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Abstract

The aim of this thesis is to develop a framework for extracting a subset of instances
from a given dataset or database that is similar to a given instance of interest but
also diverse from each other. A framework like this will be very useful in the med-
ical field for extracting instances for training simulations. Training simulation is
a popular approach used, especially in surgical medicine, where doctors practice
their skills by performing preparatory surgical operations before embarking on a
human. Training simulations are also a proven way to expose and teach medical
students the intricacies of their potential real-life patient encounters in various
areas of medicine. It is also useful to stay sharp and prepared for surgeries, which
are rarely performed, like surgical clipping of intracranial aneurysms. Hence, my
objective is to develop this framework for extracting representative but diverse
subsets using a dataset of intracranial aneurysms.

Although this task is similar to instance selection, which aims to extract a smaller
samples from a dataset that effectively conveys all the information in the larger
dataset, the introduction of an instance of interest makes this a novel task. For this
reason, it is also necessary to develop methodologies for evaluating the quality
of an extracted subset with respect to an instance of interest. Therefore, in this
thesis I proposed a Rever seInst anceSelect i on framework to extract instances
in a bid to achieve this goal and I also developed a sequence of mathematical
equations to measure the quality of an extracted subset with respect to a given
instance. I also proposed an adaptation of this framework to cater for generic
instance selection tasks.

The proposed framework consists of three major phases: outlier removal, cluster-
ing, and prototyping. Extensive experiments and analysis with various machine
learning algorithms were performed on the given datasets to support the choices
made for each phase of the framework. An evaluation of the proposed framework
showed that while it is strongest for extracting smaller subsets of instances, the
strength starts to dwindle as the size of an extracted set increases.

The proposed framework and equations are reusable and adaptable to other
datasets in any domain, provided adequate analysis is performed to determine
the appropriate choice of unsupervised algorithm to be used in each step of the
framework, their hyper-parameters, and proper weights are assigned to each
metric in the final equation.
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1
Introduction and Motivation

1.1 Motivation

An intracranial aneurysm (IA) is an atypical ballooning of a cerebral artery

in a specific area due to weakened vessel walls. It is prevalent in about

2-5% of the population (BROWN und BRODERICK (2014); LIU et al. (2022);

VERNOOIJ et al. (2007)), and is the primary cause of non-traumatic sub-

arachnoid hemorrhage (SAH) when it ruptures (XU et al. (2019)). SAH

resulting from aneurysm rupture is a severe neurological condition with

high mortality and morbidity rates. Despite technological advancements

in treatment and imaging, the mortality rate of SAH is between 27 - 50%,

with approximately half of the survivors experiencing permanent neu-

rological impairments (ETMINAN et al. (2019); NIEUWKAMP et al. (2009);

ROKED und REDDY (2020)). As a result, early diagnosis and assessment of

aneurysms are crucial for the treatment and prognosis of patients.

Technological advancements in medical imaging have improved diagno-

sis of IA’s, which has also led to increase in data for IA-related research us-

ing machine learning (ML) techniques (ALWALID et al. (2022); MAUPU et al.

(2022)). Some examples of work being done using ML techniques include

rupture risk prediction (SPITZ et al. (2020)), discriminating feature analy-

sis (TANG et al. (2022)), subgroup selection (RYTTLEFORS et al. (2008)), etc.,

which will be discussed extensively in the following chapters of this work.

While some approaches have used a combination of hemodynamic, mor-

phological, patient-specific features, etc. (AN et al. (2022); DETMER et al.

(2019); TANIOKA et al. (2020) others used just one class of features (AB-

BOUD et al. (2017); DHAR et al. (2008)) or a mixture of both to build ML ap-

proaches to IA. Morphological features provide insights into the structural

characteristics of the aneurysm, hemodynamic features provide informa-

1
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tion about the blood flow dynamics that can affect its stability. A popular

approach that uses patient-specific parameters is the PHASES score model

(BACKES et al. (2015)), it leverages parameters such as population, hyper-

tension, age, size of aneurysm, earlier SAH from another aneurysm, the

site of the aneurysm to determine the rupture risk of an IA.

Subgroup selection approaches entail selecting a group of aneurysms sim-

ilar to an aneurysm of interest (AOI). Presenting physicians with these re-

sults can aid clinical decisions as information from the selected samples

can be leveraged to make decisions on the AOI. This approach can be ex-

tended to develop classification models such as case-based learning. Sub-

group selection using similarity can be very useful to make preliminary

decisions with respect to AOI’s, but it can also be interesting to introduce

diversity into the selections as closely similar instances might be lacking

variance in the selections which can be useful for the medical training sim-

ulations.

Training simulation is an important aspect of surgical medicine, it pro-

vides an avenue to train students and young surgeons with useful expe-

rience before working on patients. It is also beneficial for experienced ex-

perts, to keep them sharp, especially for rare illnesses like IA’s, because

surgeons like every human can become deficient without practice (AGHA

und FOWLER (2015)). Training simulations are an avenue for medical prac-

titioners to engage in intentional practice, which helps in refining their

skills and improving outcomes in real life situations (GORDON (2000)).

There is a lot of research that emphasizes this importance in various use

cases (AGHA und FOWLER (2015); ALLGAIER et al. (2022); SEIL et al. (2022)).

In these training simulations, users may want to specialize their training

to a set of very similar instances, or it may also be necessary to experiment

with instances that have some diversity, which would be useful to practice

how to navigate the nuances surrounding a particular type of case. While

for the former, extracting the most similar instances with respect to a given

AOI will be sufficient, that is not the case for the later. This is the problem

I intend to tackle in this thesis.

Assuming we have a database of 5 aneurysms with 4 numerical features,

given an AOI, we select three most similar IA’s using the sum of absolute

difference between each feature as a similarity measure. Table 1.1 shows

the absolute difference per feature with respect to an AOI. Given the stated
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condition, IA’s 1, 3, and 5 will be selected as they have the lowest sum of

differences, but it can also be interesting to consider IA 4, given that it

is exactly the same in three features out of four, despite having the worst

similarity score. This is the reason this work focuses on introducing the

notion of diversity in the extraction process, I try to cover potential vari-

ances likely to be missed when extracting a subset solely based on similar-

ity. Subsets extracted in this way can also be useful for training simulations

among medical practitioners, where they try to ascertain the differences of

similarities present in a set of aneurysms.

Table 1.1: Absolute Differences between AOI and Database of IA

IA ID Feature 1 Feature 2 Feature 3 Feature 4 Sum of Differences
1 5 2 3 0 10

2 6 2 0 3 11

3 5 0 5 0 10

4 15 0 0 0 15

5 1 4 3 1 9

Introducing diversity into the selection can be modeled as an instance

selection (IS) task. While the conventional IS tries to select the most

representative samples that convey the most information about a larger

database, what I am trying to do is to select instances that will convey the

most information with respect to one sample. After extensive research

in existing literature, there are no publications on IA’s or other areas that

approach the task in this manner. This would be called Reverse Instance

Selection (RIS) for the rest of this work.

1.2 Aim of this thesis

There are existing techniques for IS that have been shown to select sub-

set of instances that sufficiently explain the variance of a larger dataset or

database to a reasonable extent. The aim of this thesis is to leverage the

existing research to develop an extraction technique that introduces diver-

sity to the selection of instances similar to an AOI. The idea is that selecting

subgroups using just a similarity metric can lead to redundancy in the se-

lection, and thus these selections might be lacking diversity, which may
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be important for clinical training simulations. To achieve this task, I have

formulated the following research questions:

RQ1 How do we define an extraction technique for this task?

RQ2 How is representative but diverse defined?

RQ3 What metrics will be used to evaluate the extracted set?

RQ4 How do we distinguish between diverse cases and outliers?

1.3 Structure of this thesis

The thesis outlines are as follows: Chapter 1, as discussed here, is an intro-

duction to the work and the research questions I intend to answer, then

chapter 2 gives the background and context of this work, such as intracra-

nial aneurysms, their treatment procedures, etc., and machine learning

approaches such as instance selection, clustering and outlier detection.

Chapter 3 contains related works, a summary of the current approaches

surrounding machine learning solutions to support IA’s, instance selec-

tion, and the foundations of techniques explored to develop the RIS frame-

work. Chapter 4 contains the concept, methodologies, and experiments

for the proposed RIS framework. Chapter 5 contains the experimental set-

up for evaluation and the evaluation results for this novel approach. In

chapter 6, I discuss and analyze the implications and meanings of the re-

sults in depth, the challenges faced in the course of evaluation and dis-

cussion of the results with respect to the research questions posed here.

Finally, in chapter 7, conclusions are made at the completion of the work,

I explore the limitations of the work and future works are extensively dis-

cussed.



2
Background

2.1 Medical Background on Intracranial Aneurysms

IA’s are abnormal enlargements or bulges in the cerebral artery walls that

may result in the development of a weak spot prone to rupture. The danger

associated with this illness is high since aneurysm rupture can have devas-

tating effects, such as subarachnoid hemorrhage (SAH) and neurological

impairments. Therefore, effective management of cerebral aneurysms de-

pends on early discovery, precise diagnosis, and appropriate therapeutic

approaches. There are several arteries in the brain, any of which could

have an IA. Figure 2.1 is a picture of the circle of Willis and its surrounding

arteries.

IA’s are often asymptomatic until rupture occurs. However, unruptured

aneurysms may present with symptoms related to their mass effect, such

as headaches, visual disturbances, cranial nerve palsies, or seizures. When

an aneurysm ruptures, it leads to SAH, characterized by a sudden se-

vere headache, neck stiffness, altered consciousness, and, in severe cases,

coma (KEEDY (2006); TOTH und CEREJO (2018)) and death with a mortality

rate of 27% - 50% (ROKED und REDDY (2020); STIENEN et al. (2018).

Aneurysms in the intracranial region are thought to affect 2-5% of peo-

ple (BROWN und BRODERICK (2014); LI et al. (2022)). The prevalence rises

with age and is slightly higher in women (FRÉNEAU et al. (2022)). IA’s can

form as a result of a number of risk factors, such as genetic susceptibil-

ity, smoking, hypertension, family history, connective tissue abnormali-

ties, and specific systemic diseases.

The diagnosis and detection of cerebral aneurysms depends heavily on

imaging. Non-invasive techniques that provide detailed vascular imaging

5
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Figure 2.1: The circle of willis and surrounding arteries(FLANAGAN et al. (2015))
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and help identify aneurysms include computed tomography angiography

(CTA) and magnetic resonance angiography (MRA). THAKER et al. (2012)

and GÖLITZ et al. (2014) show that digital subtraction angiography (DSA)

is still the best method for accurately confirming and assessing aneurysm

anatomy. The accuracy of diagnosis has increased thanks to developments

in imaging technology including 3D rotational angiography (3DRA) and

high-resolution imaging.

The management of IA aims to prevent rupture and subsequent hemor-

rhage. Treatment options include both surgical and endovascular tech-

niques. Neurosurgical surgical treatments (NST), such as clipping and

bypass procedures, involve accessing the aneurysm directly and securing

it with a clip or graft. Endovascular treatment (EVT) approaches, such as

coiling and flow diverters, involve navigating catheters and deploying de-

vices to promote aneurysm occlusion. The choice of treatment depends

on various factors, including aneurysm characteristics, location, patient

age, and comorbidities. Figure 2.2 shows a pictorial representation of

these approaches. Endovascular coiling is a minimally invasive proce-

dure where platinum coils are inserted into an intracranial aneurysm via a

catheter, promoting blood clotting and reducing the risk of rupture while

neurosurgical clipping is a traditional surgical procedure involving the

placement of a metal clip on the neck of an intracranial aneurysm to block

blood flow and prevent rupture (BELAVADI et al. (2021), LINDGREN et al.

(2018)).

Although JUVELA et al. (2013) points out that only 1-2% of unruptured IA’s

(UIA) will rupture, the importance of rupture risk assessment and analysis

of IA’s can not be overemphasised because it is important for treatment

decision making. Medical practitioners constantly have to weigh the ad-

vantages and risks between treating an aneurysm and the potential rup-

ture for each case, this is because even though its important and life sav-

ing, treatment of IA’s can also present significant complications. Popular

IA treatment procedures are EVT and NST, with each having their unique

potential complications. Complications for EVT can be categorized into

three: intraprocedural aneurysm rupture (IAR), thromboembolism (TE),

and post-procedural early rebleeding (PER) (AHN et al. (2017); IHN et al.

(2018)). Most poplar types of complications are the IAR’s occurring in an

estimated 1% to 5% of cases (BRISMAN et al. (2005); PIEROT et al. (2008))
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Figure 2.2: Endovascular and surgical treatments for IA. (A) Endovascular coiling
of the aneurysm sac. (B) Surgical clipping of the aneurysm neck. (C) Endovascular
treatment using coils and a stent. (D) Endovascular treatment using flow diverter.
(PERRONE et al. (2015))

and TE reportedly within the range of 2% to 15% (IM et al. (2009); OISHI

et al. (2012); PARK et al. (2005)). PER usually occurs in less than 1% of cases

(AHN et al. (2017)).

AHN et al. (2017) analysed a database of 436 cases of saccular IA’s between

2007 - 2015 treated with endovascular coiling and showed complications

occurred in 61 cases (14%). MCLAUGHLIN und BOJANOWSKI (2004), con-

ducted a on 143 patients treated using neurosurgical clipping over a 3 year

period and found 29 patients (20.3%) suffered complications. Complica-

tions for these studies were defined using the Glasgow outcome scale (JEN-

NETT et al. (1981)) scores.

Morphological features of aneurysms refer to the structural characteris-

tics and appearance of the aneurysm. These features provide information

about the shape, size, and location of the aneurysm. Some key morpho-

logical features include; orthogonal height, maximum diameter, aspect ra-

tio, undulation index, etc. Hemodynamic features of aneurysms pertain

to the blood flow patterns and forces acting within the aneurysm. Under-

standing the hemodynamics of an aneurysm is essential for evaluating its

rupture risk. Some important hemodynamic features include; wall shear

stress (WSS), flow velocity, pressure.
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The evaluation of both morphological and hemodynamic features is cru-

cial for assessing the risk of aneurysm rupture. Combining these features

enables a more comprehensive understanding of aneurysm behavior and

aids in clinical decision-making.

The PHASES score model (BACKES et al. (2015)) which is currently used

by most medical facilities to determine the rupture risk of IA uses a

few patient-specific parameters (population, hypertension, age, size of

aneurysm, earlier SAH from another aneurysm, site of aneurysm). This

does not leverage the rich vein of morphological and hemodynamic pa-

rameters which can improve the process of treatment decision making

and estimating potential for aneurysm rupture (DETMER et al. (2019);

DHAR et al. (2008); NIEMANN et al. (2018); XIANG et al. (2011)).

2.2 Background on Machine Learning Techniques

A branch of artificial intelligence known as "machine learning" focuses

on creating algorithms and models that let computers learn from data

and make predictions or judgments without having to be explicitly pro-

grammed. To enable systems to automatically learn from experience and

improve, it requires the study of statistical techniques and computer mod-

els.

Instead of being explicitly written, machine learning algorithms under-

stand patterns and correlations in data by examining samples. In order to

find patterns and create a model, the algorithm uses training data, which

comprises of input features and their corresponding desired outputs or

labels (if available) (MITCHELL et al. (2007)).

Machine learning can be categorized into different types. In supervised

learning, the algorithm learns from labeled data, where the desired out-

puts are provided (BURKART und HUBER (2021)). Unsupervised learning

involves discovering patterns and structures in unlabeled data without ex-

plicit outputs (HAHNE et al. (2008)). Semi-supervised learning is a com-

bination of supervised and unsupervised learning, where the algorithm

learns from a small amount of labeled data along with a large amount of

unlabeled data (VAN ENGELEN und HOOS (2020)). Reinforcement learning
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focuses on an agent learning to interact with an environment to maximize

a reward signal (KAELBLING et al. (1996)).

To learn the underlying patterns and correlations, machine learning mod-

els are trained using training data. The algorithm modifies its internal pa-

rameters based on optimization strategies during the training process to

reduce errors or increase performance. Then test data are used to evaluate

the trained models’ generalization and prediction skills. Creating models

that are good at generalizing to new data is one of the main objectives of

machine learning (TAN et al. (2018)).

The books MITCHELL et al. (2007); TAN et al. (2018) covers several machine

learning concepts and approaches in depth. For the rest of this chapter

we give a brief overview of machine learning approaches and algorithms

explored for this research.

2.2.1 Clustering

Clustering is a fundamental technique in unsupervised machine learning

used to group similar data points together based on their inherent pat-

terns, similarities, or proximity. It aims to identify meaningful structures

within unlabeled data without any prior knowledge or guidance (MADHU-

LATHA (2012)).

Clustering finds applications in various domains, including data analysis

(DUBES und JAIN (1980)), customer segmentation (WU und LIN (2005)),

image processing (DEHARIYA et al. (2010)), anomaly detection (PU et al.

(2020)), and recommendation systems (AHUJA et al. (2019)). It enables ex-

ploratory data analysis, pattern discovery, and grouping similar instances

together without any prior knowledge about the data.

It’s critical to remember that clustering is an exploratory process, and the

interpretation of the clusters requires human judgment and domain ex-

pertise in order to give the results significance.

K-Means

K-means clustering is a popular unsupervised machine learning algo-

rithm used for partitioning data points into distinct groups or clusters.

It is widely employed in various fields, including data analysis, pattern
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recognition, image segmentation, and customer segmentation. The algo-

rithm aims to minimize the intra-cluster variance while maximizing the

inter-cluster variance, resulting in well-separated clusters (JIN und HAN

(2010); MACQUEEN (1967)).

K-means clustering is sensitive to the initial selection of centroids, as it

can converge to suboptimal solutions. To mitigate this, the algorithm is

often run multiple times with different initializations, and the clustering

solution with the lowest overall within-cluster variance is selected.

K-means clustering has several advantages, including simplicity, effi-

ciency, and scalability, making it suitable for large datasets. However,

it also has some limitations. The algorithm assumes that the clusters are

spherical and of similar size, which may not hold true for all datasets. It is

also sensitive to outliers, and the determination of the optimal number of

clusters (k) can be challenging.

Overall, K-means clustering is a powerful technique for discovering inher-

ent patterns and structures in unlabeled data, providing insights and en-

abling further analysis in various domains.

DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is

a popular density-based clustering algorithm used to group data points

based on their density and proximity. Unlike K-means, DBSCAN does not

require the number of clusters to be predefined and can discover clusters

of arbitrary shapes. It is particularly effective when dealing with datasets

containing clusters of different densities or with noise/outliers (SCHUBERT

et al. (2017)). The main parameters of DBSCAN are: epsilon (ε), repre-

senting the maximum distance between two points to consider them as

neighbors, and minPts, the minimum number of points required to form

a dense region.

DBSCAN provides a number of advantages. It can find clusters of all forms

and sizes and is not affected by the original point setup. It can success-

fully find outliers in datasets with varied densities. However, choosing op-

timal parameter values (ε and mi nP t s) can be difficult, and because to the

curse of dimensionality, the method may struggle with high-dimensional

datasets.
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To summarize, DBSCAN is a robust and adaptable clustering algorithm ca-

pable of detecting clusters based on density and proximity. It is well-suited

for datasets with different densities and complicated structures, making it

a useful tool for exploratory data analysis, anomaly detection, and pattern

discovery in different domains.

OPTICS

OPTICS (Ordering Points To Identify Clustering Structure) is a density-

based clustering technique that builds on DBSCAN ideas. It gives a hier-

archical representation of the data’s clustering structure and more flexi-

bility in recognizing clusters of varied densities. OPTICS solves some of

DBSCAN’s drawbacks, such as the requirement to establish a specified

distance threshold (ANKERST et al. (1999)).

OPTICS has a number of benefits over DBSCAN. It can handle datasets

with varied densities of clusters and does not require a preset distance

threshold to be established. The clustering structure’s hierarchical repre-

sentation provides for a more thorough comprehension of the data. How-

ever, OPTICS may be computationally costly, especially for big datasets,

and parameter selection (such as mi nP t s) is still important for achieving

the best results.

OPTICS is a density-based clustering method that gives a hierarchical rep-

resentation of clusters based on density connection. It allows for greater

flexibility in detecting clusters of varied densities and allows for more in-

depth investigation of the clustering structure. OPTICS is especially bene-

ficial in applications where cluster density changes.

2.2.2 Outlier Detection

Outlier detection, also known as anomaly detection, is a technique used to

identify data points or instances that deviate significantly from the norm

or the majority of the data (HAWKINS (1980)). Outliers are observations

that exhibit unusual behavior, differ significantly from the expected pat-

terns, or represent rare events in the dataset.

Outlier detection finds applications in various fields, including fraud de-

tection, network intrusion detection, sensor data analysis, health mon-
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itoring, and anomaly-based intrusion detection systems. By identifying

unusual or anomalous instances, outlier detection helps in identifying po-

tential problems, anomalies, or outliers that require further investigation

or intervention.

Outlier detection is a challenging task as the definition of outliers and the

appropriate detection method may vary depending on the context, do-

main, and dataset. Careful consideration of the data characteristics and

domain knowledge is essential to select the most suitable technique for

outlier detection.

DBSCAN Based Approach

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is

primarily a clustering algorithm but can also be used for outlier detection.

DBSCAN detects outliers as data points that do not belong to any cluster

or form sparse regions in the dataset. DBSCAN identifies outliers based

on the concept of density. Density refers to the closeness of data-points

in a specific area, this can vary from area to area in a dataset. DBSCAN

classifies data points as core points, border points, or outliers. Core points

are densely surrounded by other points, while border points are on the

outskirts of dense regions. Outliers are points that do not meet the den-

sity requirements to be classified as core or border points (SCHUBERT et al.

(2017)).

DBSCAN’s ability to identify outliers stems from its density-based nature.

It can effectively detect outliers that form sparse regions or do not fit well

into any cluster. However, it is important to note that DBSCAN’s primary

focus is clustering, and its outlier detection capabilities may not be as ro-

bust or specialized as dedicated outlier detection algorithms.

When using DBSCAN for outlier detection, it is crucial to interpret the re-

sults carefully, considering the specific characteristics of the dataset and

the domain knowledge. DBSCAN can be a valuable tool for identifying out-

liers in datasets with varying densities and complex structures, providing

insights into anomalous or sparse data regions.
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Autoencoders

Autoencoders are neural network models that can be utilized for outlier

detection. Originally designed for dimensionality reduction and data re-

construction tasks, autoencoders can also be leveraged to identify anoma-

lies or outliers in datasets (GOODFELLOW et al. (2016)).

Autoencoders offer a flexible and data-driven approach to outlier detec-

tion. They can capture complex patterns and non-linear relationships in

the data, enabling the detection of subtle anomalies. However, it’s impor-

tant to note that autoencoders are sensitive to the choice of architecture,

hyperparameters, and the quality and representativeness of the training

data.

Autoencoders are just one approach among various outlier detection tech-

niques. Their effectiveness depends on the specific characteristics of the

dataset and the ability of the model to capture the normal patterns while

discerning outliers. Careful training, validation, and interpretation of re-

sults are crucial for successful outlier detection using autoencoders.

Isolation Forest

Isolation Forest is an ensemble-based outlier detection algorithm that

uses an innovative approach based on random forests (LIU et al. (2012)).

It is designed to efficiently identify anomalies or outliers in datasets, par-

ticularly in high-dimensional spaces.

Isolation Forest has several advantages, it can handle high-dimensional

data efficiently, as it randomly selects features for splitting, thereby avoid-

ing the curse of dimensionality. It does not require any assumptions about

the data distribution and is less sensitive to the presence of irrelevant at-

tributes. The algorithm can also provide an anomaly score, which repre-

sents the normalized average path length. This score can be used to rank

instances according to their abnormality level.

Isolation Forest is a popular choice for outlier detection due to its ability

to handle high-dimensional data, its efficiency, and its ability to capture

anomalies by isolating them in the trees. However, it is important to note

that like any algorithm, Isolation Forest has its limitations and may not be

optimal for all types of datasets or outlier patterns. Appropriate parame-
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ter tuning and careful interpretation of results are necessary for effective

outlier detection using Isolation Forest.

Local Outlier Factor

The Local Outlier Factor (LOF) is an unsupervised outlier detection algo-

rithm that measures the local density deviation of data points compared to

their neighbors. LOF identifies anomalies by considering the local density

of instances, allowing for the detection of outliers in datasets with varying

densities (BREUNIG et al. (2000)).

LOF is effective in identifying outliers in datasets with varying densities

and complex structures. It is capable of capturing local anomalies that

may be missed by global outlier detection methods. However, LOF re-

quires setting appropriate parameters, such as the number of neighbors

(k), and is sensitive to the choice of distance metric.

LOF is a valuable tool in outlier detection, particularly in scenarios where

the density of normal instances varies or when local anomalous patterns

are of interest. Careful consideration of the dataset characteristics and pa-

rameter tuning is essential for successful outlier detection using LOF.

2.2.3 Instance Selection

IS is a data preprocessing technique involving the selection of a subset

of instances from a given dataset while preserving data quality and rep-

resentativeness. IS aims to reduce dataset size by removing redundant,

irrelevant, or noisy instances, potentially enhancing efficiency and effec-

tiveness in subsequent data analysis tasks (GARCÍA et al. (2015)). IS can

be performed using various strategies, including optimisation of objective

functions(MA et al. (2017)), clustering-based selection(LIN et al. (2017), ge-

netic algorithms(TSAI et al. (2013) and ensemble-based selection(PAN et al.

(2005)). The choice of strategy depends on the characteristics of the data,

the analysis goals, and the available resources.

The effectiveness of an IS task can be evaluated by comparing the results

of the analysis using the full dataset versus the selected subset (HUANG

et al. (2021); LIN et al. (2017)). Evaluation metrics such as accuracy, preci-

sion, recall, or computational efficiency can be used to assess the impact
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of instance selection on the analysis task. Instance selection involves a

trade-off between data size reduction and information loss. Aggressive IS

can lead to significant reduction in dataset size but may result in loss of

valuable information. It is important to strike a balance between reducing

the dataset size and preserving the integrity and representativeness of the

data.

IS is a useful technique in scenarios where data size, computational re-

sources, or processing time are limiting factors. It reduces duplication,

noise, and outliers while focusing on a representative selection of cases.

However, careful thought and review are necessary to guarantee that the

selected instances sufficiently represent dataset features while maintain-

ing the acceptable data quality for the task at hand.



3
Related Work

Reverse instance selection (RIS) is a novel approach, after thorough re-

search, there is no publication that directly explores solutions to problems

in any domain using this approach. However, this is similar to conven-

tional IS. Intuitively, criteria that determine a good IS should also hold for

RIS. As with IS, we do not want to extract instances that are outliers, re-

dundant, or not representative of the given instance, so for the rest of the

section, I discuss related work that influenced my approach to develop the

RIS extraction technique applied to a dataset of IA instances.

For the section on aneurysms, I discuss some of the relevant applica-

tions of machine learning to IA related tasks, it covers rupture risk pre-

diction, subgroup analysis, and discriminating feature analysis using

patient-specific, morphological and hemodynamic features. I also briefly

discuss aneurysm training simulations; this section talks about their ad-

vantages and current state-of-the art approaches to training simulations

for IA’s. The section on instance selection discusses some IS extraction

techniques, metrics that were developed and used to judge how repre-

sentative selected instances are with respect to a larger database, and the

changes in classification performance of some IS approaches. These ex-

isting researches in IS guided the RIS approach discussed in subsequent

chapters of this work, i.e. the novel RIS approach introduced in this work

is an adaptation of IS to suit our task.

3.1 Aneurysms

Features of IA’s can be broadly classified into three categories; Patient-

specific features (examples are age, hypertension, aneurysm location),

17
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Morphological features (examples are aneurysm area, orthogonal height,

aspect ratio) and Hemodynamic features (examples are wall shear stress,

oscillatory shear index). Some of the most popular risk factors associated

with rupture of IA have been studied extensively, these include hyper-

tension, smoking, a history of SAH, presence of multiple aneurysms, the

location and the size of the aneurysm (JUVELA et al. (2013), SONOBE et al.

(2010), WIEBERS (2003), MORITA et al. (2005), WERMER et al. (2007), INVES-

TIGATORS (2012), BOULOUIS et al. (2017)).

Significant scientific efforts have gone into IA related tasks, ranging from

rupture risk prediction (WEIR et al. (2002), AN et al. (2022)), identifying dis-

criminating features (XIANG et al. (2011)), subgroup selection (WANG et al.

(2021), NAGGARA et al. (2012), ZHANG et al. (2022)) etc. These approaches

has been applied to both image and tabular datasets using several combi-

nations of features for training or building the ML model, depending on

the type of learning approach to be employed.

WEIR et al. (2002) examined the risk of rupture in intracranial aneurysms

based on size, location, and patient age. A retrospective database of 945

aneurysm patients treated between 1967 and 1987 was analyzed. 86% of

the patients had ruptured aneurysms. Ruptured aneurysms were mostly

smaller than or equal to 10 mm, located on the anterior cerebral artery or

anterior communicating artery, and less commonly on the middle cere-

bral artery. The average size of ruptured aneurysms (10.8 mm) was signif-

icantly larger than unruptured ones (7.8 mm). Patient age did not show

a significant impact on aneurysm size although they may have significant

impact on rupture risk. Symptomatic unruptured aneurysms tended to be

larger than incidental unruptured aneurysms. The study concluded that

aneurysm location, patient age, and size can influence the likelihood of

rupture.

To investigate discriminating parameters for IA’s, XIANG et al. (2011) and

TANG et al. (2022) approached the task of identifying important morpho-

logical and hemodynamic parameters that are associated with ruptured

IA’s. These experiments were performed by training multivariate regres-

sions on the parameters and evaluating them using the area under the

curves (AUCs) of their results using receiver operating characteristics

(ROCs) within a given statistical significance. The former found the size

ratio to be an important morphological parameter and the important
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hemodynamic parameters to be wall shear stress (WSS) and oscillatory

shear index (OSI), while the later found bleb formation, neck width and

size ratio to be important parameters.

AN et al. (2022) introduce a novel semiautomatic prediction model for esti-

mating the risk of aneurysm rupture. The model utilizes 110 datasets with

128 annotated aneurysms provided by the cerebral aneurysm detection

and analysis (CADA) challenge. It incorporates multidimensional feature

fusion, feature selection, and classification methods. Four types of fea-

tures (morphological, radiomics, clinical, and deep learning) are extracted

and combined into a feature set. Different deep learning features are ana-

lyzed using a feature extractor. Five classification models are constructed,

with the k-nearest neighbor classifier performing the best, achieving an

F1-score of 0.789 for aneurysm rupture risk estimation. The study demon-

strates that leveraging multidimensional feature fusion enhances the accu-

racy of aneurysm rupture risk assessment, outperforming other methods

based on CADA challenge 2020.

SPITZ et al. (2020) developed a tool for case-based reasoning support of

rupture risk prediction using morphological parameters. This tool holds a

reference database and outputs the most similar aneurysms with respect

to an aneurysm of interest. Similarity was calculated using Euclidean dis-

tances, where smaller distances represent the most similar aneurysms,

the rupture status was summarized using three K-nearest neighbor (KNN)

classifiers with different constraints. Evaluation of this work was done via

a questionnaire with six highly experienced physicians, and they evalu-

ated this tool positively. This tool was extended in SPITZ et al. (2021) by

removing the restriction to just morphological parameters and allowing

classification to be done for arbitrary parameters.

ABBOUD et al. (2017) also showed that the morphology of aneurysms

has an independent predictive value for aneurysm rupture. They con-

ducted experiments on 420 patients to compare ruptured with unruptured

aneurysm by classifying aneurysm morphology into single-sac aneurysms

with smooth margin, single-sac aneurysm with irregular margin, aneurysms

with a daughter sac and multiboluted aneurysms. The analysis was done

using logistic regression, PHASES score (BACKES et al. (2015)) features,

and Fisher’s exact test (UPTON (1992)) which is used to study correlation

between morphological features.
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One of the most popular study on subgroup analysis of IA is by RYT-

TLEFORS et al. (2008), they proposed a course of treatment for some

aneurysms by conducting a subgroup analysis on 278 elderly patients

aged 65 years and older, they proposed that EVT should be the optimal

choice for ruptured internal carotid and posterior communicating artery

aneurysms while, NST is beneficial for patients with ruptured middle cere-

bral artery aneurysms.

NAGGARA et al. (2011) emphasize the problem of subgroup analysis on rup-

tured IA’s, pointing out spurious effects and how detrimental they are to

prescribing courses of treatment, and explicitly stating that the work of

RYTTLEFORS et al. (2008) should not be used for clinical decision-making

because it doesn’t meet some prudent criteria such as clinical plausibility

and replication of results in other studies. They advised that results from

subgroup analysis should be used as a hypothesis for another trial.

3.2 Aneurysm Training Simulations

IA’s are a complicated, potentially fatal disease that requires precise sur-

gical intervention. Neurosurgeons must get extensive training due to the

delicate nature of these procedures, and surgical simulators have proven

to be a useful tool in this regard (AGHA und FOWLER (2015); SEIL et al.

(2022)). Generally, surgical simulators offer a learning environment in-

dependent of the hazards associated with patient care, allowing students

and established practitioners to make mistakes in judgment and execu-

tion without having devastating effects (ISSENBERG und SCALESE (2008);

KOCKRO et al. (2007)). By emphasizing significant research and develop-

ments in the area, this section seeks to give an overview of the state of the

art in surgical training simulators for IA’s.

Personalized simulations based on patient-specific anatomical data have

been developed. Through the use of these simulations, surgeons may

practice procedures on digital models that closely mimic the anatomy

of actual patients, improving the precision and customization of surgical

planning and execution. The case of an 8-year-old kid with a fusiform cere-

bral aneurysm with recorded progressive growth is discussed by MCGUIRE

et al. (2021). The boy was successfully treated after the authors practiced
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the installation of a flow diverter using a replicator system model made

specifically for him by 3D printing.

For neurovascular surgical simulations, RYAN et al. (2016) created a novel

manufacturing process. The procedure uses patient-derived anatomic

data and three-dimensional (3D) printing to create a practical, dimen-

sionally correct model for aneurysm clipping. The model was created

with reproducibility and flexibility for new patient geometries in mind.

A patient-derived, modular medical simulator was created so that medi-

cal students could practice aneurysmal clipping. A geometrically precise

model of the human cranium and vascular tree with nine patient-derived

aneurysms were created using a variety of 3D printing techniques. To

create a patient-derived brain model, 3D printing and elastomeric cast-

ing were used. A qualitative follow-up research offers the possibility of

improving present educational programs, and evaluations back up the

effectiveness of the dummy.

The use of virtual reality (VR) simulators for training in IA surgery is grow-

ing. They provide experience for various surgical techniques and realistic

three-dimensional environments with haptic feedback. According to the

studies (ALLGAIER et al. (2022); KOCKRO et al. (2007), VR-based simulations

enhance trainee performance and confidence in actual surgical situations.

ALLGAIER et al. (2022) proposed an immersive VR training simulation sys-

tem where the aneurysm neck can be treated with a certain microsurgical

clip. The affected area is seen to determine the clip position before the clip

is closed and the vessels are deformed. Their qualitative assessment of two

neurosurgeons with varying degrees of experience reveal advantages in-

cluding heightened motivation, presence, and the opportunity to test out

various tactics. Nevertheless, several surgical procedures can be modified

to boost realism and learning impact, and interactions can be further en-

hanced.The proposed training method gains from trial-and-error learning

in an enjoyable setting, resulting in an enhanced training experience.

3.3 Instance Extraction

REINARTZ (2002) described a unifying approach to instance selection

which consists of the following steps: sampling, clustering and proto-
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typing. A set of examples is drawn from the database using a sampling

technique in the sampling phase, then these are clustered to group them

into smaller subsets, and the prototyping phase selects the final represen-

tatives from the clusters. GARCÍA et al. (2015) divided instance selection

strategies into two, namely: prototype selection (PS) and training set selec-

tion (TSS) (Figures 3.1 and 3.2). PS is mainly used for instance based learn-

ers, where instances are selected from the training set which maximizes

the classification accuracy of the test set, while TSS strategy is simply se-

lecting instances which are used to train a machine learning algorithm in

order to obtain a model that can be used on a test set.

IS approaches are very useful for ML training with medical datasets be-

cause of the benefits they bring, these benefits include reducing the size

of training set by selecting the most useful examples for training, this con-

sequently leads to less memory usage and less time required for model-

ing. There has been extensive research on IS for medical datasets. HUANG

et al. (2021) worked on improving the performance on various instance

selection algorithms like the Decremental Reduction Optimization Proce-

dure 3rd version (DROP3) and Instance Based framework version 3 (IB3)

by introducing a divide-and-conquer based IS framework (DCIS) where

the dataset is divided into subsets and a specific IS algorithm is applied on

a combination of the subsets and the selections are then combined at the

end. This methodology was evaluated using various small and large scale

medical datasets from the UCI Machine Learning Repository and the re-

sults showed that using DCIS gave better classification performance than

using the individual IS algorithm alone. HUANG et al. (2018) proposed

an approach for handling missing value imputation that uses a combina-

tion of IS algorithms (DROP3, GA, IB3) and conventional imputation al-

gorithms (K-nearest neighbor imputation (KNNI), Multi-layer perceptron

(MLP), Support Vector Machines (SVM)), because the estimations of con-

ventional imputation algorithms can be influenced by outliers. The re-

sults showed that the IS approach gave positive results of numerical and

mixed medical datasets, but there was no positive impact on the categori-

cal counterparts. The authors also used data from the UCI Machine Learn-

ing Repository.

Clustering based approaches are one of the most popular methods to in-

stance selection, many authors have applied this to the instance selection

https://archive.ics.uci.edu/
https://archive.ics.uci.edu/
https://archive.ics.uci.edu/
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Figure 3.1: Prototype selection strategy. (GARCÍA et al. (2015))

Figure 3.2: Training set selection strategy. (GARCÍA et al. (2015))
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problem, using various design configurations to suit different tasks. LIN

et al. (2017) proposed a a clustering based selection approach for the class

imbalance problem. After splitting the data into the the train and valida-

tion sets, the authors clustered the majority class of training set using the

number of minority class entries as the number of clusters, instances are

then selected from these clusters using the centroids or entries closest to

the centroids. This yields a balanced dataset which is used for training a

model. CZARNOWSKI und JĘDRZEJOWICZ (2018) also used a clustering ap-

proach for imbalanced data classification, their approach was augmented

with a population learning method that was used for the prototype selec-

tion phase.

IS play a primary role in machine learning on medical datasets as they

most times have problems like class-imbalance and lack of representa-

tive data. KIM et al. (2017) achieved improvement in recall for the mi-

nority class after pre-processing with instances selected using a clustering

based approach on medical datasets. The datasets are the labeled i2b2/VA

2010 shared task corpus, and the unlabeled MIMIC II clinical database.

Figure 3.3 shows the performance of the instances selected with their La-

beled Data Counterparts (LDC) Selection algorithm compared to super-

vised learners.

MALHAT et al. (2020) proposed two class label based approaches to in-

stance selection: GDIS (Global density-based Instance Selection) and

EGDIS (Enhanced Global Density-based Instance Selection) which uses

K-Nearest Neighbors and a relevance or irrelevance function with respect

to class labels to output a reduced set of the original dataset.

PAN et al. (2005) extracted representative samples using two requirements

(high coverage and low redundancy), the objective function consisted of

an equally weighted combination of mutual information and relative en-

tropy. The former was used to evaluate the coverage, while the later was

used to evaluate redundancy. They employed a greedy algorithm that se-

lects new samples which optimizes this objective function at each step.

This algorithm was simplified to reduce computational complexity for

large datasets. They evaluated their work by comparing the performance

of their algorithm on the Mushroom and 20 News Group datasets using

MaxCover (HOCHBAUM und PATHRIA (1998)) and a random selection as

baselines, the coverage and clustering accuracy metrics that they designed

https://www.i2b2.org/NLP/Relations/
https://www.i2b2.org/NLP/Relations/
https://archive.physionet.org/mimic2/
https://archive.ics.uci.edu/dataset/73/mushroom
http://qwone.com/~jason/20Newsgroups/
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Figure 3.3: Experiment results from KIM et al. (2017). In the rightmost column,
the Recall, Precision, and F1 outcomes of LDC instance selection are displayed,
together with the total counts of true positives (TP) and the number and per-
centage of true positive increases (in comparison to supervised learning). In
the Recall, Precision, and F1 columns, the numbers in parentheses reflect the
difference between the supervised classifier and the LDC technique. Asterisks
(*) indicate results that are significantly different from supervised learning at the
95% confidence level.

were used as performance metrics. Figure 3.4 shows the results for one of

the experiments conducted by the authors.

ZHUANG et al. (2008) also use a greedy algorithm that optimizes an objec-

tive function which comprises measures of representativeness, anomaly

and diversity. Their approach employs a clustering based measure where

similarities or dissimilarities are computed with respect to cluster cen-

troids. This approach was applied to extract the most representative selec-

tion of N posts that sufficiently profile a blog based on all topics covered

by the all entries posted on the blog. Distance measures were used to

account for representativeness, diversity and anomaly.

MA et al. (2017) developed a sequence of heuristics that culminated in the

development of F astCovc+s−Sel ect method for extracting samples which

tries to optimize the objective function developed by MA und WEI (2012).

This function combines a pairwise similarity Covc−Sel ect that checks for

similarity and an entropy Covs−Sel ect part which handles structure. The

same authors extended their work (CHEN et al. (2018)) where they ex-

panded on various metrics which were grouped into the closeness aspect

and the duplication aspect. Metrics in the former are content coverage,
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Figure 3.4: Experiment results from PAN et al. (2005). (a) shows the scores of
the coverage metric while (b) shows the score for clustering accuracy metric. R
represents the number of instances in the extracted set
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structure coverage and consistency, while those in the later are redun-

dancy and compactness. Choice of distance function for the metrics that

require the calculation of distances can be changed based on needs and

domain.

Some authors such as TSAI et al. (2013) and CANO et al. (2003) have ex-

plored the use of genetic algorithms for instance selection, modeling

the instance selection task as a search task. They used concepts such as

cross-over, mutation, representation and a fitness function that combines

classification rate and reduction rate of the selected subset with respect

to the complete dataset. LEE et al. (2021) proposed a method for han-

dling redundancy in representative set selection comprising of two major

components: E X AC T SU BST R and N E ARDU P . E X AC T SU BST R com-

pares two documents and handles duplication by removing exact long

substrings from one document if they exist in both documents, while

N E ARDU P handles duplication by checking for approximate matches.

Approximate matches are estimated using the Jaccard coefficient between

the two sub-texts. Although this method has great advantages, it employs

string matching techniques that are suitable for language models.

Although some of these approaches are useful, they have some limitations

to this task. While popular instance selection techniques entail selecting

subset with respect to a larger dataset, I have to select a subset with respect

to an example. Measures which are centroid-based, density-based, etc.,

are not sufficient for this task. Also, some of the approaches are in the

Natural Language Processing domain, where ideas like string matching are

not useful for this task.

Majority of IS (AJMAL et al. (2023), LIN et al. (2015), WILSON und MARTINEZ

(2000), SONG et al. (2017), OLVERA-LÓPEZ et al. (2010), KIM (2006)) related

works are evaluated either by comparing the classification accuracy of the

generated subsets with that of the entire dataset, or comparing how the

presented method performance with respect to other existing measures

of extraction, but these approaches are not suitable for this task because

I am finding subsets that are similar to one instance. Hence our work will

be evaluated by using randomly selected samples from the database and

most similar instance to a given instance as baseline.





4
Methods

4.1 Problem Definition

The task of selecting representative but diverse samples of aneurysms

from a database of aneurysms can be approached as an IS task. The idea

is that while IS aims to select a subset of examples that sufficiently de-

scribes a larger database, our task aims to select a subset from a larger

database that describes a single example sufficiently.

For this task, the selected representative subset should not be the most

similar because the diversity of selections is pivotal. The variance in the se-

lected subset can be useful for medical training simulation as it provides

the medical practitioner or trainee with potential differing nuances with

respect to an AOI, hence we are not interested in a subset most similar to

the given example, but in a subset that offers variance in-line with similar-

ity.

The task can be formalized as such: given an AOI (A) and a database of

aneurysms (D), extract a subset (S) from D such that the entries in S are

both representative and diverse with respect to A.

4.2 Concept

Figure. 4.1 shows a general overview of the RIS framework. We develop

an extraction methodology to generate a subset of similar and diverse in-

stances from a larger dataset with respect to an AOI, this subset is then

evaluated using metrics, which would be defined in subsequent sections.

While instance selection is the process of selecting smaller samples with

respect to a database with more samples, our task tries to select more sam-

29
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Figure 4.1: Low-level overview of the proposed RIS framework

ples with respect to one sample, hence we call this Reverse Instance Selec-

tion (RIS)(See Table 4.1).

Table 4.1: IS Vs RIS

IS RIS
Given Dataset Dataset

Focusing Dataset An Instance

Extract Subset of Dataset Subset of Dataset

Logic From More to Less From Less to More

The following software and libraries shown in table 4.2 was used for anal-

ysis, design, experimentation and evaluation of methods and techniques

used to build this framework.

4.3 Datasets

Main Dataset: The main dataset used in this study comprise 76 IA’s from

54 patients. This dataset was curated from three medical facilities in Ger-

many. Table 4.3 shows the cooperating medical facilities and a summary

of the IA’s amassed from them. This dataset was presented to me in an

excel .xl sx format. I also had access to the 3D segmentation of every IA

instance in the .xl sx document.
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Table 4.2: Software used for Development and Experiment

Software Version Use Case
Python 3.10.12 Programming Language

Pandas 1.5.3 Data Wrangling and Analysis

Numpy 1.23.5 Data Wrangling

Sci-kit Learn 1.2.2 ML Algorithms

Scipy 1.11.2 Analysis and Experimentation

Matplotlib 3.7.1 Visualisation

Seaborn 0.12.2 Visualisation

Sdv 0.17.2 Synthetic Data Generation

Prince 0.6.2 Dimensionality Reduction

Tensorflow 2.13.0 ML Algorithm

Xgboost 1.7.6 ML Algorithm

Table 4.3: Co-operating Medical Facilities for Main Dataset

Medical centre Number of patients Number of IA’s
University Hospital Magdeburg 18 30

Kiel 25 25

Hannover 11 21

These IA’s were diagnosed using several imaging modalities, such as digi-

tal substration angiography (DSA), 3D rotational angiography (3DRA) and

magnetic resonance angiography (MRA) (Figure 4.2 shows an example of

multiple IA’s from one patient). Morphological features were extracted

from these images using techniques stated in SAALFELD et al. (2018), while

hemodynamic features were extracted using techniques described in CE-

BRAL et al. (2011). Table 4.4 shows the feature type and the amount present

in the dataset after the extraction of morphological and hemodynamic fea-

tures from the images.

Table 4.4: IA feature type and the number present in dataset

Feature Type Number of Type
Patient-specific 7

Morphological 23

Hemodynamic 7

Sum 37

This dataset will be used for training and evaluating the model.
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Figure 4.2: Image of multiple aneurysms from a patient

Supplementary Dataset: The supplementary dataset is from an IA database

contained 406 cases (178 females, 69 men, and 159 unclassified) ranging

in age from 17 to 93. The data was collected over a 5 year period with

collaborating clinics. Each patient was initially described by 106 qualities,

the majority of which were numerical and categorical. This database was

collected and cleaned in a previous research. After the previous cleaning,

the final supplementary dataset used in this work is a tabular dataset of

aneurysms containing data for 351 aneurysms and 12 features, 4 of the

features are categorical (Rupture Status, Multiple Aneurysm, Aneurysm

Location, Side), while 8 were numeric (Width, Neck, Parent Vessel, Max-

imum Height, Size Ratio, Vessel Angle, Inclination Angle, Inflow Angle).

This data set is in an excel .xl sx format.

This dataset will be used for further evaluation of the model.

4.3.1 Data Cleaning and Pre-processing

Main Dataset

Necessary data cleaning and pre-processing were done because the dataset

contained some common problems such as missing values, typographical

errors, and regular expressions. The cleaning and pre-processing tech-

niques employed are briefly discussed subsequently.
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Data Correction: Firstly, I corrected some obvious typographical errors in

the data and also removed meaningless regular expressions which were a

product of data transformations. Entries that were only senseless expres-

sions were also replaced with NaN.

Missing Value Imputation or Removal: While it was adequate to fill some

missing features or aneurysms intuitively from analysis, others had to be

removed either because there was no intuitive way to impute them or over

50% of its entries were missing. An example of a data imputation tech-

nique I employed were labeling the few aneurysms from the Kiel clinic as

a bifurcation aneurysm of the middle cerebral artery (MCA-bif) by exam-

ining the images of the aneurysm in reference to whole circle of willis (Fig-

ure 2.1). My conclusions were also supported by the fact that every other

aneurysms from the Kiel clinic which was labelled were also MCA-bif.

Feature Aggregation: Some morphological features, such as the ostium

area, orthogonal height and aspect ratio were measured twice. These fea-

tures highly correlated with each other, so they were combined into one

feature by taking the average of both values.

Table 4.5 shows the features of the dataset, their description, and proper-

ties after the feature aggregation phase of the pre-processing steps.

Data Augmentation: I tried to increase the samples by augmenting with

synthetic data, but this approach was discarded because synthetic data

could not be evaluated qualitatively. To evaluate qualitatively, images of

the AOI and its extracted set should be presented to doctors, who will pro-

vide expert opinions on the suitability of the extracted set with respect to

the AOI. If synthetic data is used to build a model, there will be no im-

ages to represent these data points, unlike the real data points. Further-

more after clustering the synthetic dataset in conjunction with the real

dataset, DBSCAN produced 14 clusters. This is a significantly larger num-

ber of clusters in comparison to that of the real dataset which produced

3 clusters. Figure 4.3 and 4.4 shows the clustering of the dataset with 500

synthetic data points and the 70 real data points.

Categorical and Boolean Encoding: Categorical and Boolean features

such as rupture status, aneurysm location, etc., were encoded to enable

processing using popular machine learning libraries. Encoding involves

converting each categorical variable into distinct Boolean variables (also
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Figure 4.3: K-means clustering of data augmented with 500 data points

Figure 4.4: DBSCAN clustering of data augmented with 500 data points
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Table 4.5: Description of the Features of the Main Dataset After Pre-processing

Feature Description Feature Type
Dmax Maximum diameter of aneurysm Morphological

Nav g Average ostium diameter Morphological

Nmax Maximum ostium diameter Morphological

AneurysmArea Surface area of the aneurysm sac Morphological

AneurysmVolume Volume of the aneurysm sac Morphological

Hmax Maximum height of aneurysm Morphological

Wmax Maximum width perpendicular to
Hm ax

Morphological

Wor tho Maximum width parallel to the
projected ostium plane

Morphological

convexHullVolume Volume of the convex hull of the
aneurysm sac

Morphological

convexHullSurface Surface area of the convex hull of
the aneurysm sac

Morphological

EI Ellipticity index Morphological

NSI Non-sphericity index Morphological

UI Undulation index Morphological

alpha Larger angle between centerline
and dome

Morphological

beta Smaller angle between centerline
and dome

Morphological

gamma Angle at the aneurysm dome Morphological

Hor tho Height perpendicular to the os-
tium center

Morphological

OstiumArea Area of the ostium Morphological

AspectRatio ((Hor tho/Nmax ) +
(Hor tho/Nav g ))/2

Morphological

RuptureStatus Rupture status of aneurysms Patient-Specific

MultipleAneurysms Presence of multiple aneurysms Patient-Specific

AWSSmean Mean wall shear stress Hemodynamic

OSImax Oscillatory shear index Hemodynamic

MeanNeckInflowRate Mean inflow rate into the
aneurysm neck

Hemodynamic

ICImean Inflow concentration index Hemodynamic

SCI WSS concentration index Hemodynamic

LSA Low wall shear area Hemodynamic
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known as dummy variables) that take values of 0 or 1, indicating whether

or not a category is present in an observation. For example, if we have a

categorical feature "fruit" with the values "apple," "orange," and "cherry,"

we can create three additional features called "apple," "orange," and

"cherry." These features will be set to 1 if the observation is of the specified

color and 0 otherwise. The initial categorical feature is then dropped at

the end of this process.

Scaling: The data is transformed using the standard scaler to have a mean

of 0 and a standard deviation of 1. This procedure is essential because

it equalizes the variables. In the learning process, some variables may

dominate over others when features have differing scales. For instance,

if one feature has values between 0 and 1, but another has values between

0 and 1000, the latter will have a significantly greater impact on the per-

formance of the model. The features are scaled to ensure that they all

contribute equally to training process. The mathematical expression for

standard scaling is giving in equation 4.1

Standardized Value( z) = x −µ

σ
(4.1)

In this formula, x represents the original value of the data point. µ repre-

sents the mean (average) of the feature across the entire dataset. σ repre-

sents the standard deviation of the feature across the entire dataset.

Dimensionality Reduction: After the above preprocessing steps, the di-

mension of the data was 70 aneurysms with 29 features. Some ML algo-

rithms struggle with high dimensional data, hence it was necessary to use

a dimension reduction technique. This will give me the opportunity to

analyse more ML approaches for this task. Principal component analysis

(PCA) was used to reduce the dimension. PCA is a dimensionality reduc-

tion approach that is frequently used to decrease the dimensionality of big

data sets by reducing a large collection of variables into a smaller one that

still includes the majority of the information in the large set.The number

of principal components (PC) selected when using PCA should be deter-

mined by the explained variance covered by each component. Explained

variance is a measure of how much information load each PC covers with

respect to the dataset. JOLLIFFE und CADIMA (2016) recommend a total ex-

plained variance of 70% is sufficient to determine how many PC’s should
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be used. Table 4.6 shows the explained variance of the first 3 PC’s of the

dataset.

Table 4.6: Explained Variance of Principal Components

Principal Component Explained Variance
PC1 55%

PC2 22%

PC3 11%

Sum 88%

I also attempted to do the dimensionality step using factor analysis of mul-

tidimensional data (FAMD) because of its ability to implicitly handle a

dataset with categorical and numerical features without encoding, but the

results were difficult to cluster. Figure 4.5 shows the DBSCAN clustering of

the data points after dimensionality reduction using FAMD. DBSCAN as-

signed all the points to one cluster (orange points) except 2 points which

where outliers (blue points). This is why PCA was chosen as the technique

for dimensionality reduction for this work.

After the application of all cleaning and pre-processing techniques, the

dimension of the dataset is 70 aneurysms and 3 features.

Supplementary Dataset

This dataset was already cleaned and pre-processed from a previous re-

search, but further pre-processing was necessary to suit the pipeline I cre-

ated for RI S. Table 4.7 shows the features, the type of feature, and their

descriptions for the supplementary dataset.

The following are the pre-processing step:

• Categorical and Boolean Encoding

• Scaling

• Dimensionality reduction

These were the last 3 steps of the pre-processing steps used on the main

dataset, the reasons given in the previous subsection for the main dataset,

also holds for the supplementary dataset.



38 CHAPTER 4. METHODS

Figure 4.5: DBSCAN clustering of data after FAMD dimensionality reduction

Table 4.7: Description of the Features of the Supplementary Dataset After Pre-
processing

Feature Description Feature Type
RuptureStatus Rupture status of aneurysms Patient-Specific

MultipleAneurysms Presence of multiple aneurysms Patient-Specific

Localisation Location of the aneurysm Patient-Specific

Side Hemisphere in which the aneurysm
is located

Morphological

Neck(D) Diameter of aneurysm neck Morphological

Wmax Maximum width perpendicular to
Hmax

Morphological

ParentVessel(T) Parent vessel diameter Morphological

Hmax Maximum height of aneurysm Morphological

SizeRatio Hmax/T Morphological

VesselAngle Parent vessel inlet angle relative to
the aneurysm

Morphological

InclinationAngle Angle at which the IA is tilted with
respect to the incoming flow

Morphological

InflowAngle Angle of incoming flow Morphological
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4.4 Extraction Methodology

The goal of this thesis is to use current research to create an extraction ap-

proach that adds variation to the selection of instances that are similar to

an AOI. The concept is that picking subgroups using only a similarity met-

ric might result in repetition, and hence these instances may lack diversity,

which is necessary for clinical training simulations. For this task, similar

to IS, the criteria for a representative set selection apply. The following

criteria are crucial to ensuring quality selection:

• Diversity: It is important to select varied entries in order to enhance

the information contained in the chosen entries. This is important

to prevent choosing the duplicate instances or instances, which are

very similar to each other, such that they convey no (or little) vari-

ance between them. This will render the selections redundant.

• Similarity: Although diversity is important, we also want to have se-

lections that share a reasonable relationship with the AOI. Similarity

criteria is necessary to ensure instances different from the AOI are

not selected.

• Inliers: The final criteria is inliers. In a bid to achieve variation in

the selection, anomalies or outliers should not be selected because

those entries are not a representation of the database.

The strategies for extraction utilized in this process were carefully selected

to ensure that only the most relevant and representative entries were in-

cluded. Outlier detection and removal was done to ensure only inliers

are selected by the extraction methodology. Clustering was employed to

group similar instances together, reducing redundancy, and ensuring a di-

verse selection by extracting the most similar instances from each cluster

as opposed to selecting the top k most similar instances from the dataset.

In the prototyping phase, similarity criteria was used to select instances

most similar to the AOI, further refining the extraction process. Figure. 4.6

shows a visual representation of the extraction process, including the ML

techniques explored for each step of the process. Overall, this approach

ensures that only high-quality instances are included in the extracted set

providing valuable insights with respect to an AOI.
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Figure 4.6: Steps for instance extraction with strategies explored for each step.
Strategies highlighted in green were used after experiments.

4.4.1 Outlier Removal

To fulfill the inlier criterion, an outlier removal step was added to the ex-

traction methodology. Experiments were conducted using 4 outlier detec-

tion algorithms, namely; autoencoders, isolation forest, DBSCAN and lo-

cal outlier factor (LOF). These models were trained using Scikit-Learn’s li-

brary except the autoencoder model, this was developed using the keras

wrapper of tensorflow.

I designed the autoencoder architecture, which was made up of 5 layers

excluding the input and output layers, these 5 layers constituted of 2 en-

coding layers that map the input, a middle layer that holds the mapped

input in a lower dimensional space, and finally, 2 decoding layers that try

to reconstruct the input to the output layer through the middle layer. The

neurons in the 5 hidden layers are (128, 64, 32, 64, 128) respectively, which

all used the rectified linear Unit (ReLu) activation function. This network

was trained using mean squared error as loss function with an Adam opti-

mizer.

SANDER et al. (1998); SCHUBERT et al. (2017) recommends using 2 ×
N where N is the number of dimensions for Mi nP t s. Furthermore

RAHMAH und SITANGGANG (2016) proposed a technique that uses the

pre-determined Mi nP t s to estimate eps. With k equal to the Mi nP t s

value you chose, this method determines the average distance between
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each point and its k-nearest neighbors. On a k-distance graph, the aver-

age k-distances are then shown in ascending order. The ideal estimate

for eps will be at the moment of maximal curvature (i.e., the graph’s

steepest slope). This procedure gives Mi nP t s of 6 and eps of 2.15 for

the dataset. Using these values for Mi nP t s and eps, both DBSCAN and

OPTICS classified all the points as one cluster. Following multiple experi-

ments, DBSCAN was developed with Mi nP t s as 4, eps as 1.6 and OPTICS

with Mi nP t s as 4, eps as 1.74, which were found empirically, and distance

metric was euclidean distance.

For the isolation forest model, the number of estimators and contamina-

tion were set as 100 and 0.06 respectively. 0.06 was used to constrain the

model to select the same number of outliers as DBSCAN which assigns

outliers automatically without having to specify a contamination factor.

The following are reasons that motivated the choice of DBSCAN as the al-

gorithm for this task.

• It also doesn’t require hyper-parameters like contamination rate

used in the isolation forest algorithm, which explicitly determines

how many data points are selected as outliers.

• LOF favors datasets with clearly defined clusters but varying outlier

distances with respect to the clusters. The dataset used for this ex-

periment doesn’t share this trait.

• Neural networks like autoencoders require the tuning of several

hyper-parameters unlike DBSCAN with only 2. Performing this

hyper-parameter tuning can be time-consuming.

In addition to this, upon visual inspection of the outlier points selected by

the 4 models as shown in Figure. 4.7, outliers spotted by DBSCAN were

more understandable visually in comparison to the other algorithms.

4.4.2 Clustering

This step in the extraction is to account for the diversity of selections, I sep-

arate the points into different clusters, so similar aneurysms are grouped

into the respective clusters. Experiments were conducted using three clus-
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Figure 4.7: Outlier detection scatter-plots showing assignment of outliers by
autoencoders (top), isolation forest (second), LOF (third), DBSCAN (bottom). X
and Y axis of the scatter-plots are the first 2 principal components used only for
visualisation while the assignments was done on the 3 principal components
datasets
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Figure 4.8: Selecting number of clusters using plots of silhouette coefficient
against number of clusters (left) and SSE against number of clusters (right)

tering techniques, namely; DBSCAN, OPTICS and k-means. The Scikit-

Learn library was used for all three algorithms.

Hyperparameters used for DBSCAN and OPTICS were Mi nP t s as 4 and

distance metric as euclidean distance, while eps was set to 1.6 for DB-

SCAN, as explained in section. 4.4.1.

K-means was implemented using K=3, this value was determined by visu-

alizing the plots of the sum of squared error (SSE) against the number of

clusters and Silhouette coefficient against number of clusters and select-

ing the knee of the graph as K. As can be seen from Figure. 4.8, the knee of

the SSE plot is between 3-5, while that of the silhouette coefficient was spu-

rious, but there is an obvious dip when the number of clusters is 3, hence

this was selected as the value for k. Figure. 4.9 shows the clustering results

of the three techniques.

I also performed clustering on the dataset without dimensionality reduc-

tion. While the clustering produced by K-means was similar to that pro-

duced by the 3 dimension dataset, DBSCAN and OPTICS unsurprisingly

did not produce sensible clusters as they labeled all the points as outliers,

these algorithms do not usually do well on high-dimensional datasets.

Although our analysis for the development of RI S was done using the

dataset produced after 3-dimensional PCA, selecting k-means as the algo-

rithm for the clustering step was influenced by the fact that the k-means

clustering result produced on the dataset before PCA was very similar to

the k-means clustering result produced after PCA. Figure. 4.10 and Figure.
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Figure 4.9: Cluster assignments: DBSCAN assignments (top) with 2 clusters and
4 points as outliers (0: 39, 1: 27, -1: 4), OPTICS assignments (middle) with 4
clusters and 43 points as outliers (-1: 43, 3: 8, 0: 8, 1: 7, 2: 4), Kmeans assignments
(bottom) with 3 clusters (1: 30, 0: 20, 2: 20)
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4.11 shows the K-means clustering on the full and 3-dimensional datasets

visualized using the first two principal components for both plots.

Figure 4.10: K-means clustering of data with 3 components of PCA visualised
using the first 2 PC’s as the X and Y axis respectively

Figure 4.11: K-means clustering of full dataset without PCA visualised using the
first 2 PC’s as the X and Y axis respectively
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4.4.3 Prototyping

At this step of the process, the candidate selection is done by extracting

instances most similar to the AOI from each cluster iteratively until the de-

sired number of samples is achieved. This subset represents the instances

that are similar to the AOI, but also diverse from each other. For the RI S

model, the minimum number of instances that can be extracted is equal

to the number of clusters in the clustering step while the maximum num-

ber of instances that can be extracted is equal to the number of instances

in the dataset.

A key advantage of this proposed RI S framework is the flexibility it of-

fers with respect to ML algorithms. Depending on various factors such

as domain, type of dataset, sparsity of dataset, etc, various aspects can be

adapted to suit the needs of the user. Parameters such as the number of

clusters can be changed if there is existing knowledge of the number of

groups present in a given dataset. Also, it allows for flexibility in ML al-

gorithms, depending on the needs of the designer and the dataset, this

framework can be adapted using various ML techniques for the outlier re-

moval, clustering, and prototyping phases.

Instance Selection Adaptation

The proposed extraction methodology can be adapted to suit IS tasks by

changing the prototyping phase. Instance selection is the process of se-

lecting a subset of samples from a database that sufficiently conveys all

the nuances of the complete dataset. This task does not require an AOI,

therefore changing the similarity-based prototyping to a centroid-based

prototyping makes this framework suitable for instance selection.

Centroid-based prototyping is done by iteratively selecting instances clos-

est to the clustering centroids until the desired number of instances for

the extracted subset is reached.
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4.5 Proposed Evaluation Approach

4.5.1 Metrics

To evaluate the extracted subset, we use the following metrics: similarity,

redundancy, and anomaly. These metrics are explained in the following

subsections.

Similarity

Distance based measures are popular ways of calculating similarity be-

tween vectors. The idea is built on the notion that points that are more

similar to each other have smaller distances between them and vice-versa.

There are different types of distance measures (SHARMA und KUMAR

(2016)), for this work, we use Euclidean distance.

The Euclidean distance is widely used as a measure of similarity or dissim-

ilarity between points in space in many domains, including mathematics,

physics, computer science, and data analysis. It serves as a foundation for

many algorithms, such as clustering, nearest neighbor search, and dimen-

sionality reduction techniques, which are used extensively in this work. I

decided to adopt this as the distance function for this reason.

Euclidean distance is a measure of the straight-line distance between two

points in Euclidean space. It is derived from the Pythagorean theorem and

is commonly used to calculate the distance between two points in a multi-

dimensional space. Given two vectors (p, q) with n dimensions, the Eu-

clidean distance (di st
(
p, q

)
) between them can be defined as shown in

4.2.

di st
(
p, q

)=√
n∑

i=1

(
qi −pi

)2 (4.2)

Equation 4.2 is modified for similarity as shown in equation 4.3 (SEGARAN

(2007)). To avoid division errors and ensure that the maximum value is 1

when (di st
(
p, q

)
) is 0, 1 is added to the denominator, thus 0 ≤ (si m

(
p, q

)
)

≤ 1.
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si m
(
p, q

)= 1

1+di st
(
p, q

) (4.3)

For this task, to calculate the similarity of an AOI (A) with respect to an

extracted subset of aneurysms S, we calculate the average of the similarity

of every element in S with A as shown in equation 4.4.

si m (A,S) =
∑

si∈S si m (a, si )

|S| (4.4)

Redundancy

Given two objects, s1 and s2, the extent to which s1 is redundant with re-

spect to s2 can be estimated using sim(s1, s2) from equation 4.3. Since s1

has replicated some of the information about s2 and vice versa.

Given an extracted set S, the degree to which an object in the set s1 is re-

dundant with respect to the extracted set S can also be determined using

this concept, as shown in equation 4.5.
∑

s∈S si m(s1,s)
|S|−1 is the average similar-

ity of s1 with respect to S, this is then subtracted from 1 to get Red (s1,S).

Red (s1,S) =
(
1−

∑
s∈S si m (s1, s)

|S|−1

)
(4.5)

From equation 4.5, to calculate the redundancy in an extracted subset S,

I take the average redundancy of every element in the set with respect to

the subset as shown in equation 4.6.

Red(S) =
∑

si∈S Red (si ,S)

|S| (4.6)

Anomaly

The degree of anomaliness (or outlierness) of a point from an extracted set

will be measured using local reachability distance (LRD). LRD is a measure

used in the field of data mining and outlier detection to quantify the local

density of a data point with respect to its neighbors. It is commonly associ-

ated with the Local Outlier Factor (LOF) algorithm (BREUNIG et al. (2000);

LI et al. (2022)).
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The LRD of a data point P is calculated based on the average reachability

distance of P to its k-nearest neighbors. The reachability distance between

two points, denoted as r each −di stk (P,Q), is defined as the maximum of

the Euclidean distance between P and Q or the k-distance of Q. The k-

distance of a point Q is the distance to its kth nearest neighbor.

The formula for calculating the LRD of a data point P with respect to its

k-nearest neighbors can be expressed as shown in equation 4.7.

LRDk (P ) =
(

1
1
k

∑
Q∈Nk (P ) r each −di stk (P,Q)

)
(4.7)

The LRD measures the local density of a data point by considering the av-

erage reachability distance to its k-nearest neighbors. A low average reach-

ability distance indicates that the point is located in a dense region, while

a high average reachability distance suggests that the point is located in

a sparse or outlier region. It is a useful metric in outlier detection algo-

rithms like the Local Outlier Factor (LOF). The value for k for a dataset is

determined by the same empirical analysis used for all density based ap-

proaches in this work. This is explained in detail in section 4.4.1.

After LRD has been calculated for all instances in the dataset, we nor-

malise the data using equation 4.8 where x is the LRD of an instance in the

dataset, so the value range is between [0, 1].

xscaled = x −xmi n

xmax −xmi n
(4.8)

The degree of anomaly in an extracted set S is the average LRD for all in-

stances si in the set.

Anomk (S) =
∑

si∈S LRDk (si )

|S| (4.9)

4.5.2 Score

The metrics proposed in the previous subsection 4.5.1 can be aggregated

to form a single score, which defines a rating for an extracted subset. The

metrics in this aggregation can be weighted with a parameter w depend-

ing on various factors such as the sparsity of the dataset, domain knowl-
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edge of the designer, priority for the metrics e.t.c. The equation can be

adapted to suit the required needs.

Scor e = w(si m (A,S))+w(Red(S))+w(Anomk (S)) (4.10)



5
Experiments and Evaluation

5.1 RIS Evaluation

To evaluate the performance of the RIS model, I compared the quality of

the extracted set with respect to the extracted sets of a similarity based

extraction and randomly selected subset from the dataset. These sets were

then evaluated using the equations proposed in 4.5. The process of this

evaluation is described below for each instance to be evaluated:

• Select an instance randomly from the dataset

• User defined number of instances N to be extracted

• Extract a subset using RIS

• Extract the N most similar subset

• Select N instances randomly

• Determine the quality of extractions using equations in section 4.5

This evaluation approach is similar to that used in the research of HOCHBAUM

und PATHRIA (1998).

Given that redundancy and similarity are the most important metrics for

this task, the weights for si m(A,S), Red(S), Anomk (S) have been set as

0.4, 0.4, and 0.2, respectively for equation 4.10. Also, the dataset is sparse

and this can significantly affect the score for anomaly, although the points

may not be outliers. This can give a significant advantage to the random

model when it selects points from denser areas.

51
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5.1.1 Main Dataset Evaluation

Table 5.1 shows the performance of RI S in comparison to the similarity

based model which optimizes for similarity, and a random model that

should ideally optimize for redundancy on the main dataset. For the first

experiment, I used N = 3 for the size of the extracted set, which represents

the number of clusters determined from the clustering step, I also used 6

randomly selected instances as AOI. As seen from the table, RIS has the

best f i nal scor e in 5 (1 tied score with similarity-based model) of the 6

AOI, similarity-based model has the best f i nal scor e in 2 (1 tied score with

RIS model) out of 6, while the random model did not win for any instance.

Instances Model
Metrics

Si m Red Anom F i nal Scor e

1
RIS 0.371 0.656 0.270 0.465

Similarity 0.450 0.536 0.286 0.452
Random 0.178 0.837 0.265 0.455

2
RIS 0.425 0.807 0.273 0.550

Similarity 0.669 0.468 0.478 0.550
Random 0.160 0.788 0.204 0.421

3
RIS 0.418 0.741 0.161 0.496

Similarity 0.625 0.473 0.351 0.509
Random 0.177 0.781 0.200 0.422

4
RIS 0.370 0.718 0.100 0.454

Similarity 0.457 0.541 0.084 0.416
Random 0.287 0.785 0.075 0.444

5
RIS 0.365 0.781 0.298 0.518

Similarity 0.457 0.342 0.569 0.494
Random 0.188 0.774 0.245 0.433

6
RIS 0.447 0.758 0.411 0.564

Similarity 0.751 0.316 0.923 0.612
Random 0.362 0.890 0.417 0.556

Table 5.1: Evaluation Results N = 3

I further experimented by comparing the performances using a higher

value for N (N = 5) and the same AOI’s used in the previous experiment.

Table 5.2 shows the results of this experiment. As can be seen from the

f i nal scor e column on this table, the similarity-based model has the best
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score for 4 of 6 instances, RI S is the best for the remaining 2 instances.

Again, the random model is not the best for any of the 6 instances.

Instances Model
Metrics

Si m Red Anom F i nal Scor e

1
RIS 0.336 0.727 0.014 0.454

Similarity 0.420 0.558 0.248 0.441
Random 0.273 0.738 0.150 0.435

2
RIS 0.407 0.744 0.322 0.525

Similarity 0.605 0.482 0.601 0.560
Random 0.287 0.782 0.439 0.515

3
RIS 0.402 0.718 0.183 0.485

Similarity 0.546 0.529 0.300 0.490
Random 0.233 0.796 0.379 0.487

4
RIS 0.367 0.705 0.100 0.448

Similarity 0.419 0.600 0.084 0.424
Random 0.148 0.798 0.241 0.423

5
RIS 0.393 0.680 0.352 0.500

Similarity 0.482 0.443 0.524 0.515
Random 0.274 0.759 0.142 0.442

6
RIS 0.445 0.717 0.460 0.557

Similarity 0.700 0.389 0.832 0.600
Random 0.253 0.789 0.305 0.478

Table 5.2: Evaluation Results N = 5

5.1.2 Supplementary Dataset Evaluation

I conducted further evaluation of the RI S model using the supplementary

dataset described in section 4.3.1. After pre-processing and cleaning, I

conducted the same experiment on this data using RI S, a similarity-based

model and a random selection model.

Table 5.3 shows the scores of these models using N = 3 and 7 randomly

selected samples as AOI’s. As can be seen from the table, RI S performs

better than the other extracting the best subset of instances for all 7 AOI’s.

This outcome is similar to the results achieved on the main dataset for

N = 3 (Table 5.1).

Table 5.4 shows the results of the evaluation on the supplementary dataset

with N = 5 using the same sample of AOI’s. Unlike the results for N = 5
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Instances Model
Metrics

Si m Red Anom F i nal Scor e

1
RIS 0.442 0.671 0.671 0.579

Similarity 0.534 0.540 0.638 0.557
Random 0.229 0.867 0.619 0.562

2
RIS 0.389 0.685 0.613 0.552

Similarity 0.527 0.440 0.480 0.482
Random 0.200 0.872 0.583 0.544

3
RIS 0.347 0.744 0.552 0.547

Similarity 0.435 0.444 0.501 0.452
Random 0.145 0.878 0.687 0.547

4
RIS 0.370 0.785 0.604 0.583

Similarity 0.598 0.389 0.720 0.539
Random 0.192 0.788 0.638 0.520

5
RIS 0.334 0.733 0.668 0.560

Similarity 0.483 0.645 0.517 0.555
Random 0.204 0.829 0.622 0.538

6
RIS 0.499 0.585 0.721 0.578

Similarity 0.592 0.451 0.714 0.560
Random 0.237 0.760 0.642 0.527

7
RIS 0.469 0.717 0.674 0.609

Similarity 0.674 0.311 0.759 0.546
Random 0.141 0.879 0.500 0.508

Table 5.3: Evaluation Results Supplementary Dataset N = 3
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on the main dataset (Table 5.2) RI S performs the better for f i nal scor e

compared to the other two models on the supplementary dataset for N =
5. RI S is has the best f i nal scor e for 5 (3 ties with the similarity-based

model) of 7 instances, similarity-based model is the winning model for 3

(3 ties with the RI S model), and the random model is best for 1 instance.

Instances Model
Metrics

Si m Red Anom F i nal Scor e

1
RIS 0.427 0.644 0.651 0.559

Similarity 0.493 0.595 0.585 0.552
Random 0.142 0.861 0.655 0.532

2
RIS 0.392 0.692 0.577 0.549

Similarity 0.486 0.515 0.538 0.508
Random 0.019 0.794 0.642 0.522

3
RIS 0.301 0.741 0.525 0.522

Similarity 0.393 0.533 0.539 0.478
Random 0.136 0.869 0.555 0.513

4
RIS 0.388 0.714 0.629 0.566

Similarity 0.556 0.512 0.699 0.566
Random 0.122 0.855 0.633 0.517

5
RIS 0.321 0.758 0.651 0.562

Similarity 0.437 0.616 0.596 0.541
Random 0.226 0.808 0.753 0.564

6
RIS 0.480 0.616 0.700 0.578

Similarity 0.551 0.543 0.705 0.578
Random 0.185 0.698 0.539 0.539

7
RIS 0.457 0.672 0.680 0.588

Similarity 0.630 0.423 0.747 0.588
Random 0.192 0.792 0.634 0.520

Table 5.4: Evaluation Results Supplementary Dataset N = 5

From these results, it can be assumed that the larger the dataset, the better

the performance of RI S because there is a larger search space to select

samples. Also, the outlier removal step will be more useful because while

RI S handles outliers, the other two models do not. A larger dataset is likely

to emphasize the importance of this step because it contains more outliers

and the effect of this can be seen in the improved Anom scores for RI S

in the supplementary dataset in contrast to the main dataset. This effect
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on more data samples on the performance of RI S should be an expected

outcome given that for most ML algorithms, more data is usually better.

5.2 Instance Selection Adaptation Evaluation

Most instance selection tasks are evaluated by comparing the classifi-

cation accuracy of a ML model trained on an extracted subset and one

trained on the complete dataset (HUANG et al. (2021); LIN et al. (2017);

PAN et al. (2005)). I also use this approach to evaluate the performance of

the proposed IS adaptation part of this work.

To evaluate this task, I first train a classification model using XGBoost on

the full dataset to ascertain its accuracy, I then train several models using

various percentages of a representative subset of samples extracted from

the training set using the proposed RI S adaptation. This model is also

evaluated by training multiple models extracted by random sampling from

the training set.

The datasets used for this evaluation are the iris dataset and the supple-

mentary dataset introduced in section 4.3.1. I split it into train and test set

using the 80/20 ratio. Samples are then drawn from the training set using

the proposed RI S adaption and also randomly selected samples. To score

the performance of the model trained using a randomly selected subset,

for every percentage threshold of subset size, 5 models are built using ran-

dom samples drawn 5 different times with replacement, the average per-

formance of the models trained using the randomly selected samples is

then taken as the score for a specific threshold. Rupture state was used as

the class label for the supplementary dataset.

All models built for this test used the same hyper-parameters to avoid bias.

Table 5.5 and table 5.6 show the results of this experiment on the iris and

supplementary datasets respectively.

On the iris dataset, the proposed RI S adaptation has a better classification

accuracy on the experiment with smaller percentages of extracted repre-

sentative set, while the random model is the best for all percentages of the

representative set on the supplementary dataset.
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Representative Set (%) RIS adaptation Random Sampling
12.5 83.3 77.34

30 96.7 94.68

50 96.7 99.28

Table 5.5: Evaluation results of proposed IS adaptation on iris dataset. The
table shows the accuracy on the test data of the models trained using different
percentages of representative set extracted from the training set.

Representative Set (%) RIS adaptation Random Sampling
12.5 45.07 49.86
30 53.52 56.34
50 54.93 56.62

Table 5.6: Evaluation results of proposed IS adaptation on supplementary dataset.
The table shows the accuracy on the test data of the models trained using different
percentages of representative set extracted from the training set.





6
Analysis of Results

6.1 RIS

6.1.1 Main Dataset

In this section, I take a deep dive into the analysis of the results shown in

the RIS evaluation section (section 5.1). As shown in section 5.1.1, with

N = 3 and N = 5 for the main dataset, the RI S model and the similarity-

based model were the respective winning models with respect to the

f i nal scor e (see table 5.1 and table 5.2 respectively). This dataset is a

sparse dataset with 70 instances. Table 6.1 is the summary of the results of

all experiments performed on the main dataset, the full results are shown

in table 5.1 and table 5.2. This summary is the performance of the models

on all instances, this calculated by taking the mean scores for each metric

for every model.

Extraction of 3 samples (N = 3)

For this experiment, I selected N = 3 as the size of the extracted set,

which is also the number of clusters from the k-means clustering of the

dataset shown in section 4.4.2. From figure 6.1, for the similarity score,

the similarity-based model, as expected is consistently the best for ev-

ery instance, while the random model is consistently the worst (Also see

6.1, average similarity score for RIS, Similarity-based model and Random

model are 0.4, 0.568 and 0.225 respectively). RI S on the other hand re-

mains consistently second best for the similarity metric, this is a desirable

outcome because, for the purpose of this task, the objective is not to ex-

59
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Table 6.1: Experiment Summary on Main Dataset

Model Main Dataset: N = 3

SI M RED ANOM F I N ALSCORE

RIS 0.400 0.744 0.252 0.508
Similarity 0.568 0.446 0.449 0.506
Random 0.225 0.809 0.235 0.455

Model Main Dataset: N = 5

SI M RED ANOM F I N ALSCORE

RIS 0.392 0.715 0.239 0.495
Similarity 0.529 0.500 0.431 0.505
Random 0.245 0.777 0.276 0.463

tract the most similar instances with respect to an AOI because diversity

in selection is also desirable, as explained in previous chapters.

Figure 6.1: Line plot of the performance of each model on the selected AOI
instances on the main dataset for N = 3 for similarity metric.

As shown in figure 6.2 for the redundancy metric, which scores for di-

versity, the random model is consistently better for all instances except

the two (instance 2 and 5) while the similarity-based model is usually

the worst model by a considerable amount for all instances (See also 6.1,
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average redundancy scores for RIS, Similarity-based model and Random

model are 0.744, 0.446, and 0.809 respectively). Interestingly, RI S per-

forms very well for this metric, this is a good outcome as diversity of the

extracted set is a criteria for selecting a representative and diverse subset.

Figure 6.2: Line plot of the performance of each model on the selected AOI
instances on the main dataset for N = 3 for redundancy metric.

The similarity-based model dominates the anomaly metric compared to

the other two models, as seen in figure 6.3 and table 6.1 (Anomaly scores

for RIS, Similarity-based and Random models are 0.252, 0.449 and 0.235

respectively). The similarity-based model always selects the closest points

to the AOI, this implicitly optimizes the LRD which calculates anomaly

scores based on the distance of a point to its k-closest points. The sparsity

of the dataset amplifies the effects of this extraction technique because

most points will be farther from each other, thus selecting the most simi-

lar in a certain area will improve the LRD depending on the value of k and

the size of the extracted set. Despite selecting points having no pattern to

its selection process, the Random model scores are similar to that of RIS,

with an average of 0.235 and 0.252 respectively across all AOI (See table

6.1.

The final score plot (Figure 6.4) shows that while the random model is

clearly the worst performing, the other two models are relatively close
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Figure 6.3: Line plot of the performance of each model on the selected AOI
instances on the main dataset for N = 3 for anomaly metric.

with RI S slightly better (Average scores for RIS, Similarity-based and ran-

dom models are 0.508, 0.506, 0.455 respectively). This is because of the

dominance of the similarity based model for the anomaly metric and the

weighting of each metric. A lower weight for the anomaly would amplify

the performance of RI S compared to the similarity based model.

RI S does not consistently perform terribly on the individual metrics

si m(A,S), Red(S), Anomk (S) unlike the other models; like the similar-

ity based model which consistently have the worst Red(S) scores for all 6

instances or the random selection model which have the worst si m(A,S)

scores for all 6 instances.

Extraction of 5 samples (N = 5)

This experiment was performed to examine how the models perform

when the size of the desired extracted set is greater than the number of

clusters. For this experiment, N = 5. From figure 6.5, figure 6.6, and figure

6.7 we see that the similarity, redundancy and anomaly plots respectively,

follows the same pattern as their corresponding counterparts in the exper-

iment with N = 3 which have been discussed in section 6.1.1.
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Figure 6.4: Line plot of the performance of each model on the selected AOI
instances on the main dataset for N = 3 for final score.

Figure 6.5: Line plot of the performance of each model on the selected AOI
instances on the main dataset for N = 5 for similarity metric.

Although the results for redundancy for this experiment also follow the

pattern from the experiment with N = 3, it can be seen that the redun-
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Figure 6.6: Line plot of the performance of each model on the selected AOI
instances on the main dataset for N = 5 for redundancy metric.

Figure 6.7: Line plot of the performance of each model on the selected AOI
instances on the main dataset for N = 5 for anomaly metric.

dancy scores for the similarity-based model (Average redundancy score is

0.446 and 0.5 for N = 3 and N = 5 respectively, see 6.1) have improved
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with increase in the size of the extracted set. The dominance of the RI S

and the random model have reduced (Table 6.1 shows the respective val-

ues). This is because an increase in the size of the extracted set means the

similarity-based model is forced to extract less similar instances. Given

that the dataset is sparse, there is a higher probability it selects less similar

instances thus improving its redundancy.

Similar to the experiment with N = 3, RI S still maintains a good balance

on the Si m and Red metrics, it does not consistently have the worst scores

for these metrics (See table 6.1 for the average scores of all models for the

experiments), unlike the random model which has the worst Si m score for

all the instances and the similarity-based model with the worst Red scores

for all 6 instances.

The improvement in redundancy for the similarity-based model translates

to an improvement in the final score compared to the random model and

RI S (See figure 6.8). The similarity based model has the best f i nal scor e

for 4 out of the 6 instances for this experiment on a sparse dataset. I anal-

yse the change in scores for all metrics and the final score in section 6.1.1

Figure 6.8: Line plot of the performance of each model on the selected AOI
instances on the main dataset for N = 5 for final score.

The RI S model was not the best model for extracting instances greater

than the number of clusters in this dataset using the weights assigned to
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the final score equation discussed earlier. It was the best in only 2 out of

6 instances. However, the final score can be improved by using another

method to extract the excess instance when N is greater than the number

of clusters; for example, when N is greater than number of clusters, the

excess instances can be extracted by using a hybrid model which uses a

similarity based approach for extracting remaining instances or extracting

them from the same cluster as the given AOI.

Examining the Change in Scores (N = 3 - N = 5)

In this section, I analyze the difference in scores for both experiments

to determine why there were different winners for the experiments con-

ducted on the same dataset. This was calculated by subtracting the scores

of the experiment conducted with N = 5 from those of the experiment con-

ducted with N = 3 (N = 3 - N = 5). A positive result implies that there is

a drop in scores from N = 3 to N = 5, while a negative result implies the

opposite. This is necessary to analyse the how the size of N influences the

scores for the respective models.

In Figure 6.9, from the change in similarity plot, we can see that there is a

drop in similarity scores for the RI S and similarity-based models for 5 out

of the 6 instances. Intuitively, the larger the size of the extracted set, the

higher the potential of selecting less similar instances, this is the reason

why there is a drop in the similarity scores for the RI S and similarity-based

models. The drop for similarity-based model is significantly larger, this is

because when the size of the extracted set is smaller, the selections are the

closer to the AOI and hence higher similarity scores. When the size of the

extracted set increased and less similar instances are extracted, this yields

a drop in the score.

As can be seen from the change in redundancy plot in figure 6.10, there

is a significant increase in the redundancy score for the similarity-based

for all 6 instances, this can also be explained by the inclusion of less sim-

ilar instances to an increased extracted set. The inclusion of less similar

instances to the extracted set introduce diversity to the extracted set and

led better scores for redundancy. On the other hand, the RI S model had a

drop in redundancy scores for 5 out of the 6 instances, since the algorithm

now have to transverse each cluster multiple times when the value for N
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Figure 6.9: Bar plot of the change in scores of similarity metric for each instance
on the main dataset for all models.

is greater than the number of clusters, it selects instances similar to an al-

ready selected instance. This leads to a decrease in the redundancy score.

Figure 6.10: Bar plot of the change in scores of redundancy metric for each
instance on the main dataset for all models.
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There is a small increase in the anomaly scores for the RI S model on 4 of

the 6 instances as can be seen from the change in anomaly score plot in

figure 6.11. This means the model selects samples from points in dense

area. However, there is a significant reduction in the anomaly score for

instance 1, the model selected points in sparse regions when the size of

the extracted set was increased for this instance.

Figure 6.11: Bar plot of the change in scores of anomaly metric for each instance
on the main dataset for all models.

The accumulation of these changes in each metric led to the change in

the final score as can be seen on the final score plot in figure 6.12. From

this analysis, it may be interesting to change the weights for the final score

with an increase in the size of N . For example, intuitively, the larger the

size of N , the greater the chance of having diversity in the extracted set,

thus, it can be useful to reduce the weights for redundancy when the size

of N is larger than a certain threshold. The decision on this threshold is

dependent on the dataset, it’s characteristics and the domain.

It is not useful to analyze the random model in this context because there

is no pattern to its selection. It can extract a completely different subset

for several iterations with the same instance as AOI.
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Figure 6.12: Bar plot of the change in scores of final for each instance score on
the main dataset for all models.

Across all experiments performed for N = 3 and N = 5 on the main dataset,

RI S model was the best for 6 of the 12, while the similarity-based model

was the best for the other 6. RI S dominated the N = 3 experiment while

the similarity-based model dominated the N = 5 experiment. Thus for

sparse datasets, RI S is better for extracting representative but diverse sam-

ples when the size of N is small, as N starts to increase, it can be beneficial

to extract based on similarity.

6.1.2 Supplementary Dataset

In this section, I do an in-depth analysis of the results shown in the RIS

evaluation section (section 5.1). As shown in section 5.1.2, with N = 3 and

N = 5 for the supplementary dataset, the RI S model was the best model

with respect to the f i nal scor e for both experiments (see table 5.3 and

5.4). This supplementary dataset contains more instances (351 instances),

it is necessary to see how the models perform on a larger dataset denser

than the the main dataset (70 instances). As discussed in section 6.1.1,

table 6.2 shows a summary of all experiments performed with the supple-

mentary as shown in chapter 5 with table 5.3 and table 5.4.
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Table 6.2: Experiment Summary on Main Dataset

Model Supplementary Dataset: N = 3

SI M RED ANOM F I N ALSCORE

RIS 0.407 0.703 0.643 0.573
Similarity 0.549 0.46 0.618 0.527
Random 0.193 0.839 0.613 0.535

Model Supplementary Dataset: N = 5

SI M RED ANOM F I N ALSCORE

RIS 0.395 0.691 0.630 0.561
Similarity 0.507 0.534 0.630 0.544
Random 0.146 0.811 0.630 0.530

Extraction of 3 samples (N = 3)

Figure 6.13 shows the scores of the similarity metric for 7 AOI’s for the 3

models with N = 3. As can be seen from this figure, it follows the same pat-

tern seen on the two experiments conducted on the main dataset (Figure

6.1 and figure 6.5) where the similarity-based model has the best scores

across all instances, the RI S model is second across all instances, and

the random model is consistently the least performing model (See also ta-

ble 6.2, the average similarity scores for RI S, Similarity-based model and

Random model are 0.407, 0.549, and 0.193 respectively). The patterns for

the similarity metric is clearly not affected by the size of the dataset. The

RI S model getting the second best similarity scores (behind the similarity-

based model which optimizes for similarity) across all instances is a de-

sirable outcome because we do not want the extracted set to contain the

most similar instances which makes some instances in the extracted set

redundant.

Again, the same patterns noticeable in the in the two experiments on the

main dataset (Figure 6.2 and figure 6.6) is also seen in figure 6.14. For all

AOI’s the random model have the highest scores for the redundancy met-

ric, second is RI S and the similarity-based model has the worst scores (Av-

erage scores for redundancy are 0.703, 0.46, and 0.839 for RI S, Similarity-

based model and Random model respectively. See table 6.2). It shows that

the higher the similarity scores the worse the redundancy scores. This
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Figure 6.13: Line plot of the performance of each model on the selected AOI
instances on the supplementary dataset for N = 3 for similarity metric.

metric is also not dependent on the size of the dataset as it shows same

patterns for both a sparse and dense dataset.

Figure 6.14: Line plot of the performance of each model on the selected AOI
instances on the supplementary dataset for N = 3 for redundancy metric.
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Unlike the other two metrics, there is a clear change in pattern for the

anomaly metric when the dataset is dense (See figure 6.15). All the models

gets relatively higher scores for this dataset compared to the sparse main

dataset and there are no clearly discernable patterns in these scores. This

is because for a denser dataset more points will get better LRD scores as

there will be more points close together, unlike a sparse dataset where

points will be farther from each other. (Average scores for anomaly are

0.643, 0.618, and 0.613 for RI S, Similarity-based model and Random

model respectively. See table 6.2).

Figure 6.15: Line plot of the performance of each model on the selected AOI
instances on the supplementary dataset for N = 3 for anomaly metric.

The final scores for this experiment shown in figure 6.16 also follows the

patterns from the experiments on the main dataset where the scores are

tight between the models. However, RI S is consistently the best model

for all 7 instances using the weights assigned for each metric. LIke the

experiment on the main dataset, RI S is best again when the size of N is 3.

Extraction of 5 samples (N = 5)

I also performed the experiment with a larger size of the extracted set (N =
5) to compare how the models react to a dense dataset when N is greater
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Figure 6.16: Line plot of the performance of each model on the selected AOI
instances on the supplementary dataset for N = 3 for final score.

than the number of clusters. Figure 6.17 shows the scores for the model for

7 randomly selected AOI’s. This follows the same patterns as the previous

3 experiments and the reasons discussed in previous sections hold here.

The redundancy scores for the models also follow similar patterns to the

previous 3 experiments, however there seems to be an improvement on

the scores for the similarity-based model when N = 5. The change in

scores between the two experiments on the supplementary dataset is dis-

cussed in subsequent sections for all metrics.

Figure 6.19 shows the results of the anomaly metric for all models with

N = 5. It further confirms the results from the experiment with N = 3 that

anomaly scores are relatively higher for dense datasets. I also compare the

difference in anomaly scores for both experiments on the supplementary

dataset in subsequent sections.

The final scores for all models in this experiment (See figure 6.20) are also

relatively close with respect to each AOI, this is similar to previous exper-

iments. However, unlike the experiment with N = 5 on the main dataset,

RI S is the best for all instances, although, it ties thrice with the similarity-

based model, and once with the random model. It can be inferred that
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Figure 6.17: Line plot of the performance of each model on the selected AOI
instances on the supplementary dataset for N = 5 for similarity metric.

Figure 6.18: Line plot of the performance of each model on the selected AOI
instances on the supplementary dataset for N = 5 for redundancy metric.

RI S gets better results for the task of extracting representative but diverse
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Figure 6.19: Line plot of the performance of each model on the selected AOI
instances on the supplementary dataset for N = 5 for anomaly metric.

samples with N greater than the number of clusters when the dataset is

dense compared to when the dataset is sparse like the main dataset.

Figure 6.20: Line plot of the performance of each model on the supplementary
dataset for N = 5 for final score.
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Examining the Change in Scores (N = 3 - N = 5)

In this section, I also examine the difference between the N = 3 and N = 5

on the supplementary dataset. This was also estimated by subtracting the

scores of the experiment conducted with N = 5 from those of the experi-

ment conducted with N = 3 (N = 3 - N = 5). A positive result implies that

there is a drop in scores from N = 3 to N = 5, while a negative result im-

plies the opposite. For this analysis, there is no need to deeply analyze the

change in the random model as there is no clearly defined pattern to its

extraction, hence comparing it to a previously result is not interesting.

In Figure 6.21, from the plot for change in similarity, we can see that the

drop in similarity scores for the RI S and similarity-based models from N =
3 to N = 5 for the supplementary dataset is consistent with the drop in the

main dataset (See figure 6.9). As explained in section 6.1.1, it holds that the

larger the size of the extracted set the lower the similarity scores between

the extracted set and the AOI.

Figure 6.21: Bar plot of the change in scores of similarity metric for each instance
on the supplementary dataset for all models.

The change in redundancy plot in figure 6.22 also follows the pattern of its

main dataset counterpart (Figure 6.10). There is a significant increase in

the redundancy score for the similarity-based for all 7 instances, by the ad-
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dition of less similar instances to a larger extracted set. Diversity in the ex-

tracted set is improved by selecting more instances leading to better scores

for redundancy. On the other hand, the RI S model had worse redundancy

scores for 5 out of the 7 instances, this is because algorithm transverses

each cluster multiple times when the value for N is greater than the num-

ber of clusters, it selects instances similar to an already selected instance.

This leads to a decrease in the redundancy score.

Figure 6.22: Bar plot of the change in scores of redundancy metric for each
instance on the supplementary dataset for all models.

From the plot for the change in anomaly scores shown in figure 6.23, there

is no consistent change in anomaly scores across the 7 instances used

as AOI’s for the similarity-based model, 4 instances had a reduction in

anomaly scores, while 3 had improved scores for the N = 5 experiment.

The RI S model on the other hand, had a reduction in anomaly scores for

5 instances and an improvement on 2 instances.

As can be seen from figure 6.24 there was a significant improvement in

the redundancy scores of the similarity-based model for N = 5 on the sup-

plementary dataset, as was also observed on the main dataset (See figure

6.12). However, this change was not enough to alter the dominance of RI S

as the winning model for this experiment on a dense dataset like it did on

the sparse main dataset.
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Figure 6.23: Bar plot of the change in scores of anomaly metric for each instance
on the supplementary dataset for all models.

On the supplementary dataset, across all experiments performed for N = 3

and N = 5 on the dataset, RI S model was the best for 13 out of 14, of the 13

there were ties on 4 while it was the clear winner on 9. The performance

of RI S on denser datasets (RI S won 69% of experiments) is better when

compared to the sparse main dataset where RI S is better for 6 of 12 exper-

iments (RI S won 50% of experiments).

6.1.3 Summary of Deductions from Experiments

In this section, I outline a summary of deductions from the results of the

experiment. The deductions are as follows;

• Regardless of the density of the dataset and the size of the extracted

set (N ), the redundancy and the similarity metrics follow the same

patterns. While the similarity-based model had the best scores for

the similarity metric, the random model always had the best score

for redundancy. RI S model consistently has the second best scores

for both metrics for all experiments.
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Figure 6.24: Bar plot of the change in scores of final score for each instance on
the supplementary dataset for all models.

• The density of the dataset is a major factor for the anomaly metric.

The anomaly scores for the models are higher for denser datasets

and lower for spare datasets.

• Across all experiments, it is also noticeable that when the similarity

score is low for a model, the redundancy score for its extracted set is

high and vice-versa.

• RI S is the best model for extracting representative but diverse sam-

ples when the value of N is small regardless of the density of the

dataset. However, when N is big, it is beneficial to consider the

similarity-based models, especially for sparse datasets.

• RI S appears to perform better on dense datasets in comparison to

sparse datasets especially when a small N is desired

6.1.4 Challenges

Ideally, a qualitative evaluation is necessary for this task, but some chal-

lenges that are discussed in this section made this impossible.



80 CHAPTER 6. ANALYSIS OF RESULTS

The RIS idea introduced in the research is a novel idea, and hence a robust

evaluation proved to be difficult. Also, discussions with medical doctors

and extensive research proved that aneurysm location and type are impor-

tant features for the treatment of IA’s. The size of the main dataset posed

problems with evaluating this qualitatively because there was not enough

samples per IA location or type to facilitate localized extraction of repre-

sentative and diverse subset for the IA’s. This is why only a quantitative

evaluation was explored.

The notion of a representative and diverse selection of samples with

respect to IA’s have to be localized to the aneurysm location and the

aneurysm type as these are already established discriminators of IA’s

(THOMPSON et al. (2015); ZHAO et al. (2018)). After preprocessing of the

given dataset as explained in section 4.3.1, there were 70 instances in

the dataset. After the inclusion of the features for IA location and type,

the instances would have reduced to 57 instances after pre-processing

because the other instances have at least one of the features missing. Fur-

thermore, grouping the instances based on location yielded very small

amount of samples for each location and this would not be sufficient for

this research.

I explored the idea of augmenting this data with synthetic data to facil-

itate the training of localized models for IA’s, but this idea proved insuf-

ficient because synthetic data can’t be evaluated qualitatively by medical

experts. Evaluating synthetic data would be impossible because when syn-

thetic samples are extracted, there will be no images for a medical expert

to judge the quality of the extracted samples.

Furthermore, a more robust quantitative evaluation proved challenging

because, after thorough research there was no existing work to compare

the proposed approach against, there was also no existing dataset that la-

beled pairs of instances using the notion of representative and diverse in

any domain.

6.2 Instance Selection Adaptation

The experiment explained in section 5.2 was done to evaluate the perfor-

mance of the proposed IS adaptation of RI S discussed in section 4.4.3. Fig-
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ure 6.25 shows the performance of the proposed approach in comparison

with subsets extracted by random sampling on the iris dataset. The fig-

ure shows the accuracy of models trained using subsets extracted by both

approaches on the test set. From the figure, the RI S adaptation has bet-

ter accuracy’s using models trained on 12.5% and 30% of the training set,

while the random model is better with 50% of the training set. This results

aligns with the evaluation for RI S (section 5.1) where we see RI S perform

better for smaller sizes of extracted set compared to other models. The ac-

curacy of a model trained using the complete training set had an accuracy

of 100%.

Figure 6.25: Accuracy of models trained with different percentages of representa-
tive sets extracted from the training set of the iris dataset

The second experiment to determine the efficacy of the proposed adapta-

tion was performed using the supplementary dataset. The result is shown

in figure 6.26. The accuracy of a model trained using the complete training

set had an accuracy of 57.75%. Unlike the experiment with the iris dataset,

the random sampling extracted sets posted the best accuracy’s for all 3

sizes of the representative set. This deviation in pattern may be because of

the size of these datasets, while the iris dataset has 150 instances, the sup-

plementary dataset has 351 instances. Therefore, after holding out 20% of

the respective datasets for testing, every percentage of representative set
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extracted from the training set of the supplementary dataset is 2.34 times

bigger than its iris counterpart. This may not be small enough to empha-

size the strength of the proposed RI S adaptation on the supplementary

dataset.

Furthermore, the class labels can also be a reason for this deviation, while

the iris dataset has 3 classes, the rupture state feature of the supplemen-

tary dataset has 2 classes. The probability of misclassification on the iris

dataset is 66% while it is 50% on the supplementary dataset.

Figure 6.26: Accuracy of models trained with different percentages of representa-
tive sets extracted from the training set of the supplementary dataset

6.3 Discussion of Research Questions

6.3.1 RQ 1. How do we define an extraction technique for the task of
extracting representative but diverse samples?

The proposed RI S technique (explained in detail in section 4.6) in this

work fulfills the task of selecting representative but diverse subset. This

methodology has mainly three steps, namely;

• Outlier detection and removal
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• Clustering

• Prototyping

The outlier removal step is used to drop anomalies from the dataset to

ensure they are not in the extracted set, the clustering step groups similar

instances together so that the extracted set does not consist of instances

that are alike. Finally the prototyping step is the technique with which the

extracted subset is generated after the completion of the initial two steps.

6.3.2 RQ 2. How is representative but diverse defined?

The term "representative" denotes similarity, while "diverse" represent dif-

ference. Therefore a representative but diverse subset with respect to a

given instance of interest shouldn’t be the most similar instances in the

dataset only because variety in selections is essential. We are not inter-

ested in a subset that is most similar to the supplied example, but in a

subset that offers variance in line with similarity.

A representative but diverse subset can then be defined as a set of in-

stances which are similar to an instance of interest but different from each

other. The novel RI S algorithm was designed to extract this kind of sub-

set from a larger dataset using various unsupervised machine learning

techniques and algorithms. The steps used to achieve this are outlined in

RQ1.

6.3.3 RQ 3. What metrics will be used to evaluate the extracted set?

A metric suitable for evaluating this task have to fulfill 3 conditions, this

metric must:

• measure the degree of similarity between the each of the instance in

the extracted set and the instance of interest

• measure the degree of similarity between the instances in the ex-

tracted set

• penalise the extracted set if outliers are in the set
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The equation proposed in section 4.5.2 satisfies the above conditions.

The similarity part Si m, measures the representation of the instances in

the extracted set with respect to the instance of interest, the redundancy

part Red , measures the degree of similarity within the extracted set and

penalises a lack of diversity and the anomaly part Anom checks and pe-

nalises the inclusion of outliers in the extracted set.

This equation is a weighted aggregation and these weights can be used to

emphasize different parts of the equation depending on the importance

of a metric to the user.

6.3.4 RQ 4. How do we distinguish between diverse cases and out-
liers?

The outlier detection step in the RI S framework is to ensure that outliers

are not selected when the algorithm attempts to optimise for diversity. For

this reason, I developed the Anom metric ( Equation 4.7 ) which penalises

the selection when an outlier is present in the extracted set.

This metric is based on LRD which calculates the distance of a point to its

k nearest neighbours. Table 6.3 shows the scores for the outliers dropped

by the outlier removal step of the RI S algorithm and the scores of the least

scoring instances in the dataset. As can be seen, there is a relationship

between DBSCAN predictions and the LRD scores, the lowest scoring 6

points from the total of 70 sufficiently captures the outliers found by DB-

SCAN. Thus the scores from this metric can sufficiently ensure outliers are

not mistaken for diversity.

Table 6.3: LRD Scores and DBSCAN Outliers

Scores DBSCAN Evaluation
0.000000 Outlier

0.028132 Inlier

0.028295 Inlier

0.030359 Outlier

0.030802 Outlier

0.036230 Outlier

Although LRD can sufficiently handle outliers, the spread of it’s scores for

inliers can also adversely affect the scoring of the aggregated metric. Since
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Figure 6.27: Distribution of LRD score for the dataset

data points can either be inliers or outliers, there no justification for a huge

disparity in scores between inliers. Figure 6.27 is a boxplot of the LRD

scores for the points in the dataset with a mean of approximately 0.18.

When points with a higher value (for example 0.8) for LRD are selected,

this can have an unfair impact on the aggregated scores despite being an

inlier like a point with a value of 0.1.





7
Conclusions and Future Work

7.1 Conclusions

In this thesis, I developed a novel framework for extracting a representa-

tive but diverse subset from a larger database with respect to an AOI using

a dataset of IA’s. I also developed metrics used to evaluate the quality of an

extracted set to ascertain the degree to which the subset fits the AOI.

The framework, which I have called RIS, consists of three major steps;

the outlier detection and removal step, the clustering step and the pro-

totyping step. For each of these steps, experiments were conducted us-

ing several unsupervised machine learning algorithms. For the outlier re-

moval, Autoencoder, Isolation Forest, DBSCAN and Local Outlier Factor

were tested. Likewise, K-means, DBSCAN, and OPTICS were tested for

clustering. Upon analysis of the suitability of these algorithms to the given

IA dataset, DBSCAN, K-means, and an iterative similarity-based prototyp-

ing approach was used for each of these steps respectively.

I also developed metrics for evaluating an extracted subset by exploiting

existing research in IS and adapting these equations to suit our task. The

three developed metrics are Similarity (Si m) which measures represen-

tativeness, Redundancy (Red) which measures diversity, and Anomaly

(Anom) which penalizes the inclusion of outliers in the extracted set.

These individual metrics were aggregated to form a final equation, which

measures the degree of representativeness and diversity of an extracted

subset with respect to a given instance. This equation can be weighted to

emphasize the importance of a particular metric depending on the user,

the use case, the domain of the data, etc.

87



88 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Our experiments showed that for the given dataset, when the size of the ex-

tracted set is equal to the number of clusters, RI S performs better than a

similarity based model which optimizes for representativeness and a ran-

dom selection approach which optimizes for diversity. However when the

size of the of the extracted subset was increased, the performance of RI S

began to decline. I also saw that while the similarity based model gets high

scores for the similarity, its redundancy scores were low. The random se-

lection approach on the other hand has high redundancy scores and low

scores for similarity. RI S tries to optimize the weaknesses of both models

by getting fair scores for both similarity and diversity unlike the other two

models. This work also showed that the proposed metrics perform the task

of measuring the quality of extracted sets effectively.

Both the RI S framework and the proposed equations are reusable and can

be adapted to other datasets in any domain, as long as adequate analysis

to determine the appropriate choice of unsupervised algorithm to be used

in each step of the framework, their hyper-parameters and proper weights

are assigned to each metric in the final equation.

Finally, the results of this study indicate that the proposed RI S framework

can be useful for the task of extracting representative but diverse IA’s with

respect to to a given AOI

7.2 Limitations

Like most scientific studies, this research has some limitations, this is what

I discuss in this section.

The minimum size of an extracted set that the proposed RI S algorithm for

extraction of representative but diverse samples can handle is equal to the

number of clusters in the dataset. This is not a problem for datasets with

small clusters (5 or less), which were used for the analysis, but for large

datasets with many clusters, the extracted set can contain too many in-

stances that may not be necessary for a user depending on this task or do-

main. A solution for this can be to extract samples from k clusters closest

to the point where the AOI lies, thereby restricting the algorithm to extract

instances less than the number of clusters in the dataset.
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Furthermore, PCA was used extensively in this research, this is not ideal for

datasets with categorical features. Although, I used a categorical encoding

step to navigate this problem and also tried FAMD before settling on PCA

as discussed in section 4.3.1, it is not optimal to use encoding approaches

for PCA. It is important to use other techniques of dimensionality reduc-

tion to handle mixed datasets.

Although the flexible weighting of the each metric in the final score is an

advantage which offers adaptation to different use cases, datasets and do-

mains, it can also be a disadvantage because this research did not propose

a unified optimal weights for the metrics. To sacrifice unification in favor

of flexibility means that the formula does not offer a a standard with which

can be used to evaluate every potential nuances involved in working with

a different domain or dataset.

Finally, for a medical research, a qualitative evaluation is important regard-

less of how good the quantitative evaluation is, it is pivotal that medical

experts examine the results of the work. Unfortunately, this was impossi-

ble for reasons stated in section 6.1.4. Evaluating this approach using a

larger dataset of IA’s with sufficient instances that permit for the building

localized models for extracting representative but diverse IA’s is necessary

to facilitate a qualitative evaluation.

7.3 Future Work

The RIS model introduced in this work is focused on extracting a subset of

representative but diverse samples from a larger dataset. This approach

presented here was tested on tabular data, however, the robustness of this

idea could be improved by testing other types of datasets, such as text and

image data. This would make for a more robust evaluation of the frame-

work if expanded to also cover various datasets.

In addition, all the metrics used for evaluating an extracted set were all dis-

tance based, it may be beneficial to evaluate the quality of an extracted set

by non-distance based metrics. Despite the fact that I exploited method-

ologies used for instance selection as discussed in chapter 3, a new set of

metrics for evaluation also eliminates any form of bias because this pro-

posed RIS framework and the evaluation metrics were developed by me.
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The size and the composition of the dataset can also be improved. A

dataset with a considerable percentage of outliers would be beneficial to

adequately stress test the anomaly metric Anomk (S). Furthermore, the

development of a dataset that matches groups on instances based on the

notion of representative but diverse would be useful as a baseline to evalu-

ate the performance of this model and other models that attempt to solve

this problem.

A larger IA dataset with more samples for each aneurysm location and type

would be adequate to build a localized model for IA’s that can be effectively

evaluated both qualitatively and quantitatively.

Furthermore, exploring other approaches to this task, such as developing

an optimization function which we try to optimize by an iterative selection

of samples until the size of the extracted set is reached can serve as a useful

and an adequate alternative to RI S.

Overall, testing the approach on different types of data, development of

non-distance based metrics, use of a larger dataset with more samples,

and exploring other approaches would provide a more comprehensive un-

derstanding and analysis of this task.
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