondence informa-

tion.

Various deep learning-based algorithms exist for point cloud registration,

and the ones mentioned above are just a few examples. It is essential

to highlight that deep learning in point cloud registration continually

evolves, and new methods are being developed regularly. Researchers

are constantly exploring innovative approaches to improve point cloud

registration accuracy, robustness, and efficiency using deep learning tech-

niques. Therefore, the list of algorithms mentioned earlier is incomplete,

and more advanced and sophisticated methods are likely available beyond

those discussed.



4
Methods

This chapter provides a detailed explanation of the methods employed in

the experiments. Three distinct approaches for point cloud registration

are explored, each offering unique characteristics and advantages. These

three approaches were selected based on their focus on utilizing overlap-

ping points for transformation estimation rather than considering the en-

tire point cloud for feature computation.

The first method is based on ROPNet [107], an end-to-end learning-based

approach for rigid registration. ROPNet has demonstrated superiority over

established algorithms such as DCP [87], DeepGMR [99], and RPMNet [98],

making it a compelling choice for the experiments. The second method re-

lies on DIP [66], which adopts a feature-learning approach to point cloud

registration. DIP learns distinctive features for individual points and uti-

lizes RANSAC for final transformation estimation. DIP’s flexibility is one

advantage that does not require prior voxelization. It also allows for a

comparison of the extracted features with FPFH [72]. The third method

is based on C2P-net [54]. Initially, C2P-net performs rigid registration us-

ing GCNet [106], a method demonstrating state-of-the-art performance

on the 3DMatch dataset. Subsequently, C2P-net refines the registration

using Neural Deformation Pyramid (NDP) [53]. NDP is particularly suit-

able for the data used in this thesis since no ground truth is available for

the warping function, and it does not require pretraining.

4.1 Dataset

The data acquisition information provided further is taken from [29]. The

PC MRI data was collected from a healthy volunteer using a 7 T whole-

37
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body MRI system by Siemens Healthineers using a 32-channel head coil

manufactured by Nova Medical. The acquisition sequence involved radio-

frequency (RF)-spoiled gradient echo with quantitative flow encoding in

all three spatial dimensions [61, 62]. Electrocardiogram (ECG) gating infor-

mation was obtained from an acoustic cardiac gating device by MRI.Tools

GmbH Berlin. The acquired data comprises 17-time steps, with each step

containing three velocity maps representing the x-, y-, and z-velocity com-

ponents, along with a structural magnitude image. The voxel size of the

acquired images is isotropic at 0.64mm, and the temporal resolution is

54.4 ms. The velocity encoding parameter (VENC), which determines the

maximum velocity uniquely encoded in the phase, was set to 0.9m/s. The

signal-to-noise ratio (SNR) was measured to be approximately 55. Postpro-

cessing of the raw data was conducted using MeVisLab 2.3.1 and the auto-

mated tool described in Bock et al. [7]. Furthermore, a high-resolution

TOF MRI was carried out on the same healthy volunteer with a voxel size

of 0.32mm.

Initially only one pair of TOF and PC MRI mesh is available. These meshes

are obtained by segementation of TOF and PC MRI images as described in

[82]. To train the models large number of samples are required. To do this

various augmentations and data processing is performed to generated the

required dataset for training and testing of the methods.

4.1.1 Normalization

The PC mesh consists of 23,985 vertices, while the TOF mesh contains

122,935 vertices, resulting in a significant difference in size between the

two meshes. However, processing the meshes while maintaining their

original size is computationally infeasible. Sampling a random number of

points from the meshes leads to the loss of shape and vessel structure, as

observed through various experiments and visual comparisons with the

original vertex count.

To address this, the TOF mesh is first scaled to fit into a unit cube. The scal-

ing factor is determined as 1/max(maximum bound−minimum bound),

where the maximum bound and minimum bound are vectors of size three

with the maximum and minimum values across each dimension, respec-

tively. The PC mesh is then fitted into the same cube using the scaling
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factor determined for the TOF mesh. Rescaling the PC mesh with the scal-

ing factor used for the TOF mesh is necessary because when the PC mesh

is fit into the cube, its vessel volume is larger than that of the TOF mesh.

This is due to the fact that more points need to be fit inside a unit cube for

the PC mesh compared to the TOF mesh. After scaling the meshes, 20,000

points are uniformly sampled from the PC mesh, and 50,000 points are

sampled from the TOF mesh to generate the point clouds using Open3d

[105]. These point clouds are then voxelized with a voxel size of 0.01. A

global registration is performed using RANSAC provided by Open3d to

bring the point clouds into a common reference frame. Optionally, the

TOF point cloud can be automatically cropped by determining the dimen-

sions of a cube that fits the PC mesh. Only the points within this cube are

retained in the TOF point cloud, ensuring that it contains points within

the range of the PC cloud.

Finally, approximately 3,000 points are sampled from the PC point cloud,

and 4,000 points are sampled from the TOF point cloud using Poisson disk

sampling provided by Open3d. The reason for sampling points is primar-

ily due to hardware limitations, as more points would ideally be used to

avoid information loss. After completing these steps, the meshes are trans-

formed into pairs of point clouds, which can be further utilized for analysis

and experimentation.

4.1.2 Augmentation

Using the samples obtained in the previous steps, 200 augmented point

cloud pairs are generated. These point clouds are generated by randomly

rotating the original point clouds within the [−90,90] degrees range. The

rotation process involves generating a random angle for each axis using

the Numpy library. These angles are then used to create a rotation matrix

for each axis. The final rotation matrix is obtained by taking the dot prod-

uct of the rotation matrices for the y and z-axes with the rotation matrix

for the x-axis. An example of a rotation matrix is given below, where θ rep-

resents a random axis angle [91]:cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1
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After generating the initial 200 samples, an additional 200 samples are gen-

erated by translating them within the [−1.5,1.5] range. This translation

is performed by generating a random vector of size 3 using Numpy and

adding it to all the points in the point clouds row by row. Finally, all the

generated samples undergo jittering with a sigma value of 0.001 and a clip

value of 0.005. An array with the same shape as the input point cloud is

created to achieve this. The array is initialized with random values drawn

from a normal distribution with a mean of 0 and a standard deviation of

sigma. The clipping value is then applied to the generated array, limiting

the values within the range of -clip to clip. This ensures that the jittered

points stay within the original. The generated array is then added element-

wise to the original point cloud, resulting in the final jittered point clouds.

4.1.3 Quality Check

This quality check ensures that the augmentations applied to the point

clouds do not alter their geometric and semantic meaning. To assess the

quality of the generated samples, the Chamfer and Hausdorff distances are

calculated for each sample compared to the original point clouds. Further-

more, PointNet, a classification network, is utilized to evaluate the quality

of the generated samples. The PointNet network is trained on a dataset

comprising PC and TOF point clouds generated from the samples men-

tioned earlier. The training is performed using samples where the average

Chamfer and Hausdorff distances are below the average of all the samples.

The PointNet network is based on the PointNet classification example pro-

vided by the Keras library [45]. After training, the trained PointNet network

predicts whether the remaining point clouds belong to PC or TOF. Any

samples incorrectly predicted by the network or with a confidence value

below 80% are removed from the dataset and not used for the subsequent

registration process. This ensures that only high-quality and reliable sam-

ples are considered for registration.

4.1.4 Registration

The registration methods used in this work require ground truth trans-

formation matrix to train the networks. Therefore, the generated point

clouds are registered using RANSAC+ICP provided by Open3d [105] and
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then ground truth information like transformation matrix, set of corre-

spondences and inlier ratio is extracted. The TOF and PC clouds are ran-

domly paired and registered. A value of 0.07 was selected after experiment-

ing with different values as distance threshold criteria for RANSAC and ICP.

Other registration techniques like rigid CPD, affine CPD and non-rgid CPD

provided by probreg [84] library is also performed to have four different

versions of the dataset. But only the dataset registered using RANSAC+ICP

is used by the registration methods as the quality of registration of other

methods were not satisfactory. Finally, there are 517 pairs of registered

point clouds with ground truth transformations.

4.2 End-to-End Learning-based Rigid Registration

ROPNet [107] is a feature-learning-based method that focuses explicitly

on situations where the points overlap. The model extracts essential in-

formation from these overlapping points to improve the accuracy of the

alignment. It does this by learning discriminative features or unique char-

acteristics that help distinguish or identify the points. These representa-

tive points capture the essential characteristics of the point clouds and

enable accurate registration. The transformation is achieved using a sub-

set of overlapping points between the two point clouds. ROPNet has a

couple of modules that help in the registration process. The first module,

the context-guided (CG) module, predicts a score that tells us how much

the points overlap. It is done by looking at the features of the points and

how they interact with the overall features of the entire point cloud. This

helps determine the level of overlap between the points. Another module

called the Transformer-based feature matching removal (TFMR) module

is used to enhance the identification of representative points, and it en-

riches the features of the points and estimates a similarity matrix based on

these features. This matrix helps identify the representative overlapping

points more accurately. Non-representative points are then removed from

one of the point clouds, transforming the registration task from partial-to-

partial (where only some points overlap) to partial-to-complete (where all

points are aligned).

The model uses SVD to estimate the transformation T ∈ SE(3) that de-

scribes the alignment between the point clouds by combining the transfor-
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mations from the CG and TFMR modules. Figure 4.1 illustrates the step-

by-step workflow of the ROPNet model.

Figure 4.1: ROPNet Pipeline [107]

4.2.1 Context-guided (CG) module

The CG module uses a PointNet network as an encoder that extracts global

features from the point clouds and predicts a 7D vector representing the

transformation [107]. The first four values represent the rotation, and the

last three represent translation. When the initial rotation is small, an initial

transformation is used to enhance point feature learning, and this helps

improve the accuracy of correspondence, which is crucial for successful

point cloud registration [39]. The equation defines the initial alignment

step [107]:

v = hφ

(
cat (max( fθ

(
X

))
,max

(
fθ

(
Y

))))
(4.1)

where fθ
(·) is the encoder network that results in high dimensional fea-

tures FX ∈ RN×C and FY ∈ RM×C for the PC point cloud X and TOF point

cloud Y . max
(·) is the max-pooling operation performed on the feature

vectors, and cat is the concatenation of features from both clouds. hφ

(·)
is the decoder network made of a simple MLP. The transformed PC point

cloud X ′ is obtained by multiplying the transpose of the rotation vector

with the original PC point cloud and adding the transpose of the transla-

tion vector to each point. In this work, the encoder consists of five 1D

convolution layers with [192,192,192,384,1536] filters in each layer respec-

tively, while the original paper has filter sizes of [64,64,64,128,512]. Each

filter uses a kernel size of 1, stride equal to 1, and padding equal to 0. A

group norm layer and a ReLU activation function follow each convolu-

tional layer. The MLP for transformation prediction contains fully con-

nected layers with [1536,1536,768,7] filters, while the original works have

[512,512,256,7] filters. Each fully connected layer has a ReLU activation
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function. This work adds a dropout layer to each fully connected layer

with a probability of 0.2 to reduce overfitting.

To predict overlapping points, utilizing the overlap information from the

PC and TOF point clouds is crucial [107]. In order to achieve this, an in-

formation interaction module is used that operates on the global features

extracted during the initialization step. The objective is to solve the over-

lap prediction problem, which predicts whether a point is an overlapping

point by performing a binary classification. The overlap score can be com-

puted using the following equations [107]:

OX = gψ
(
cat (FX ,r

(
F g

X

)
,r

(
F g

Y

)
,r (F g

X −F g
Y

)))
, (4.2)

OY = gψ
(
cat (FY ,r

(
F g

Y

)
,r

(
F g

X

)
,r (F g

Y −F g
X

)))
(4.3)

Here, r
(·) represents repetition of concatenated global features to match

the size of features from the encoder. The overlap decoder gψ, which is

also a PointNet architecture, is applied to the concatenated features. A

softmax function is then applied to obtain the point overlap scores OX and

OY for the PC and TOF point clouds. It is worth noting that the parameters

of gψ are shared between the input point clouds. The overlap decoder

network has the architecture of the encoder with [1536,1536,768,2] filters,

while the original work contained [512,512,256,2] filters.

Figure 4.2: Architecture of CG module (left) and Information Interaction module
(right) [107].

In this work, all the networks mentioned earlier are three times larger than

the original. It is because the data used in this work is more complex and

has more number of point. Therefore, a more extensive network with more

learnable parameters was required for efficient learning.
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4.2.2 Transformer-based Feature Matching Removal

The TFMR module removes non-representative points from the PC point

cloud and its architecture is given in figure 4.3. To enhance the point fea-

tures, a feature augmentation step is performed. The k-nearest neighbor

points Mk within a specified radius are identified for each point x in the

transformed PC point cloud X ′. After experimenting with different radius

values, the best results were achieved using a value of 0.15. These neigh-

bors’ spatial coordinates and point pair features [20] PPFi for each mi in

Mk are concatenated to create augmented feature vectors F a
mi

∈R10. Max-

pooling is applied to these augmented features F a
mi

to obtain the most

significant features F p
x ∈ RCp for each point. It is done by a series of 1-

dimensional convolutional layers represented by the functionµθ. The max

operation is employed to select the most significant features. The network

contains three convolutional layers with [256,512,192] filters compared to

[128,128,192] filters in the original work. Each convolution layer contains

a group norm and ReLU activation function.

The Transformer module incorporates point features by considering all in-

put points, which has advantages over local features [52, 55, 68, 85, 89, 103,

107]. It uses a self-attention mechanism to generate point features based

on query, key, and value matrices represented by Qi , Ki , and Vi , respec-

tively. The self-attention weights si are computed using the softmax func-

tion applied to the matrix multiplication of the query Qi and the transpose

of key matrices, i.e., K T
i . The feature matrix is then updated by multiply-

ing the self-attention weights with the value matrix giving F i+1
X ′ . The Trans-

former module consists of five self-attention and Feature Forward Neural

Network (FFNN) groups in this work. The resulting feature matrices for

X ′ and Y are denoted as F t
X ′ and F t

Y respectively, with dimensions RN×4Cp

and RM×4Cp respectively.

In the feature matching removal step, a similarity matrix H is computed by

multiplying the feature matrices of the transformed PC point cloud and

the TOF point cloud, i.e., F t
X ′ and F t

Y
T . Non-overlapping points are re-

moved from the transformed PC point cloud to ensure that the remaining

points X ′
o1 satisfy

∑M
j Ho1,i j = 1 for all i. This is necessary as there could be

points in the transformed PC point cloud that do not have corresponding
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points in the TOF point cloud. By performing this step, partial-to-partial

registration can be effectively addressed [107].

A two-step process is followed to obtain representative overlapping points.

Firstly, top-N1 (996 in this work) overlapping points X ′
o1 ∈ RN1×3. are se-

lected based on the scores from the CG module. Secondly, feature match-

ing is performed to refine the set of representative points by selecting

points with the most defining features. The final set of representative

points X ′
o2 is obtained. To calculate X ′

o2, the indices of the points in X ′
o1

with the highest similarity scores based on the probability proportion

pr ob are identified. The probability used in this work is 0.6 during train-

ing and 0.4 during testing. Using these indices, the similarity matrix Ho2

is computed by multiplying the transposed feature matrix F t
X ′

o2
with the

feature matrix F t
Y for the representative overlapping points. This trans-

formation enables the transition from partial-to-partial registration to

partial-to-complete registration [107].

For each point, xo2,i in the final set of representative points X ′
o2, a corre-

sponding point yi in the TOF point cloud is selected having top-k maxi-

mum similarity scores. The top three points are selected during the train-

ing phase, while only the top one is selected during testing. The weight

matrix wi j for each xo2,i concerning these corresponding points is com-

puted using these indices. The coordinates of the corresponding point

are obtained by summing the weighted coordinates of the points in the

TOF point cloud, where the weights are determined based on the similar-

ity scores.

Each point pair is defined as
(
xo2,i , yi

)
with a weight OX ′

o2,i represents the

set of correspondences, and weighted SVD is used to estimate the trans-

formation. The final transformation is obtained by combining the initial

transformation R0 with the estimated transformation R1, and the transla-

tion is computed as the sum of the initial translation t0 multiplied by the

estimated rotation and the estimated translation t1.
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Figure 4.3: TFMR Module (left) and Feature Matching Removal (right) [107].

4.2.3 Loss function

The loss function measures the difference between the predicted trans-

formed PC point cloud and the actual transformed PC point cloud. For

the prediction of overlap scores a cross-entropy loss is used. To improve

the training process, an additional loss is included by the authors that con-

sider the initial transformation parameters R0 and t0:

• The loss for the transformed PC point cloud is calculated by taking

the absolute differences between X transformed by RT and X trans-

formed by R̂T and adding it to the absolute differences between t

and t̂ .

• The auxiliary loss for the initial transformation is computed similarly,

comparing X transformed by RT
0 and X transformed by R̂T for rota-

tion, and comparing t0 and t̂ for translation.

An overlap loss, Lol , which evaluates the agreement between the predicted

overlap scores OX and OY and the actual scores ÔX and ÔY is also defined.

The ground truth overlap score is determined using the mapping ΦX ob-

tained from equation 4.4 [107]. This mapping finds the nearest neighbor in

Y for each point Xi , and if the correspondence falls below a certain thresh-

old d , which is 0.15 in this work, the score is set to 1; otherwise, it is set to

0.

ΦX = {
Xi |N N

(
R̂ ·Xi + t̂ ,Y

)< d ,∀i
}

(4.4)

The overlap loss is computed by taking the element-wise product of
(
ÔX

)
i j

and log
(
OX

)
i j , summed over all i and j , multiplied by 1/2N ; and by taking
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the element-wise product of
(
ÔY

)
i j and log

(
OY

)
i j , summed over all i and

j , multiplied by 1/2M [107].

Lol =
1

2N

∑
i

∑
j

(
ÔX

)
i j · log

(
OX

)
i j +

1

2M

∑
i

∑
j

(
ÔY

)
i j · log

(
OY

)
i j (4.5)

4.3 Feature-learning based Rigid Registration

This approach uses the feature-learning method: Distinctive 3D local deep

descriptors (DIP) [66]. DIP uses a PointNet-based network in a Siamese

configuration [19] to learn compact feature descriptors for each point

trained using canonicalized patches. Each point in the patches contains

its Local Reference Frame (LRF) [30]. An affine transformation is incorpo-

rated in the estimation of LRF to improve the canonicalization process by

minimizing the Euclidean distance via Chamfer loss [104]. However, DIP

differs with [19] in three ways:

• LRFs are used to canonicalize patches.

• Descriptors specifically encode local information, making them

more robust against clutter, occlusions, and missing regions.

• Using a hardest contrastive loss allows for mining quadruplets [16],

improving metric learning.

The advantage of DIP is that it directly processes points without additional

features or preliminary voxelizations of the point clouds [66]. The pipeline

is shown in figure 4.4. Each branch of the approach involves the following

steps: (i) Extracting a patch for each point and computing the correspond-

ing LRF based on the points within the patch; (ii) Applying a rigid trans-

formation to the patch using the LRF and randomly sampling points from

the transformed patch; (iii) Normalizing and expressing the coordinates

of the sampled points relative to the patch center so that the distance be-

tween any sampled point and the patch center is equal to 1; and (iv) Us-

ing the normalized points as inputs for the network to learn the descrip-

tors. Chamfer loss [104] is used on the output of TNet and the hardest

contrastive loss [16] on the network output.
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Figure 4.4: DIP Pipeline [66].

4.3.1 Patch Extraction

Firstly the ground-truth transformation is applied on the PC and TOF

point clouds, and correspondences within a distance threshold of 0.03

are estimated using ICP. The value of 0.03 was selected as it resulted in

the highest inlier ratio in the ICP registration process. These correspon-

dences represent the overlap regions O and O′ between the clouds. The

points in the overlap region are used as possible anchor points for the

Hardest-contrastive loss given in equation 4.8. Selecting anchor points is

essential to minimize the loss effectively [66]. Random sampling [30, 16]

is commonly used, but it can lead to spatial proximity between anchors

and negative examples. To address this issue, negatives within a specific

radius from an anchor can be excluded by computing the Euclidean dis-

tance between all the anchor points and determining whether to penalize

this distance in the embedding space. If the points within this radius are

used for training, feature for regions with similar geometric structures

will be learned, leading to poor training [66]. To avoid distance computa-

tion among all the anchors, Farthest Point Sampling (FPS) [68] is utilized.

FPS selects b points from O that have the largest distances among them-

selves. These points are then matched with their nearest neighbors in O′

to construct the minibatch for the hardest-negative mining process. After

experimenting with values like 256, 512, and 1024, b was set to 256 as other

values did not significantly improve loss values and only resulted in longer

training time.

Using FPS, a point c is selected from O and its nearest neighbor c ′ from O′.
Sets Y and Y ′ are constructed from the local patch X , consisting of points

y that satisfy the condition ‖y − c‖2 ≤ τr . Although the authors used the

radius value of voxel si ze ×p
3, a value of 0.15×p

3 is used in this work

after experimenting with different thresholds. The points within each set
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are used to compute its own LRF [30, 96]. “The LRF is independently con-

structed by determining three orthogonal axes. The z-axis is the normal of

the local surface defined by the points in Y and similarly for the points in

Y ′. The x-axis is computed as a weighted sum of vectors obtained by pro-

jecting the vectors between c and the points in Y (excluding c) onto the

plane orthogonal to the z-axis. The y-axis is obtained as the cross-product

between the z-axis and the x-axis” [66]. A random sampling of n points is

performed from Y and Y ′ to regularize training and enhance generaliza-

tion. In this work, n is set to 256. The coordinates of these points are then

recalculated relative to their patch center, and the radius of the encom-

passing sphere is normalized. This normalization is achieved by dividing

each point ŷ in Q(Y ) by τr , where ŷ = (y−c)/τr for y in Y . The resulting set

is denoted as Q(Y ) with a size of |Q(Y )| = n. Finally, the LRF L is applied to

Q(Y ), rotating the points with respect to their respective LRFs. The same

operations are also performed for Q(Y ′) [66].

4.3.2 Network Architecture

DIP is based on the PointNet architecture, with specific modifications to

the Transformation Network, Bottleneck, and Local Response Normaliza-

tion layer. As shown in Figure 4.5, the architecture aims to generate a d-

dimensional descriptor f with a unitary length for an input patch X .

Figure 4.5: Pointnet Architecture for DIP[66].

The initial part of the architecture is the Transformation Network (TNet),

responsible for predicting an affine transformation A ∈R3×3. This transfor-

mation is applied to each point x in the patchX . To encourage the TNet to

resemble an orthogonal matrix and promote a rigid transformation, a reg-
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ularization term lr eg = ‖I − A AT ‖2
F is included. The TNet architecture fol-

lows a similar structure to the PointNet network, with the final MLP layer

generating nine values that are reshaped to form the matrix A. The Point-

Net feature extraction network consists of three 1D convolutional layers

with a filter size of [256,256,512], followed by three fully connected layers

with [256,256,32] filters. This work adds a dropout layer to each layer with

a probability of 0.1 in the convolutional layers and 0.3 in fully connected

layers. The transformation network follows the same architecture as the

feature extraction network. The original work included [256,512,1024] fil-

ters in the convolutional layers and [512,256,32] in the fully connected lay-

ers. The dropout was only used in the first fully connected layer.

The Bottleneck layer is designed as a symmetric function that produces

the same output regardless of the order of its input elements [66]. It per-

forms max pooling defined as max : Rn×m → Rm on the output of the pre-

vious layer, resulting in a global signature γ = (g1, g2, ..., gm) for the input

patch such that:

γ= max
X

(
ΦΘ

(
X

))
(4.6)

Here m represents the number of channels in the output from the layer

preceding the bottleneck, gi denotes the i th element of γ, and ΦΘ j corre-

sponds to an intermediate network output at the j th layer. It has been ob-

served that the global signature γ in DIP can be used to assess the amount

of information provided by the network [66]. Additionally, a function α =
argmax

X

(
ΦΘ j (X )

)
is defined, which allows us to retrieve the indices corre-

sponding to the γ values. In other words, α gives us the positions of the

maximum values in γ, with the mapping argmax :Rn×m → [
1,n

]m .

The values of γ, α, γ′, and α′ are calculated for the patches from PC and

TOF point clouds. The values of α and α′ remain the same irrespective

of the order of points in the patches. These values can be interpreted as

corresponding points between both patches. The reliability of these corre-

spondences can be assessed by examining the maximum values of γ and

γ′. The norm of γ, denoted as ‖γ‖2, is an effective measure of reliability.

It allows us to identify and potentially discard patches extracted from flat

surfaces or regions with low information content. To select robust descrip-

tors that provide reliable correspondences, a threshold condition is set as

ρ = ‖γ‖2 > τρ, where τρ is a threshold value [66].
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Finding a single threshold value τρ that works well for different input data

and network architectures can be challenging [66]. To address this chal-

lenge, an alternative approach is proposed. It involves inferring τρ based

on the distribution of ρ values. Using the cumulative density function, τρ
can be determined as the p th

ρ percentile. pρ is calculated as the area under

the probability density function f (ρ) up to the threshold τρ, expressed as

a percentage of 100. This approach ensures that τρ is chosen so that the

accumulated area to the left of τρ in the probability density function corre-

sponds to pρ/100. A series of MLP layers in the MLP2 block process these

global signature values. The Local Response Normalization (LRN) layer

ensures that the descriptors have a unitary length. It performs L2 normal-

ization on the output of the final MLP layer, which has a dimensionality of

d [66].

4.3.3 Loss functions

The Chamfer loss is utilized to minimize the distance between each point

x in the patch X and its closest neighbor x ′ in the patch X ′. The Chamfer

loss is computed as the sum of the minimum distances between points in

X and X ′, as shown in equation 4.7 [66].

lc
(
X

)= 1

2n

( ∑
x∈X

min
x′∈X ′‖Ax − A′x ′‖2 +

∑
x′∈X ′

min
x∈X

‖Ax − A′x ′‖2

)
(4.7)

To facilitate metric learning, the Hardest-contrastive loss with negative

mining is used. It is a technique used to compute distances for matching

the descriptors. For each pair of anchors ( f , f ′), the hardest-negatives

( f−, f ′−) are identified [66]. The loss is defined as a combination of three

terms: the positive loss, which encourages a small distance between pos-

itive pairs; the hardest-negative loss, which penalizes distances to the

hardest negatives; and the hardest-negative loss for the second descriptor,

which penalizes distances to the hardest negatives of the second descrip-
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tor. The full equation for the hardest-contrastive loss is given in Equation

4.8 [66].

lh = 1

b

∑
( f , f ′)∈C+

( 1

|C+|
[
d( f , f ′)−m+

]2
+

+ 1

2|C−|
[
m−− min

f̃ ∈C−
d( f , f̃ )

]2
+

+ 1

2|C−|
[
m−− min

f̃ ∈C−
d( f ′, f̃ )

]2
+
) (4.8)

Here C+ represents the set of anchor pairs, and C− represents the set of de-

scriptors used for negative mining within a minibatch. The values m+ and

m− correspond to the margins for positive and negative pairs, respectively.

The function [·]+ extracts the positive part from its argument [66].

4.4 Non-Rigid Registration

The non-rigid registration approach is inspired by C2P-net [54] which uti-

lizes a two step pipeline. Intially rigid registration is performed by extrac-

tion features using GCNet [106] and correspondences are estimated using

one step RANSAC. Then these correspondences are used to perform non-

rigid registration using NDP [53].

4.4.1 Rigid Registration and Correspondence Estimation

This method, called GCNet [106], is a feature-based learning approach

that leverages the proportion of correspondences to extract features from

point clouds. The pipeline of GCNet is illustrated in Figure 4.6.
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Figure 4.6: Pipeline for GCNet[106].

The input point clouds are processed through a shared encoder network

based on KP-FCNN [85], which produces a feature vector for each KPConv

block. The encoder module consists of L layers, resulting in multiple point

clouds of different resolutions
{

X1, ..., XL
}

and their corresponding feature

vectors
{
F en

X , ...,F en
XL

}
. In this thesis the encoder consists of 4 layers in each

block. The first layer contains a simple block and a resnet block and the

other three layers contains 2 resnet block each. A simple block consists

of a KPConv block followed by batch normalization and LeakyReLU ac-

tivation function. The resnet block consists of a KPConv block, a batch

normalization block, a single layer MLP with LeakyReLU activation func-

tion, a max pooling block, another MLP and finally LeakyReLU activation

function. KPConv uses a points within a specified radius to extract lo-

cal features and in this thesis the radius is set to 0.06 after experiment-

ing with several values. The features from the encoder is fed into an in-

formation interaction module. The information interaction module in-

cludes two shared geometry-guided encoding (GGE) modules and a cross-

attention module. The GGE module takes as input the Lth downsampled

point cloud from the encoder (X ′), its feature vector (FX ′), and the orig-

inal point cloud and generates geometry-enhanced features (F g g e
X ′ ). The

architecture of the GGE module is shown in Figure 4.7.



54 CHAPTER 4. METHODS

Figure 4.7: GGE Module[106].

In the GGE module, the geometry of the normals of points in X ′ is first

corrected through normal vector smoothing, which involves averaging

the normals of corresponding points in the original cloud. Then, geomet-

ric encoding based on PPF (Point Pair Features) [20] is performed, where

points within a radius r G are utilized, and a pointwise max pooling opera-

tion is applied. Using the features from the encoder and X ′, a dense graph

is constructed to enhance the semantic features using a graph neural net-

work. Finally, a D-dimensional feature F g g e
X ′ is generated by fusing the

geometric and semantic features through a multi-layer perceptron (MLP).

The radius is set to 0.32 in this thesis. The PPF block contains three 2d

convolutional layer with (128,256,128) filters and each layer uses a ReLU

activation function.

The cross-attention module calculates the information interaction fea-

ture using X ′ and F g g e
X ′ . The features from the GGE module are trans-

formed into query (Q), key (K), and value (V) representations using train-

able weight matrices W Q
i , W K

i , and W V
i , respectively. This transforma-

tion is performed independently for each head of the multi-head at-

tention mechanism. The attention mechanism computes each head as

softmax
(Qi ·K T

ip
Di

) ·Vi . The heads are then concatenated and passed through

an MLP to obtain cross-attention features. These features and the original

features X ′ are used as input to the second GGE module, resulting in the

final feature F i nter
X ′ . The same procedure is applied to the second point

cloud. The cross-attention contains four 1d convolutional layer followed

by a MLP. Each convolutional layer contains 256 filters. The MLP con-

tains a 1d convolutional layer followed by an instance norm layer, a ReLU

activation function and a 1d convolutional laeyr at the end.
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The decoder generates three-level C -dimensional features by utilizing

the features from the previous steps. Finally, overlap scores and saliency

scores are calculated, which are used for sampling the overlapping points.

A certain number of points (768 in this work) are sampled based on

the scores, and correspondences are estimated using consistent voting.

The voting mechanism utilizes the feature vectors to perform nearest-

neighbor searches and predict correspondences. For a point in the first

point cloud the mechanism finds its nearest neighbor in the second point

cloud’s feature space for each level. Starting from the first layer if near-

est neighbors from two consecutive layers are matched, it is considered

to be a correspondence. The transformation is then estimated using the

RANSAC algorithm.

The overall loss function is computed as the sum of the feature losses, over-

lap loss, and saliency loss [106]:

L=Lh(F )+Lm(F )+Ll (F )+L(O)+L(S) (4.9)

The feature loss is calculated using the circle loss formulation for different

feature representations F h
X , F m

X , F l
X , F h

Y , F m
Y , and F l

Y . The loss is computed

based on a randomly sampled set of correspondences C = {
(xi , yσ(i ))|i =

1,2, ...,S
}
, where S is the number of correspondences. For example, the

loss LX
h (F ) for F h

X is defined as [106]:

Lh
X (F ) = 1

S

S∑
i=1

log
[
1+ ∑

y j εPi

exp
(
γα

p
i j

(
Dh

i j −4p
))

· ∑
ykεNi

exp
(
γαn

i k

(4n −Dh
i k

))] (4.10)

where Pi represents the set of corresponding points yσ(i ), Ni denotes the

set of points y such that
(
x, y

)
εC and x 6= xi ,Dh

i j represent the Euclidean

distance between F h
xi

and F h
y j

, 4p and 4n are positive and negative mar-

gins, αp
i j =

[
Dh

i j −4p)
]
+, αn

i k =4n−[
Dh

i k

]
+, and γ is a scale factor. Similar

formulations are used for Lh
Y (F ), Lm(F ), and Ll (F ) [106].

The overlap and saliency scores OX and SX are treated as binary classifi-

cation tasks, and binary cross-entropy loss is used. The losses for overlap

and saliency are defined as [106]:

LX
(
O

)=− ∑
xi εX

wO
i

[
Oxi logOxi +

(
1−Oxi

)
l og

(
1−Oxi

)]
LX

(
S
)=− ∑

xi εX
wS

i

[
Sxi log Sxi +

(
1−Sxi

)
log

(
1−Sxi

)] (4.11)
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where wO
i and wS

i are weighting factors for category balance, Oxi and Sxi

are the ground truth binary overlap and saliency scores for point xi , re-

spectively. Oxi is set to 1 if the distance between the transformed point

and its nearest neighbor is below a threshold. Sxi is set to 1 if the ground

truth candidate point is matched based on feature matching. LY
(
O

)
and

LY
(
S
)

are defined similarly [106].

4.4.2 Neural Deformation Pyramid

After rigid registration, non-rigid refinement is performed using the Neu-

ral Deformation Pyramid (NDP) [53] method. The NDP utilizes a pyra-

mid structure where each level has a MLP that operates on sinusoidally

encoded points. The architecture of the NDP is depicted in Figure 4.8.

Figure 4.8: NDP Architecture [53].

The NDP decomposes the estimation parameter ξ into a sequence of sub-

transformations {ξ1
i ,ξ2

i , ....,ξm
i }. These sub-transformations are easy to es-

timate and can be combined to obtain the final transformation. At each

level of the pyramid, the NDP employs a continuous function Γ and an

MLP Θ. The function Γ performs positional encoding by mapping the in-

puts from the previous level in 3D space to a 6D sinusoidal encoding. It is

given by: (
sin

(
2k+k0 xk−1

i

)
,cos

(
2k+k0 xk−1

i

))
(4.12)
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where k represents the pyramid level and k0 controls the frequency of the

sinusoidal encoding. A hierarchical rigid-to-nonrigid motion decompo-

sition is achieved by gradually increasing the frequency with each level.

Lower frequencies correspond to relatively rigid motion, while higher fre-

quencies represent highly non-rigid motion. The MLP Θ takes the en-

coded coordinates as input and estimates the transformation increments

for the current pyramid level. The output of the MLP represents the confi-

dence in the accuracy of the motion estimates at that level. Using the es-

timated transformation parameters ξk
i and the confidence values αk

i , the

transformed coordinates at the k th level are computed by applying a warp

function W to the previous level’s coordinates xk−1
i . The degree of devi-

ation from the previous level is controlled by αk
i , which determines the

level-wise deformability. In this thesis three level pyramid is used and each

layer contains a MLP with a linear layer of 128 filters with ReLU activation

function. k0 is set to -8

Regularization terms are applied to the confidence values αk
i to promote

as-rigid-as-possible movement. These regularization terms help maintain

the rigidity of the motion during the registration process. The deforma-

bility regularization term E k
r eg is formulated as a negative log-likelihood

computed over the set Sk points in the point cloud. The term aims to min-

imize the negative log-likelihood of the confidence scores not being zero,

encouraging a deformability score of zero and preserving the point cloud’s

original geometry.

The NDP uses Chamfer and Correspondence loss as cost functions at each

pyramid level. The correspondence loss measures the discrepancy be-

tween the matched points in the point clouds. Finally, the total loss E k
tot al

at each level is computed as a weighted combination of the Chamfer loss

E K
cd , Correspondence loss E K

cor , and deformability regularization loss E K
r eg .

The correspondence loss is given as:

E k
cor r =

1

|M |
∑

(u,v)∈M
ρ
(
xk

u − yv
)

(4.13)

Here M is the set of correspondences and (u, v) are the matched indices.

Finally total loss is computed as:

E k
tot al =λcd E K

cd +λcor E K
cor +λr eg E K

r eg (4.14)

where λcd ,λcor r and λr eg are the weighting factors.



5
Experiments and Evaluation

All the experiment methods were implemented in PyTorch 2.0.0, RANSAC,

and ICP from Open3d and NVIDIA GeForce with 11 Gb memory used for

computation.

5.1 ROPNet

After experimenting with different learning rate values, the model is

trained using five-fold cross-validation due to a lack of data with an initial

learning rate of 0.0001 and Adam [46] optimizer for 50 epochs. Figure 5.1

shows each fold’s training and validation loss. The average of best training

loss across all folds is 0.108 (original) and 0.078 (cropped), while the aver-

age of best validation loss is 0.095 (original) and 0.056 (cropped). The best

model across all folds is selected to be evaluated on the test set, and the

average loss is 0.113 for the original and 0.091 for the cropped version of

the data. The result of the original and cropped versions is similar because

the network uses overlapping points for training.

Other metrics like Chamfer distance, mean square error, Hausdorff dis-

tance, and mean absolute error before and after the registration are used

to evaluate the registration quality. This value is also compared with tra-

ditional CPD as a baseline, as shown in table 5.1 and table 5.2. Since the

ground truth transformation is obtained using RANSAC, it is not a baseline.

From the comparison, it can be inferred that ROPNet registration quality

is similar to CPD. Still, ROPNet takes an average of 1.03 seconds to register

a sample, whereas CPD takes 12.40 seconds.
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(a) Original (b) Cropped

Figure 5.1: ROPNet Cross Validation Results
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Before ROPNet Rigid CPD

Mean Correspondences 61 2045 2000

Mean Square Error 0.472 0.019 0.031

Mean Absolute Error 0.585 0.092 0.143

Mean Hausdorff Distance 0.605 0.031 0.062

Mean Chamfer Distance 1.003 0.102 0.098

Table 5.1: ROPNet Registration Result (Original)

Before ROPNet Rigid CPD

Mean Correspondences 31 2046 2048
Mean Square Error 0.352 0.001 0.001

Mean Absolute Error 0.495 0.027 0.022
Mean Hausdorff Distance 0.633 0.026 0.062

Mean Chamfer Distance 0.930 0.036 0.038

Table 5.2: ROPNet Registration Result (Cropped)

A sample before and after registration of original and cropped clouds is

shown below.

(a) Before (b) After

Figure 5.2: ROPNet Registration Result (Original)
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(a) Before (b) After

Figure 5.3: ROPNet Registration Result (Cropped)

5.2 DIP

During training, a 5-fold cross-validation strategy is employed, utilizing

the Stochastic Gradient Descent (SGD) optimizer [70] with a learning rate

of 0.009, momentum of 0.9, and weight decay of 0.01. The scheduler is

Cosine Annealing with Warm Restarts [56]. The total number of epochs

for training is set to 50.
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(a) Original (b) Cropped

Figure 5.4: DIP Cross Validation Results

Figure 5.4 illustrates each fold’s training and validation loss. The average

of best training loss across all folds is 0.253 (original) and 0.246 (cropped),

while validation loss is 0.264 (original) and 0.310 (cropped). Here is lit-

tle difference between the original and cropped version’s result because

the network uses the correspondences for patch extraction and training.

The best model across all folds is selected to extract the descriptors from

patches of the test set. After obtaining descriptors for each point, RANSAC
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Before DIP FPFH
Mean Correspondences 206 2864 2282

Mean Square Error 1.566 0.019 0.022

Mean Absolute Error 1.038 0.092 0.106

Mean Hausdorff Distance 1.036 0.023 0.080

Mean Chamfer Distance 1.875 0.100 0.126

Table 5.3: DIP Registration Result (Original)

Before DIP FPFH

Mean Correspondences 254 2845 2742

Mean Square Error 1.696 0.001 0.002

Mean Absolute Error 1.028 0.027 0.032

Mean Hausdorff Distance 1.154 0.023 0.040

Mean Chamfer Distance 1.988 0.033 0.043

Table 5.4: DIP Registration Result (Cropped)

is used to perform registration. Ideally, if the descriptors are good enough,

only 1 iteration of RANSAC should register the point clouds successfully.

To compare the quality of DIP with FPFH, commonly used with RANSAC,

registration is performed for different numbers of iterations for a single

sample as shown in figure 5.5. The figure shows that using DIP descrip-

tors, RANSAC can register the point clouds in 1 iteration, while FPFH takes

50000 iterations for perfect alignment. Therefore, DIP is better than FPFH

as a feature for point clouds. The below tables show the registration result

on the test set of original and cropped point clouds for 50000 iterations.

DIP outperforms FPFH in both cases.
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(a) DIP(Iter: 1).

(b) FPFH(Iter: 1).

(c) FPFH(Iter: 10000).

(d) FPFH(Iter: 50000).

Figure 5.5: DIP vs FPFH Registration using RANSAC
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5.3 Non Rigid Registration

GCNet is trained using 5-fold cross-validation for 100 epochs per fold to

perform rigid registration. After experimenting with various values, the

initial learning rate is 0.05 with SGD optimizer and exponential learning

rate scheduler. Figure 5.6 shows the training and validation losses for the

original and cropped data, respectively. The average of best training loss

across all folds is 0.863 (original) and 0.822 (cropped), while the validation

loss is 0.935 (original) and 0.870 (cropped). RANSAC was used to register

(a) Original (b) Cropped

Figure 5.6: GCNet Cross Validation Result.
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after extracting features for individual points using GCNet. However, as

shown in Figure 5.7, the registration results were inconsistent when using

a single RANSAC iteration. Therefore, more iterations were used to im-

prove the registration results.

Figure 5.7: RANSAC Result using GCNet (Cropped, Iter: 1).

Figure 5.8: RANSAC Result using GCNet (Original, Iter: 1).

Table 5.5 and 5.6 shows the registration result for 10000 iterations of

RANSAC on the test set. The search radius of 0.03 is used for correspon-

dence estimation as this value gave the best ICP registration result in the

data preparation step. Rigid CPD was used as a baseline for compari-

son, and experimental results show that GCNet was marginally better in

the case of cropped data. When using the original data, rigid CPD can-

not perform registration properly, as shown in figure 5.9. A comparison
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Before GCNet Rigid CPD

Mean Correspondences 69 1484 717

Mean Square Error 0.065 7.66e-05 7.52e-05
Mean Absolute Error 0.039 0.0010 0.0012

Mean Hausdorff Distance 0.044 0.0009 0.004

Mean Chamfer Distance 0.0767 0.0013 0.0022

Table 5.5: GCNet Registration Result (Cropped)

Before GCNet Rigid CPD

Mean Correspondences 40 895 1093
Mean Square Error 0.058 0.0007 0.009

Mean Absolute Error 0.038 0.003 0.073

Mean Hausdorff Distance 0.038 0.001 0.129

Mean Chamfer Distance 0.069 0.003 0.123

Table 5.6: GCNet Registration Result (Original)

with FPFH must not be made, as DIP was shown to perform better in the

previous section, and GCNet will be compared to DIP in the next section.

After performing the rigid registration, correspondences are estimated

and used to refine the registration using NDP. The tables 5.7 and 5.8 below

show the registration results of NDP and GCNet. As can be seen, the MSE

of GCNet is already very close to 0, indicating that the registration is nearly

perfectly aligned. Therefore, there is no room for improvement using NDP.

The NDP registration result of a sample is shown in figure 5.10.

GCNet NDP Non Rigid CPD

Mean Correspondences 1484 1417 894

Mean Square Error 7.66e-05 7.08e-05 0.018

Mean Absolute Error 0.0010 0.0010 0.114

Mean Hausdorff Distance 0.0009 0.0011 0.073

Mean Chamfer Distance 0.0013 0.0014 0.149

Table 5.7: NDP Registration Result (Cropped).
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Figure 5.9: Registration Result of Rigid CPD.

GCNet NDP Non Rigid CPD

Mean Correspondences 895 293 848

Mean Square Error 0.0007 0.0005 0.045

Mean Absolute Error 0.003 0.003 0.177

Mean Hausdorff Distance 0.001 0.002 0.088

Mean Chamfer Distance 0.003 0.004 0.214

Table 5.8: NDP Registration Result (Original).

(a) Original (b) Cropped

Figure 5.10: NDP Result.
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The registration result of nonrigid CPD is poor. After visualizing the results,

it was inferred that the model is squeezing the PC point cloud along one

dimension, converting it to almost 2D data. The result is shown in the

figure.

(a) Original (b) Cropped

Figure 5.11: Non-Rigid CPD Result.

5.4 Comparison and Additional Results

The table below displays the registration results obtained using various

methods in this thesis. All three methods demonstrate similar perfor-

mance. The estimated correspondences are less in GCNet when compared

to other methods. Still, the evaluation metrics show better results, as seen

in table 5.9 and 5.10. ROPNet has advantages over DIP and GCNet in cer-

tain aspects, as it does not rely on RANSAC for transformation estimation

and can be trained end-to-end. However, it requires the voxelization of

point clouds. In this work, the voxel size of the TOF and PC point cloud

is the same after the data preparation step, but it is not the case in reality,

and in such cases, ROPNet might fail. On the other hand, DIP benefits

from not requiring the voxelization of point clouds, with the only parame-

ter to be adjusted is the radius for estimating LRF. Also, DIP uses patches of

size 256 from point clouds to extract descriptors and estimate transforma-

tion, allowing point clouds with many points. GCNet’s high-quality results

rely on multiple radius values used throughout the algorithm, which need
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thorough tuning for effective learning. For instance, the overlap radius in

the preprocessing step determines the correspondences between source

and target point clouds, with larger values leading to false matches and

smaller values resulting in fewer correspondences. The deform radius in

each network layer establishes neighborhood limits to remove unwanted

points. The convolutional radius in the encoder blocks extracts features

for individual points by only considering neighbors within the mentioned

radius. Adjusting these values affects the network’s ability to learn local

or global features and impacts computational efficiency. Lastly, another

radius serves as a distance threshold to identify point matches.

ROPNet DIP GCNet NDP

Mean Correspondences 2045 2864 895 293

Mean Square Error 0.019 0.019 0.0007 0.0005

Mean Absolute Error 0.092 0.092 0.003 0.003

Mean Hausdorff Distance 0.031 0.023 0.001 0.002

Mean Chamfer Distance 0.102 0.100 0.003 0.004

Table 5.9: All Registration Result (Original).

ROPNet DIP GCNet NDP

Mean Correspondences 2046 2845 1484 1417

Mean Square Error 0.001 0.001 7.66e-05 7.08e-05
Mean Absolute Error 0.027 0.027 0.001 0.001

Mean Hausdorff Distance 0.026 0.023 0.0009 0.0011

Mean Chamfer Distance 0.036 0.033 0.0013 0.0014

Table 5.10: All Registration Result (Cropped).

Learning3D [79] is a Python library that provides various classification,

segmentation, and registration algorithms for point clouds, and it was

used to test DCP and RPMNet. The experiments were done to estimate

their performance, and no extensive tuning was done to adapt these algo-

rithms to work on TOF and PC point clouds. The training and test loss for

DCP is given in figure 5.12. In this experiment, the network size is three

times the network provided in Learning3D. The registration result is not

provided as the network did not learn.
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Figure 5.12: DCP Loss.

Next RPMNet was experimented with, and the model performed poorly, as

seen in figure 5.13.

Figure 5.13: RPMNet Loss.

Another method experimented with was FMR [40], as the authors claimed

it works for multimodal data. The loss is shown in figure 5.14. Even though

the loss is low during training, the model cannot register the point clouds

properly, as shown in figure 5.15.
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Figure 5.14: FMR Loss.

(a) Before

(b) After

Figure 5.15: FMR Result.



6
Conclusion and Future Work

This thesis presented an overview of deep learning-based point cloud reg-

istration and its use in registering 3D TOF and PC MRI data. MRI has

shown promising results in detecting CSVD, and registration of the two

modalities can help notice vascular anomalies in the brain. This work

aims to research state-of-art methods available for point cloud registra-

tion and evaluate them on the MRI data. The first approach in the the-

sis performs rigid registration using ROPNet, which only considers the

overlapping region for learning. The second method used is a feature-

learning-based method based on DIP, which provides local descriptors of

each point that can be used to perform registration using RANSAC. The

third method is inspired by C2PNet and uses GCNet for performing rigid

registration and then using NDP to perform non-rigid registration. NDP

can also be combined with any other method that results in correspon-

dence estimation. The motivation behind using GCNet is to compare an-

other feature-learning-based method with DIP. However, using GCNet pro-

vided good registration results and left no room for improvement for NDP

to improve results using non-rigid registration. Many registration meth-

ods are available, but most of them have yet to be tested on multimodal

data, including those used in this thesis.

There are a few challenges and limitations in this thesis. The first is the

need for more computational resources. The original TOF point cloud con-

tains 122935 points with a voxel size of 0.3 mm, and the PC point cloud has

23985 points with a voxel size of 0.6 mm. It is not feasible to process all the

points for registration; therefore, sampling strategies were used to reduce

the number of points. The original TOF and PC point clouds were of dif-

ferent voxel sizes, but all the methods applied in this work use the same

voxel size for feature extraction. Only DIP does not use the voxel size of the

73
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point clouds, but it uses the same radius value for both the point clouds to

estimate LRF. Therefore, the points clouds were voxel downsampled with

size 0.01 for efficient feature matching, another limitation of this work. An

extension of this work could be evaluating the methods with the original

voxel size. A limitation of this work is not estimating the metric values like

Chamfer and Hausdorff distance in mm. The works [81, 83] are related

to registration of TOF and PC MRI and the Hausdorff distance is provided

in mm and the results of this thesis could not be compared due to the

limitation. Another challenge of multimodal registration is the presence

of outliers and partially overlapping regions [41]. In the TOF point cloud,

many vessels and regions are not present in the PC point cloud. These ex-

tra points are the outliers that could hinder the registration process. The

implemented methods were prone to outliers and partial overlap as they

only used overlapping points or correspondences to estimate the trans-

formation. This is proven by the fact that the registration result of these

methods on cropped and original data is similar.

One more probable extension of this work could be using DGCNN instead

of PointNet as the encoder of the ROPNet architecture. DGCNN is known

to capture more local geometric information than PointNet [87] and might

improve the feature learning process. Most of the point cloud registration

use a PointNet based encoder to extract features. MeshCNN [34] has better

mesh segmentation results than PointNet and could be used as an encoder

for point cloud registration

In conclusion, the implemented methods worked well on scaled and nor-

malized TOF and PC point clouds if the loss of information is ignored.

Rigid registration showed promising results, but due to a lack of ground

truth deformation data, the quality of non-rigid registration could not be

evaluated effectively. If more computational resources are available, these

methods could be tried on unscaled data having differences between the

voxel sizes of TOF and PC point clouds.
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