
Otto von Guericke University Magdeburg

Faculty of Computer Science
Institute of Simulation and Graphics

Bachelor Thesis

Designing a Library to Create
Animated Sequences Using D3.js

Author:
Vincent Göring

March 20, 2023

1. Reviewer 2. Reviewer
Prof. Dr. Bernhard Preim Benedikt Mayer
Institute of Simulation and Graphics Institute of Simulation and Graphics

Otto von Guericke University Magdeburg Otto von Guericke University Magdeburg

Göring, Vincent:
Designing a Library to Create Animated Sequences Using D3.js
Bachelor Thesis, Otto von Guericke University Magdeburg, 2023.

Abstract

In online storytelling, the incorporation of data-driven visualizations is widespread.
To explain the results of the analysis of complex datasets or to highlight differ-
ent aspects, a variety of visualizations is employed. Rather than displaying a
series of graphics, many stories seamlessly transition from one graphic to another
graphic, creating an animated sequence. This thesis presents the implementation
of a JavaScript library that allows the efficient creation of such animated sequences
and is compatible with the JavaScript library D3.js. The resulting library, GSAP-
ASEQ, is based on the animation library GSAP and showcased by implementing
a lead scenario. In addition, the necessity of such a library is justified and re-
quirements are determined. The developed library is validated according to these
requirements. To determine the actual added value of the library and to identify
potential improvements or issues, empirical studies are necessary. This work is
aimed at persons with basic programming skills, experience in web development,
and an interest in developing digital visualizations.

Contents

Abstract iii

1 Introduction 1
1.1 Motivation . 1
1.2 Aim of this Thesis . 2
1.3 Structure . 2

2 Background and Fundamentals 3
2.1 Animation in Visualizations . 3
2.2 Animation in the Context of this Thesis 4
2.3 D3.js: Data-Driven Documents . 5

2.3.1 Features . 5
2.3.2 How to Use D3 . 6

2.4 Existing Approaches . 8

3 Design Concept 9
3.1 Lead Scenario . 9

3.1.1 Subject and Goal of the Lead Scenario 9
3.1.2 Concept . 10

3.2 Determination of Requirements . 13
3.2.1 Visualization-Related Requirements 13
3.2.2 Programming-Related Requirements 15

4 Approaches Based on D3 Transitions 17
4.1 Vallandingham’s Approach . 17

4.1.1 How it Works . 18
4.1.2 Validation . 18

4.2 Implementation-Specific Considerations 20
4.3 D3-ASEQ: A Library based on D3 Transitions 21

4.3.1 Implementation Details . 21
4.3.2 Validation . 24

4.4 A Deeper Dive into D3 Transitions 25

5 GSAP-ASEQ: A Library Based on GSAP 29
5.1 GSAP . 29

5.1.1 Advantages of Using GSAP 30
5.1.2 Possible Drawbacks of Using GSAP 31

5.2 Implementation Details . 32
5.3 Implementation of the Lead Scenario 34
5.4 Validation . 35

6 Conclusion 39
6.1 Discussion . 39
6.2 Future Work . 40

Bibliography 41

1
Introduction

1.1 Motivation
Data visualizations nowadays play an important role in digital storytelling. Many
online journalists and news agencies, for example, The Guardian, incorporate in-
teractive graphics in their articles to support their narratives and present complex
issues [1].

Segel and Heer [1] identify three common structures that are used in so-called
data stories. One of them, the Interactive Slideshow, is characterized by a linear
sequence of views through which the user is guided. An interactive slideshow is
mainly author-driven but may allow interaction within the single visualizations.
According to Segel and Heer [1], interactive slideshows work effectively with com-
plex datasets as data dimensions and modifications of the displayed visualization
are presented step by step. To help the user stay in context and to increase engage-
ment, the use of animated transitions between the views can be vastly beneficial
[2]. Thus, animated sequences play an important role in narrative visualizations.
The article Homicide database: Mapping unsolved murders in major U.S. cities
[3] published by The Washington Post provides an example of the use case of ani-
mated sequences. In this case, displayed graphics are supplemented by short texts
and scrolling is used to navigate within the interactive slideshow.

A popular possibility to create data visualizations for web pages is using the
JavaScript library D3.js (D3) [4]. However, it is not obvious how to efficiently
implement an animated sequence that uses D3 for the creation of the single views.
Especially implementing features such as skipping or reversing transitions is a
rather complex task. It is not clear how to structure the code and avoid a large
coding overhead.

2 1 Introduction

1.2 Aim of this Thesis
This thesis aims to present a library that facilitates the creation of animated se-
quences and supports the creation of views based on D3. The desired functionality
of the library will be specified by determining requirements. By showing that ex-
isting approaches are not able to meet the determined requirements, I highlight
the importance of this work.

As this work presents a JavaScript library, basic programming knowledge and
fundamental HTML and CSS skills are required.

1.3 Structure
For a better overview, the structure of this thesis is described in more detail:

Chapter 2 (Background and Fundamentals) deals with the main concepts of D3
and the role of animated transitions in visualizations. In addition, I specify the use
of animation in the context of this work and summarize the results of my research
on existing approaches for creating animated sequences.

Chapter 3 (Design Concept). In this chapter, requirements for the library to be
developed are established. Moreover, the concept of the lead scenario is presented.
The lead scenario indicates certain requirements and serves as an introduction to
the use case of animated sequences.

Chapter 4 (Approaches Based on D3 Transitions) discusses possible strategies for
implementing animated sequences using only D3. First, an existing pattern and a
self-developed library are explained and validated. Second, the limitations of D3
transitions and resulting issues are depicted. In addition, implementation-specific
considerations regarding the library to be developed are made.

Chapter 5 (GSAP-ASEQ: A Library Based on GSAP). In this chapter, the devel-
oped library (GSAP-ASEQ) for creating animated sequences is presented. GSAP-
ASEQ is based on the animation library GSAP. Therefore, general information
about GSAP and its features, tailored to the required context, is pointed out.
Next, the implementation and usage of GSAP-ASEQ are explained. The developed
library will be validated on the basis of the requirements, defined in Chapter 3.
To showcase the developed library, the concept of the lead scenario, developed in
Chapter 3, is realized and presented.

Chapter 6 (Conclusion) discusses the process and the result of this work. In
addition, an outlook on possible future work regarding the developed library is
given.

2
Background and Fundamentals

This chapter discusses the advantages of incorporating animation in visualizations.
After specifying the kind of animation I focus on in this work, an introduction to
D3 and its basic usage is given. This is necessary for fully understanding Chapter 4
and Chapter 5. In addition, I highlight the relevance and benefits of using D3 for
creating data visualizations. At last, I present the results of my research on existing
approaches that deal with the implementation of animated sequences based on D3.

2.1 Animation in Visualizations
Studies have shown that users often prefer animated visualizations over non-
animated visualizations [2, 5] and have given strong evidence that animations
can be of great benefit. For example, Bederson and Boltman [6] showed that us-
ing animation when navigating around spatial data supports the user in building
mental maps of the spatial information. Heer and Robertson [2] found that ani-
mated transitions can improve the perception of changes when switching between
statistical data graphics.

A well-known advantage of animation is that it can be employed to support object
constancy when transitioning between different states or representations. In their
paper about Cone Trees, a technique to visualize hierarchical structures in 3D,
Robertson et al. [7] describe that “object constancy enables the user to track
substructure relationships without thinking about it” (p. 190). Thus, the cognitive
load can be reduced. The user’s comprehension of changes may be enhanced by
maintaining object constancy and supporting object tracking through animation.
This benefit is demonstrated in the following example: First, a geographical map
is displayed to the user. Then, an enlarged section of a specific region is shown.

4 2 Background and Fundamentals

Without any animation, the user would probably have difficulties locating the
region in the firstly shown map and would need to search the map for landmarks,
such as rivers or mountains. With the help of an animated transition, e.g., zooming
in from the first view to the second view, the user would probably be able to
quickly locate the rough location of the region on the first map. The animated
transition helps the user to stay in context and improves the understanding of the
relationships between different views.

Robertson et al. [2] name four possible advantages of using animation in their
paper Animated Transitions in Statistical Data Graphics, including the support of
object constancy. One advantage is that the animation of motion is effective to
direct the viewer’s attention to the animated object. Robertson et al. argue that in
comparison to other visual properties, such as color [8], motion is easier to perceive
in the peripheral vision. Another advantage mentioned by the authors is that
animation can help construct narratives by conveying cause-and-effect relations.
Moreover, animations may capture the viewer’s emotions and heighten the level of
interest and delight.

Robertson et al. [2] also mention drawbacks of animation, such as distraction,
time-error tradeoffs, and the possible misuse of object constancy. Fast animations
may result in errors if the viewer cannot follow the animated changes. To counter-
act this, longer animations may be used. However, this leads to a longer waiting
period which may bore the viewer. Object constancy can be misused by trans-
forming elements into unassociated elements. Consequently, false relationships are
conveyed to the viewer.

To conclude, animations can be of great benefit in visualizations, provided they
are used appropriately.

2.2 Animation in the Context of this Thesis

Animation can be used for enhancing multiple types of changes, such as visualizing
trends or showing functionality [9]. In this thesis, I mainly focus on animations
in the context of animated transitions between views. That means transitioning
from an initial state to an end state. However, animated transitions could also be
used to visualize a change of data, a change over time or other different kinds of
changes, which exceed a simple transition between two views.

2.3. D3.js: Data-Driven Documents 5

In the context of this work, I focus on the animation of attributes1 and CSS (Cas-
cading Style Sheets) properties2 of HTML (HyperText Markup Language) elements3

and SVG (Scalable Vector Graphics) elements4. Thus, when speaking of the state
of an element, the entirety of attributes and CSS properties and their correspond-
ing values are meant. Consequently, the term element and visual element refer to
an SVG or HTML element.

2.3 D3.js: Data-Driven Documents

D3 is an open-source JavaScript library created by Michael Bostock, Vadim Ogievet-
sky, and Jeffrey Heer. It allows efficiently creating and transforming elements in
the Document Object Model (DOM), e.g., HTML and SVG elements, depending on
data [4]. The DOM represents the content and structure of a webpage as objects
and provides a standard interface for accessing and manipulating its elements, for
example by using a scripting language, such as JavaScript [10]. According to D3’s
website [11], the library is very performant and supports large datasets and corre-
sponding transformations of the DOM, which may be triggered by user interactions
and data changes.

2.3.1 Features
In 2011, Bostock et al. [4] introduced D3 and presented its advantages over other
visualization tools: Most visualization tools do not allow direct manipulation of the
DOM but provide scenegraph abstractions. This may lead to inefficient debugging
and a limited variety of possible visualizations. In addition, the authors argue that
scenegraph abstractions can be a barrier for new users as they do not consider or
support the user’s possible prior knowledge in web development. That means
known standards or tools are not applicable and, thus, the learning expense may
be relatively high. Consequently, in order to solve these issues, which mainly
lead to inefficiency and constraints, D3 pursues three goals: compatibility (1),
debugging (2), and performance (3).

(1) As D3 is a JavaScript library that directly manipulates the DOM, it can co-
exist with most other tools that may improve efficiency in other tasks leading to
a high compatibility.

1 https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes and
https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute
(visited on 01/22/2023)

2 https://developer.mozilla.org/en-US/docs/Web/CSS/Reference
(visited on 01/10/2023)

3 https://developer.mozilla.org/en-US/docs/Web/HTML/Element (visited on 01/22/2023)
4 https://developer.mozilla.org/en-US/docs/Web/SVG/Element (visited on 01/22/2023)

https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes
https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://developer.mozilla.org/en-US/docs/Web/SVG/Element

6 2 Background and Fundamentals

(2) For debugging in D3, all JavaScript debuggers, such as built-in debuggers of
browsers or Node.js5, can be used. As D3 has no scenegraph abstraction, it is
possible to inspect the scenegraph by directly inspecting the DOM.

(3) Bostock et al. also state that the performance is increased (compared to
other visualization tools) based on the following argument: As D3 does not use
a scenegraph abstraction, no mapping of the tool-specific representation to the
DOM is necessary. Consequently, changes, such as transformations, are directly
applied. The performance of D3 is also benchmarked and compared to other tools
- however, the present relevancy must be questioned as the paper [4] is from 2011
and D3 and other visualization tools may have evolved, and new tools and libraries
have been developed.

2.3.2 How to Use D3
The following paragraphs are mainly based on the paper D3 Data-Driven Docu-
ments [4] and the D3’s website [11]. Most of the functionality of D3 is accessed by
the globally imported d3 object.

Selections.

To select DOM elements D3 provides two functions: select (returns the first
matching element or an empty selection) and selectAll (returns all matching
elements or an empty selection). Both functions need to be provided with a se-
lector, which is specified by the W3C Selectors API6. This may, for example, be
a class, ID, tag, a combination of multiple selectors, or a node reference. The
returned selection can be mutated in various ways, such as changing attributes
or style properties (CSS properties) or creating a subselection. This is done by
method chaining and applying operators, such as select or style, whose values
can be provided either as a constant or function. In object-oriented programming,
method chaining allows directly calling multiple methods one after another with-
out storing intermediate results. This is possible if the previous function returns
the object on which the subsequent function is called.

Example:

d3. selectAll (".blue")
.attr("class", "red")
.select("p")

.style("font -size", "30px");

The above code selects all elements with a class attribute of the value of "blue"
and overwrites their classes with the new class "red". Then, within the previ-
5 https://nodejs.org/en (visited on 01/23/2023)
6 https://www.w3.org/TR/selectors-api/ (visited on 01/23/2023)

https://nodejs.org/en
https://www.w3.org/TR/selectors-api/

2.3. D3.js: Data-Driven Documents 7

ous selection, we select the paragraph first appearing in the DOM by using the
corresponding tag "p" and alter its style by changing the font size.

Binding Data to Nodes.

The data operator binds data to visual elements. The data must be provided in
the form of an array of arbitrary values. The bound data can then be accessed
when applying other operators and used to define corresponding values.

Example:
d3. selectAll ("p")

.data (["A", "B", "C", "D"])

.text(function(d, i){
return d + i;

});

In this example, we first select all paragraph elements, bind the data array to
them, and change the text contents of the paragraphs according to the bound
data. The parameters d and i, represent the bound data value and the index
of the bound data in the data array. Assuming that the DOM exactly contains
four paragraphs, the text of these paragraphs would now be "A0", "B1", "C2", and
"D3". However, this example is not representative for most visualizations as we
assume that the number of selected elements equals the length of the data array.
Thus, after applying the data operator, placeholder elements for data that could
not be bound to an element and elements to which no data could be bound can be
accessed via the subselections enter and exit. This enables creating elements, for
example by using the operator append, depending on data and handling leftover
elements.

Animated Transitions.

D3 supports the use of animated transitions. Transitions can be applied by call-
ing the transition function on a selection. This function returns a transition
instance on which the end state of the transition can be defined. Consequently,
a D3 transition animates from an initial state to an end state. Transitions can
be further customized, for instance, by setting a delay, duration, or easing func-
tion. In addition, by using the attrTween function, custom interpolators can be
defined. An interpolator determines the value of an animated property for every
frame of the transition. Multiple transitions can be triggered one after another by
method chaining. A chained transition starts directly after the previous transition
is finished.

Example:
d3. selectAll ("rect")

. transition ()

8 2 Background and Fundamentals

.attr("fill", "red")

.attr("height", "50px")

. transition ()
.attr("width", "0px");

In this code snippet, all rectangles (referenced via "rect") are transitioned to a fill
color of red and a height of 50 pixels. After that, the width is transitioned to zero.

2.4 Existing Approaches
My research of existing approaches for creating animated sequences using D3 has
led to few results. I found many visual stories that incorporate animated sequences
but almost no publicly available generalized approaches to create animated se-
quences based on visualizations implemented with D3. A possible programming
pattern using scrolling as a navigation technique is provided by Jim Vallindgham
[12]. However, in Chapter 4, I will show that this approach does not meet the later
determined requirements.

3
Design Concept

In this chapter, I first present the concept for a lead scenario in order to provide
an example of the use case of animated sequences. This lead scenario is later used
to showcase the developed library. In Section 3.2, requirements for the library to
be developed are established and justified.

3.1 Lead Scenario

The lead scenario to be developed is based on a task sheet1 of the visualization
lecture at the Otto von Guericke University Magdeburg.

3.1.1 Subject and Goal of the Lead Scenario
The lead scenario focuses on a heatmap that shows the development of the global
air temperature anomalies from 1850 to 2022 (see Fig. 3.1). The reference value
for the monthly anomalies is the average air temperature of the corresponding
month between 1951 and 1980. The data used was extracted from Berkely Earth2.
An animated sequence shall be used to explain how the heatmap is constructed.
The heatmap resembles Ed Hawkins’ Warming Stripes3 graphics. Warming stripes
visualize the change of temperature over time and are employed in popular science.
The animated sequence shall counteract possible misinterpretations of the heatmap
and give an understanding of Warming Stripes in general.

1 https://observablehq.com/d/b0c077a75a8dc71f (visited on 01/25/2023)
2 https://berkeleyearth.org/data/ (visited on 01/25/2023)
3 https://showyourstripes.info/s/globe (visited on 01/25/2023)

https://observablehq.com/d/b0c077a75a8dc71f
https://berkeleyearth.org/data/
https://showyourstripes.info/s/globe

10 3 Design Concept

Figure 3.1: This heatmap visualizes the global monthly temperature anomalies per month on
the x-axis and per year on the y-axis.

3.1.2 Concept

Each view of the animated sequence shall be supplemented by a text on the left-
hand side of the visualization. The texts shall provide additional information
or explanations regarding the displayed view. Moreover, a stepper, as described
by McKenna et al. [13] shall be used for navigating between the views. That
means, discrete control over animations, a linear story with the possibility of linear
skipping, and navigation through buttons. In the further thesis, including the
following section, I mainly focus on the described type of navigation.

In order to build up the heatmap, we first focus on a specific year and construct the
corresponding horizontal stripe in the heatmap. This stripe is later inserted into
the right position in the heatmap. The shown graphics in the corresponding figures
are the resulting views of the implementation of the lead scenario with JavaScript
and D3. When navigating from a view to a neighboring view, animated transitions
shall be used.

3.1. Lead Scenario 11

View 1. First, the reference value
of the anomalies, the average global
temperature per month, calculated in
the period from 1851 to 1980, is dis-
played in a simple step chart. The
temperature is provided on the y-
axis. The months are displayed on
the x-axis.

Figure 3.2: View 1

View 2. The monthly temperatures
of 1887 are drawn into the chart by
adding another step-line. I chose the
year 1887 as the global anomaly dur-
ing the winter (reaching its maxi-
mum in January) of this year was
extremely high. Extreme weather
conditions, such as early snow and
cold temperatures, especially in con-
tinental North America, led to ma-
jor losses in the cattle industry [14].
There, the winter of 1886 / 1887 is
also known as The Big Die-Up [14].

Figure 3.3: View 2

View 3. To visualize the anomalies
of 1887, the enclosed areas between
the two displayed step lines are filled
with color. Thus, this view demon-
strates how anomalies are calculated.

Figure 3.4: View 3

12 3 Design Concept

View 4. Next, the previous graph
is transitioned into a bar chart
that allows the direct reading of
the anomaly values. Thus, the y-
axis now represents a scale for the
anomaly values. To improve the
viewer’s understanding of the trans-
formation, the step-line of the aver-
age global temperature is flattened to
a straight line at a y-axis value of
zero. To create a bar chart, the col-
ored differences of the previous view
are transformed into rectangles.

Figure 3.5: View 4

View 5. The heatmap to be
constructed displays anomaly values
by using a color scale. Thus, in
this view, the bars are color-coded
relative to the lowest and highest
anomaly that ever appeared between
1850 and 2022. The corresponding
color scale should be shown.

Figure 3.6: View 5

View 6. The sixth view transitions
all bars to the same height, and re-
moves the y-axis. Now, the shown
graphic represents a single stripe of
the upcoming heatmap.

Figure 3.7: View 6

View 7. The last view (see Fig. 3.1, p. 10), shows the complete heatmap. The
stripe of the year 1887 is inserted into the corresponding position. To avoid over-
loading the screens with labels and to reduce the cognitive load, only the labels of
the years 1850, 1887 and 2022 shall be permanently visible. Other labels shall ap-
pear when hovering over the corresponding position in the heatmap. The heatmap
enables the viewer to put the year 1887 in context with other years or generally
identify trends or outliers.

3.2. Determination of Requirements 13

3.2 Determination of Requirements

The lead scenario represents an example that would benefit from a library which
simplifies the implementation of animated sequences. In this section, I list and
describe the general requirements for such a library. The requirements were deter-
mined in cooperation with an employee of the Institute of Simulation and Graphics
at the Otto von Guericke University Magdeburg, who deals with interactive D3
visualizations on a daily basis. The requirements are divided into two categories:
visualization-related requirements and programming-related requirements.

3.2.1 Visualization-Related Requirements

Bi-Directonal Navigation (RBiDiNav)

Undo and redo operations are commonly used in a diversity of applications, includ-
ing data stories, to enable the user to reset the system to the previous or following
state [15]. These operations allow the user to go back and forth in the state history.
It could be possible that the user wants to go back to the first view or revisit cer-
tain views. For example, regarding the lead scenario concept in Section 3.1.2, the
user may want to revisit step two after having seen the whole sequence of views,
because they want to have a more detailed look at it. Thus, reverting animation
steps is a basic interaction technique that should be supported by the library to
be developed.

Reversing Animated Transitions (RReverseTrans)

This requirement builds upon the requirement RBiDiNav. When reverting to a
previous state, the corresponding transitions should be played in reverse in order
to support object constancy the same way as it is done when advancing to the
next view.

Handling Active Transitions when Navigating (RHandleTrans)

If the user navigates through the sequence of views without skipping, fast-forward-
ing animated transitions reduces the waiting periods and may benefit the user’s
efficiency and satisfaction. In addition, the benefits of animated transitions are
maintained. If, in the currently displayed view, transitions are still playing (ac-
tive) and the user advances to the next view, transitions shall be fast-forwarded.
If the transitions are played in the forward direction and the user navigates to
the previous view, the playing transitions shall be reversed immediately, starting
from their current state. The described behavior of active transitions during a
navigation action shall apply in both directions of the sequence.

14 3 Design Concept

Skipping Views (RSkipViews)

Skipping views allows the user to directly navigate to an arbitrary view. Thus,
it makes the navigation in a long sequence more efficient. The user may not be
interested in intermediate steps, e.g., when they already have seen them or are
only interested in a particular view. Consequently, navigating to a certain view by
incrementally navigating to the next or previous view, as described in RBiDiNav, is
time-consuming. Thus, the usability may be increased by providing the possibility
of skipping multiple views.

When skipping views, all transitions shall be executed without any animation.
This equals changing the duration of all transitions to zero. I decided that this is
more effective and beneficial than playing all intermediate transitions as this would
likely lead to a long waiting period and not necessarily provide any benefits. To
counteract this, the intermediate transitions could be sped up. A high speed-
up leads to multiple transitions played in a very short time period. Thus, it
is probable that the viewer cannot follow and fully comprehend the animated
transitions. Consequently, the use of animated transitions while skipping has no
benefit but may irritate the viewer.

Staggering Animated Transitions (RStaggerTrans)

Heer and Robertson [2] showed evidence that staggering animated transitions can
be helpful to avoid occlusions and support object tracking. Furthermore, stagger-
ing animations can help to reduce the perceived complexity of a transition. In
the last step of the lead scenario concept, described in Section 3.1.2, a staggered
transition is beneficial: Ideally, the heatmap stripe of the year 1887 should be
inserted into the heatmap after the heatmap is fully displayed. Consequently, the
user is able to track the position of the anomaly values of 1887 in the heatmap
more easily. Without staggering, the transition might appear complex and the
user may lose track of the values of 1887. The full staggered transition is shown
in Figure 3.8.

Completing Animated Transitions (RCompleteTrans)

Before advancing from one view to the next view, all previous transitions should
first be completed. Then, the following transitions may be started. The same
shall apply in the reverse direction. In some cases, it could be useful that playing
transitions are simply interrupted by a new transition, but, in order to avoid
unexpected states, I decided to avoid this behavior.

Expressiveness (RExpress)

The library to be developed should be applicable to a preferably large variety of
animated sequences. However, other requirements and the focus on creating views

3.2. Determination of Requirements 15

with D3 need to be taken into account. Consequently, the expressiveness is mainly
characterized by the customizability of animated transitions.

Figure 3.8: The screenshots visualize the different steps of the staggered transition of view 7 of
the lead scenario. The motion direction of objects is indicated by pink arrows.

3.2.2 Programming-Related Requirements

One-Directional Programming (ROneDiProg)

This is the main requirement for the library to be developed. When intuitively
programming an animated sequence using only D3’s functionality, the developer
would need to code reversed transitions manually. To fulfill the requirement RRe-
verseTrans, every transition would need to be programmed once in the forward
and once in the backward direction. This leads to a high number of lines of code
that could be avoided. With an increasing amount of transitions and attributes
that are affected by transitions, more code and effort are needed. Especially when
using staggered transitions by setting different delays, the programming of the
reverse of the staggered transition can get tedious.
Moreover, the previous attribute values of an element, which are needed for the
reversed transition, are not always obvious. Consequently, the developer may need
to spend time searching the previous attribute values in the code or inspecting the
element in the previous view via a HTML inspector. If the previous attribute
values are changed, all transitions that revert to these values need to be manually
updated. Therefore, the effort to apply changes to transitions is relatively high.

16 3 Design Concept

Concluding, the developer should ideally only need to program in the forward di-
rection and the effort for reverting or skipping animation steps should be minimal
or none.

Learning Effort and Complexity (RLeEffort)

The learning effort, and thus, the complexity of the library to be developed should
be as low as possible. It is important that in this case, the term complexity refers
to the complexity of using the library and not the complexity of the library itself. It
has to be taken into account that this requirement may influence the requirement
RExpress. The higher the expressiveness the more probable it is that the learning
effort and complexity grow to cover all functionalities.

Lines of Code (RCodeLines)

This requirement partly supplements the previous two requirements RLeEffort
and ROneDiProg. The amount of code that is needed to perform elementary tasks
should be reduced to a minimum. Moreover, many function calls or functions with
many parameters should be avoided.

4
Approaches Based on D3

Transitions

In this chapter, I describe two approaches that shall facilitate the implementation
of animated sequences. Both approaches are solely based on D3 transitions1 and
do not use any additional libraries. Additional libraries are likely to increase the
learning effort (RLeEffort). Moreover, maintaining a library with dependencies
may lead to issues when dependencies are updated, not well maintained, or the
library itself shall be updated. I first examine a programming pattern presented by
Vallandingham for creating an animated sequence. The discussion of this pattern
results in two concept points that are incorporated into the library to be devel-
oped (D3-ASEQ and GSAP-ASEQ). Next, I present and validate a self-developed
library called D3-ASEQ for facilitating the creation of an animated sequence. Val-
landingham’s programming pattern and D3-ASEQ are both unable to match the
determined requirements from Section 3.2. Thus, in Section 4.4, I describe why it
is difficult to reach the established requirements by using D3 to animate elements.

4.1 Vallandingham’s Approach
As already mentioned in Section 2.4 (Existing Approaches), Vallandingham [12]
presents a pattern for programming scrollable data visualizations with discrete
control over transitions. This approach could possibly be transferred to a new
approach that uses a stepper to navigate between the views. First, I explain the
relevant components of the pattern in more detail. After that, I show why this
approach does not meet the established requirements.

1 https://github.com/d3/d3-transition (visited on 02/01/2023)

https://github.com/d3/d3-transition

18 4 Approaches Based on D3 Transitions

4.1.1 How it Works
This entire subsection is based on Vallandingham’s article So You Want to Build
A Scroller [12]. Vallindgham advises providing a function that is run prior to
showing the first view and generates all visual components of all views. This setup
function directly hides all elements by setting their opacity to zero. If the animated
sequence consists of a large number of different visual elements, a setup function
can be implemented for each view. Thus, the structure and readability of the code
are improved.

Each view requires a function that renders the matching view to the screen. These
draw functions are then stored in an array from which they can be invoked by pro-
viding the right index. When scrolling over a specific position, the corresponding
draw function is called. Each draw function consists of two steps:

1. Hide all visual elements of the two neighboring views of the corresponding
view that shall not be visible. This is done by setting the opacity to zero.

2. Reveal all visual elements that shall be displayed in the corresponding view
and that are not used in the neighboring views or transform already visible
visual elements.

When hiding or revealing elements, attributes or style properties of elements can
also be modified. All modifications of elements shall be applied in the context
of D3 transitions. For immediate changes, the transition duration shall be set to
zero. This leads to the following behavior: Running transitions in the displayed
view may be interrupted by new transitions when navigating to the next view.
That means an active transition is immediately stopped and a new transition is
played. This particularly happens when the user scrolls quickly. A new transition
that modifies the same element as an active transition stops and deletes the active
transition regardless of the animated attributes or style properties. For transitions
that should not be interrupted, named transitions (provided by D3) are used. As
long as two or more transitions don’t alter the same attribute or style property
of an element, transitions with distinct names can be played concurrently without
interfering with one another.

When quickly scrolling from the first to the last view, Vallandingham’s implemen-
tation of the scrolling mechanism ensures that all draw functions of intermediate
views are called in the right sequence. Consequently, all intermediate transitions
are started but not necessarily completed as they may be interrupted by subse-
quent transitions.

4.1.2 Validation
The pattern presented by Vallandingham may be of great benefit for structur-
ing the source code of an animated sequence. However, it does not provide any
reusable functionality that drastically simplifies the implementation of an animated

4.1. Vallandingham’s Approach 19

sequence, e.g., reversing a transition. Thus, the main goal was not reached. An
overview of the outcome of the validation is shown in Table 4.1. In the following,
the fulfillment of the requirements is examined in more detail.

Requirements
Visualization-Related Programming-Related

RBiDiNav ✓ ROneDiProg ✗

RReverseTrans ✓ RCodeLines ✗

RHandleTrans ✗ RLeEffort ✓

RSkipViews ✓

RStaggerTrans ✓

RCompleteTrans ✗

RExpress ✓ (same as D3)

Table 4.1: Result of the validation of Vallandingham’s programming pattern according to the
determined requirements from Section 3.2.

Visualization-Related Requirements

RHandleTrans and RCompleteTrans. These requirements are not supported.
Active transitions are either interrupted or played concurrently with the following
transitions when the viewer advances to the next view. Thus, transitions are
neither sped up nor completed before the subsequent transitions are played.

RBiDiNav, RReverseTrans, RSkipViews, and RStaggerTrans. These re-
quirements are fulfilled.

RExpress. Regarding the expressiveness, the customizability of transitions is
determined by the options provided by D3. As RBiDiNav is not fulfilled, it must
be considered that programming the reverse of complex transitions is a tedious
and possibly challenging task.

Programming-Related Requirements

ROneDiProg, RCodeLines, and RLeEffort. The main issue is that Valland-
ingham’s approach does not support one-directional programming, which is one
of the most important requirements. In every draw function, the developer has
to deal with the visual elements of the subsequent view and their behavior when
navigating back to the view described by the draw function. That means every
transition has to be programmed twice: once in the forward direction and once in
the reversed direction. Consequently, regarding the implementation of animated
transitions, this approach does not reduce the number of lines of code. However,
the learning effort and complexity are low, as this pattern mainly represents an
example of how to structure the D3 code in functions and does not provide any
additional functions or complex code.

20 4 Approaches Based on D3 Transitions

4.2 Implementation-Specific Considerations
Regarding the implementation of a library, crucial considerations were made.
These considerations are explained in the following two concept points.

Code Structure

Structuring the code into functions for each view and storing them together in an
array, as described by Vallandingham, increases the readability of the code and
ensures easy access of the draw functions. Therefore, this organization of code is
assessed as good practice and beneficial. I consider creating all visual elements
in one or more setup functions as a disadvantage: Creating the visual elements
directly inside the draw functions and not before they are needed leads to more
coherent code and may be more intuitive. Thus, it is possible to directly apply
a transition to an element after its creation. Otherwise, the elements are first
created in a setup function and then need to be reselected with D3 or accessed
via a variable to apply a transition. Consequently, removing the setup functions
may reduce the number of lines of code and improve the structure without any
drawbacks.

Values, objects, or functions that need to be accessed in multiple draw functions,
e.g., scales or general layout values, shall be stored in variables outside the draw
functions. Consequently, they can directly be used in any draw function that lies
in the same scope. The initialization of such variables may be implemented in a
separate function that is invoked prior to any other function. Thus, the general
code structure of an animated sequence should look similar to this:

let varX , varY , varZ; // to be initialized
const drawFunctions = [drawView1 , drawView2 , ...]

function initialize (){ ... }
function drawView1 (){ ... }
function drawView2 (){ ... }
...

If an animated sequence is very complex or consists of many views, the code struc-
ture may be improved by defining each function in a separate file. Consequently,
variables that are needed in several draw functions may also be defined in a sepa-
rate file and imported into the corresponding functions.

Creating and Deleting Visual Elements

In the pattern described by Vallandingham, visual elements are hidden or shown
by changing their opacity value to zero or one. Consequently, hidden elements still

4.3. D3-ASEQ: A Library based on D3 Transitions 21

trigger pointer events2, such as clicking or hovering over an element. In addition,
the elements still take up space in the layout. To ensure that hidden elements
do not affect the rendered document in any way, I decided to hide elements by
setting their CSS property display to none. Setting the value of display back to
any other value than none makes the element visible again. It was also considered
to delete visual elements. When returning to a view from another view, deleted
elements would need to be recreated. This requires that the relevant data of visual
elements must be saved beforehand. If an element is deleted, it is completely
removed from the DOM. This increases the readability of the DOM and may
shorten the loading times of the website. However, effects on the loading time
will probably only occur with a huge amount of elements. I concluded that hiding
elements using their display property instead of deleting them has no crucial
drawbacks and is easier to implement.

4.3 D3-ASEQ: A Library based on D3 Transi-
tions

I developed the D3-ASEQ library without using any third-party libraries and relied
solely on D3’s functionality. The source code and a simple example are uploaded on
GitHub as parts of the project (and library) named d3-aseq3. Further development
of this library was halted as I found that without using a third-party animation
library the requirements are difficult to reach. Therefore, no documentation is
provided. However, the main aspects of the implementation are explained to make
the subsequent section (A Deeper Dive into D3 Transitions) more understandable
and to present an exemplary library.

4.3.1 Implementation Details
All classes and functions are exported by the file helperFunctions.js (see Fig. 4.1).
The main functionality is implemented in a class called TransitionsManager.
This class is mainly used for reversing animated transitions. It contains four private
instance fields 4. The step field stores the index of the view that is displayed
to the viewer. The index of a view is defined by its position in the animated
sequence. When switching to another view, the step value must be incremented or
decremented using corresponding methods provided by the TransitionsManager.

The field numberOfActiveTransitions specifies how many transitions are playing
at the time it is called. By reading the value of this variable, the developer can
2 https://developer.mozilla.org/en-US/docs/Web/API/Pointer_events

(visited on 02/02/2023)
3 https://github.com/vinccenttt/d3-aseq (visited on 02/14/2023)
4 https://www.geeksforgeeks.org/javascript-class-level-fields/

(visited on 02/28/2023)

https://developer.mozilla.org/en-US/docs/Web/API/Pointer_events
https://github.com/vinccenttt/d3-aseq
https://www.geeksforgeeks.org/javascript-class-level-fields/

22 4 Approaches Based on D3 Transitions

Figure 4.1: Diagram of the exported functions of D3-ASEQ.

ensure that the user is only able to navigate to another view when all playing
transitions are completed (see RCompleteTrans). This is done by only allowing a
navigation interaction if the number of active transitions equals zero.

D3-ASEQ only focuses on animated transitions of attributes and excludes the
animation of style properties. In order to reverse transitions, the previous state
of an element must be known. Therefore, every time the state of a visual ele-
ment changes, the new state shall be saved by the TransitionsManager. The
TransitionsManager stores the states of all visual elements by using two fields.
The first field is an array containing a list of the changed elements for each view.
The index of a list represents the index of the corresponding view inside the ani-
mated sequence. Elements are stored and identified by their IDs. The second field
is a Map Object5 that holds the IDs of the visual elements as a key and the corre-
sponding attribute list (state) as a value. The following pseudo-code demonstrates
the structure of the two fields used for storing and accessing the different states of
elements.

let field1 = [[id0 , id1 , ...] , [id3 , id0 , ...] , ...];

let field2 = new Map ([
[id0 , [[attr1 , valueX], [attr2 , valueY], ...] ,
[id1 , [[attr4 , valueZ], ...] ,
...] ,

)

The order of the IDs in the elements of field1 and the order of the attribute-value
pairs in field2 are arbitrary. In addition, array lengths may differ.

As suggested by Vallandingham [12], it is beneficial to define each view of the
animated sequence in a single function. Thus, in order to use D3-ASEQ, each
view needs to be implemented in a corresponding draw function. To use any
5 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_

Objects/Map (visited on 02/04/2023)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map

4.3. D3-ASEQ: A Library based on D3 Transitions 23

methods provided by the TransitionsManager Class, first, an instance of it needs
to be created. The draw functions are not directly called but given as a pa-
rameter to the drawStepWithAutoReverse method together with a boolean value
that determines whether the view is accessed from a previous or following view
(regarding the order of the views in the sequence). If the boolean value is true,
drawStepWithAutoReverse only calls the passed draw function. Otherwise, it calls
a private method that plays the animated transitions of the passed draw function
in reverse. The latter is done by reading and afterward deleting the previously
stored states from the stored fields. Every time the user advances from one view
to the next view, the new states of changed elements are stored. Every time the
user navigates from one view to the prior view in the sequence, the corresponding
states are deleted. Consequently, the fields that are used to store the states of
elements are altered each time the user navigates to another view.

To ensure that the reversing and calling of draw functions work correctly, ev-
ery state change of a visual element needs to be saved. Therefore, two functions
(saveState and trackedTransition) are provided which both take an instance
of the TransitionsManager class as an input parameter. These two functions
can be accessed via any D3 selection (for example: d3.select("rect").attr("
opacity", 0).saveState(manager)). This is done by extending d3.selection
.prototype. The function saveState needs to be called after the creation of a
new element. It stores the state of the element and returns the D3 selection it was
called on. The function named trackedTransition is used for applying transi-
tions. It returns a D3 transition and increments the number of active transitions.
In addition, when using trackedTransition, the function endTracking needs to
be called at the end of the corresponding transition. This function decrements
the saved number of active transitions and stores the attribute list for the corre-
sponding element. The correct usage of trackedTransition is demonstrated in
the code snippet below.

d3.select("pseudo -class")
. trackedTransition (manager)
.attr(" opacity ", 0)
.on("end", function () {

endTracking (manager , this);
});

Another important function is the createOnce method. It takes an ID and a
function as input parameters. If an element with the given ID already exists, the
provided function is not executed. If no matching element is found, the specified
function is called. Thus, the createOnce method can be used to ensure that an
element is only created once when calling a draw function multiple times, e.g., when
navigating back and forth. D3-ASEQ does not support the deletion of elements
(as advised in Section 4.2). The usage of the createOnce is demonstrated in the
example below.

24 4 Approaches Based on D3 Transitions

createOnce ("pseudo -id", () => {
d3.append("rect")

.attr("id", "pseudo -id");
});

4.3.2 Validation
D3-ASEQ allows one-directional programming but does not meet the majority of
the defined requirements (see Table 4.2). It has major shortcomings in terms of
complexity and expressiveness. In the following, the fulfillment of the requirements
is analyzed in depth.

Requirements
Visualization-Related Programming-Related

RBiDiNav ✓ ROneDiProg ✓

RReverseTrans ✓ RCodeLines ✗

RHandleTrans ✗ RLeEffort ✗ (tendency)
RSkipViews ✗

RStaggerTrans ✗

RCompleteTrans ✓

RExpress ✗

Table 4.2: Result of the validation of D3-ASEQ according to the determined requirements from
Section 3.2.

Visualization-Related Requirements

RSkipViews, RHandleTrans, RStaggerTrans. These requirements are not
supported.

RBiDiNav, RReverseTrans, and RCompleteTrans. D3-ASEQ fulfills the
named requirements. By only allowing to navigate to another view if the number
of active transitions is zero, RCompleteTrans can be fulfilled.

RExpress. Regarding the expressiveness, transitions can only be applied to at-
tributes and not style properties. Moreover, transition properties, such as delay or
duration, are completely ignored when playing reverse transitions. Thus, transi-
tions cannot be staggered. In addition, D3-ASEQ does not support hiding visual
elements over multiple views and then revealing them in a later view. In conclu-
sion, the customizability of transitions is very limited.

Programming-Related Requirements

ROneDiProg. D3-ASEQ supports one-directional programming as the reversing
of transitions is done automatically when using the library correctly.

4.4. A Deeper Dive into D3 Transitions 25

RLeEffort. As demonstrated in the previous code snippets, functions are called
in multiple ways: directly, via the TransitionsManager class, via a D3 selection,
or inside another function. This increases the complexity and might result in a
heightened error rate. In addition, navigating between the views requires multiple
function calls. Before calling a draw function, the number of active transitions
needs to be checked and the step field may need to be incremented or decremented.
To conclude, the learning effort and complexity are relatively high.

RCodeLines. Every time a transition is created, endTracking needs to be called
after the completion. Every time a new element is created, the createOnce func-
tion and the save method need to be called. This leads to many function calls with
corresponding parameters which may make the implementation process tedious.
As a result, the number of lines of code increases.

D3-ASEQ only works if all elements have a unique ID, as it is used to store the
different states of an element. This could be a hindrance to some use cases.

There are additional issues regarding the efficiency. D3-ASEQ always stores all
attributes of an element and not only the ones that were changed by the transition.
This leads to inefficiency but could be improved by further development. As
mentioned earlier, elements’ stored states are deleted when navigating from a view
to the previous view. When navigating back to the latter view, the same states
are stored again. Consequently, the same data is stored and deleted multiple times
when navigating back and forth. This is inefficient and possibly avoidable.

4.4 A Deeper Dive into D3 Transitions
D3-ASEQ does not fulfill the majority of the determined requirements. Even
with further development, it is questionable whether the requirements can be met.
This is due to the limits of D3 transitions. D3 does not provide any functions to
reverse transitions. Therefore, in order to support one-directional programming
(ROneDiProg), a library needs to track and store the attribute values and style
properties of each visual element. In addition, custom transition settings need to
be considered. This complicates the implementation of a library that is easy to
use. The following text is based on D3’s documentation of transitions [16] and my
personal programming experience in D3.

Staggered Transitions. D3 supports staggering transitions. One possibility of
staggering transitions is to use delays. Consequently, if one delay or transition
duration is changed, all the delays of subsequent transitions need to be adjusted
as they are provided as constant values. Storing delays and durations in variables
may solve this issue. However, this may lead to a high number of variables and
consequently worsen the readability of the code. In addition, the implementa-
tion process becomes time-consuming and tedious. Another way of implementing
transitions in D3 is chaining transitions by making use of event listeners. The

26 4 Approaches Based on D3 Transitions

end-event is triggered at the end of a transition. Thus, a subsequent transition
can be initiated after the completion of a previous transition. However, this leads
to nested code which worsens the code structure and influences the readability and
traceability. This could be counteracted by wrapping each transition into a func-
tion. Thus, the amount of nested code would be reduced. This is demonstrated
in the following example:

transition1 ().on("end", () =>
transition2 ().on("end", () =>

transition3 ().on("end", () =>
transition4 ();

)
)

);

Transitions one to four represent methods that select one or more elements, apply
a transition on them and return the transition. The traceability of the code is
questionable as it is nested in multiple layers and includes a high number of brack-
ets. Moreover, it should be evaluated if structuring the transitions into separate
functions has drawbacks. In conclusion, the implementation of staggered transi-
tions using D3 is possible but may worsen the traceability of the code and increase
the needed effort when applying changes to a staggered transition.

As already mentioned, automatically reversing transitions in D3 is complex to im-
plement. Reversing staggered transitions adds additional complexity to this task.
Each transition needs to be reversed individually. When reversing a staggered
transition, the delays need to be adjusted. As mentioned, staggered transitions
can be implemented in D3 in various ways, such as using their delays or adding
event listeners. Thus, automatically reversing staggered transitions is a challenging
task.

Modifying Active Transitions. To fulfill the requirement RHandleTrans ac-
cessing and modifying playing transitions is necessary. As already mentioned in
chapter 2, D3 transitions are played immediately after their creation. Changing
their properties afterwards is not possible. For example, when trying to change
the duration or an attribute value of an active transition, the transition is not
affected and an error is thrown. If transitions are interrupted or completed, they
are deleted. Thus, D3 does not support storing, reusing, and altering transition
instances. In order to modify an active transition, it needs to be interrupted by a
new transition with the desired changes. Regarding the speeding up of a transition
after a specific event is triggered, the transition would need to be interrupted and
a new transition needs to be played. To correspond to the old transition, all prop-
erties of the old transition, except properties regarding timing, need to be passed
to the new transition. However, there is no obvious way to retrieve all the changed
attributes and style properties of a transition instance. To summarize, modify-

4.4. A Deeper Dive into D3 Transitions 27

ing active transitions would result in destroying active transitions and creating
new transitions. Therefore, many values need to be passed from one transition to
another transition.

Although D3 supports the use of animated transitions, many features that are
necessary to fulfill the established requirements, such as reversing, pausing, or
modifying transitions, are not well supported, require high effort and can only be
implemented by using complicated workarounds. Thus, the use of an animation
library was considered.

5
GSAP-ASEQ: A Library Based

on GSAP

In this chapter, I present the final result of the development process of creating a
library that facilitates the implementation of animated sequences. The library is
called GSAP-ASEQ1. The source code and a detailed documentation are published
on GitHub.

5.1 GSAP

There are numerous JavaScript libraries that focus on animation, such as Anime.js2,
GSAP3, mo.js4, or Popmotion5. I found that the GreenSock Animation Platform
(GSAP) provides the necessary functionality for reaching the requirements. In
the context of this work, no comparison of different animation libraries and their
benefits and drawbacks was made.

According to their website [17], GSAP allows the animation of any numeric prop-
erty of animatable objects, including HTML and SVG elements. It is entirely
written in JavaScript and does not depend on any third-party libraries. On their
website, GSAP is advertised to be robust, highly compatible, fast, and lightweight.
In addition, there is active support and a forum to help developers solve difficulties.
GreenSock, the company behind GSAP, refers to globally recognized companies,

1 https://github.com/vinccenttt/gsap-aseq (visited on 02/14/2023)
2 https://github.com/juliangarnier/anime (visited on 02/07/2023)
3 https://greensock.com/gsap/ (visited on 02/07/2023)
4 https://mojs.github.io (visited on 02/07/2023)
5 https://popmotion.io (visited on 02/07/2023)

https://github.com/vinccenttt/gsap-aseq
https://github.com/juliangarnier/anime
https://greensock.com/gsap/
https://mojs.github.io
https://popmotion.io

30 5 GSAP-ASEQ: A Library Based on GSAP

such as YouTube, Samsung, or Amazon that use GreenSock products regularly
[17].

5.1.1 Advantages of Using GSAP
GSAP provides a large variety of options for implementing and organizing an-
imated transitions. From this point forward, all references to the functionality
(including implementation details) provided by GSAP are based on GSAP’s docu-
mentation [18].

GSAP provides three different methods to create a tween. A tween executes an
animation. It determines the value of the animated properties at each time step
in accordance with its settings, such as duration or delay. Thus, tweens are used
to create transitions. The following code snippets juxtapose implementing a tran-
sition on HTML elements using D3 (left) and using GSAP (right).

d3. selectAll (".dummy -
class")

. transition ()

. duration (2000)

.style("color",
"#fff");

gsap.to(".dummy -class",
{ duration : 2,

color: "#fff"});

This example demonstrates the similarities between GSAP and D3 regarding the
implementation of transitions. (The duration value is different due to different
units.) GSAP’s and D3’s functionality are both accessed via a globally imported
object (gsap and d3). The gsap.to function creates and returns a tween. By de-
fault, as also in D3, the animation is played directly. Similar to D3, gsap.to needs
to be given a selector to identify the target elements. All other animation proper-
ties, such as duration or target values of certain style properties or attributes, are
passed as an object to the gsap.to function.

In contrast to D3 (see Section 4.4), GSAP supports storing, pausing, and mod-
ifying transitions. For example, the returned tween of the gsap.to function in
the previous code snippet could be stored in a variable. GSAP provides many
methods that can be called by a tween, e.g., reversing, pausing, or speeding up the
animation. This functionality is particularly important to achieve the requirements
RReverseTrans, RHandleTrans, and ROneDiProg.

Moreover, GSAP provides a timeline that facilitates dealing with complex se-
quences of animations. This is crucial to support the requirement described by
RStaggerTrans and RExpress. A timeline consists of multiple animations that are
organized in time. The functionality is similar to the functionality of a tween.
Thus, a timeline can simply be reversed by calling the corresponding function.
The code snippet below demonstrates how a timeline can be implemented.

5.1. GSAP 31

let timeline = gsap. timeline ();
timeline .to("#id1", { opacity : 0, duration : 3});
timeline .to("#id2", {x: 0, delay: 0.5});
timeline .to("#id3", {y: 0, duration : 1});

timeline . reverse (); // reverses the entire timeline

The timeline.to method creates a tween and schedules it to start at the end of the
previous transition. In contrast to D3 (see Section 4.4), the durations and delays
of transitions can be altered without needing to adjust subsequent transitions. In
addition, GSAP provides another method that gives multiple options to position
a tween inside a timeline, e.g., inserting a transition one second after the start of
the previous transition. Compared to D3, GSAP vastly reduces the effort needed
to implement staggered transitions.

5.1.2 Possible Drawbacks of Using GSAP

GSAP’s "No Charge" License [19] allows incorporating GSAP into commercial and
non-commercial software, e.g., websites or computer applications, free of charge.
However, there are two cases where annual fees must be paid:

1. If the developer wants to have access to additional plugins.

2. If GSAP is used as part of a product that is sold to multiple customers.
This also applies, if end users are charged a fee to use the product, e.g.,
subscription-based websites. In this case, a commercial license must be pur-
chased.

I found that the core functionality of GSAP is sufficient to implement a library that
fulfills the defined requirements. Thus, no additional plugins are needed. However,
the costs that occur when a commercial license is needed may be a barrier for some
individuals or smaller businesses.

Including GSAP as a dependency in the library to be developed increases the
learning effort (RLeEffort) and may cause difficulties when maintaining the library,
as already mentioned in Chapter 4. However, the similarities between D3 and
GSAP indicate a relatively low learning effort for persons who are familiar with
D3.

In conclusion, GSAP provides substantial functionality that simplifies the imple-
mentation of a library that satisfies all determined requirements without any seri-
ous drawbacks.

32 5 GSAP-ASEQ: A Library Based on GSAP

5.2 Implementation Details
Like D3 and GSAP, the functionality of GSAP-ASEQ (the developed library) is
accessed via a globally imported object. This object is named aseq. It consists
of the TransitionsManager class and a function (createTransition) (see Fig.
5.1). The TransitionsManager provides methods to navigate between views and
store transitions. When importing GSAP-ASEQ, an additional function (called
gsapTo) is provided. This function can be accessed via any D3 selection. The
implemented library considers the concept points described in Section 4.2.

Figure 5.1: Diagram of the exported functions of GSAP-ASEQ.

GSAP-ASEQ is based on creating animated transitions with GSAP. Transitions
created otherwise are ignored. The TransitionsManager stores a list of all transi-
tions for each step and triggers them when navigating between views. Transitions
may be automatically reversed, sped up, or otherwise adjusted as needed.

Every transition that is created in a draw function shall be stored immediately to
the TransitionsManager instance. Every time a view is rendered the first time,
the associated draw function is executed. After that, only the stored transitions
are played or modified. Thus, all code that is not executed by a transition is
only executed once. This leads to the advantage that, in contrast to D3-ASEQ
(see Section 4.3), inside a draw function, no method is required to determine if an
element needs to be created or already exists.

Navigating

The TransitionsManager class provides three functions to navigate between views.

1. drawNextView. If the next view is visited the first time, this function calls
the associated draw function. If the view was already visited before, the
stored transitions are played. If the transitions of the target view are played
in reverse at the time of the function call, the play direction of the transitions
is changed.

5.2. Implementation Details 33

2. drawPrevView. This function works similarly to drawNextView but plays
the stored transitions of the current view in reverse.

Both, drawNextView and drawPrevView are implemented to meet the require-
ments RBiDiNav, RReverseTrans, RHandleTrans, and RCompleteTrans. To sup-
port RCompleteTrans, both functions first call a private method to complete cur-
rently playing transitions of neighboring views. Active transitions are found by
iterating through the stored array of transitions of the corresponding view and ex-
amining the progress value of every transition. The found transitions are then sped
up to finish in a certain amount of time. This time span can be customized by spec-
ifying the maxViewDelay when creating an instance of the TransitionsManager.

3. drawView. This function needs to be given the index of the view to be
drawn in the sequence. If the provided view is a neighbor of the displayed
view, drawNextView or drawPrevView is called. Otherwise, maxViewDelay
is temporarily set to zero and drawNextView or drawPrevView are called
for each view in between the displayed view and the target view. Thus, no
animated transitions are perceived as all transitions are directly applied with
a duration of zero. This method realizes the requirement RSkipViews.

Transitioning

There are various ways to implement a transition within a draw function. One
option is to store a transition by calling the saveTransition method of the
TransitionsManager class. This function accepts any kind of GSAP tween or
a timeline and stores it.

The createTransition method, provided by the aseq object, offers additional
functionality to a tween. This method internally creates a tween by using the
gsap.to method. Therefore, it receives a selector (target) and transition proper-
ties (gsapVars) as input values. In addition, another parameter called customVars
can be passed. The customVars object can hold three different key-value pairs.
The keys autoHideOnReverseComplete and autoHideOnComplete enable the de-
scribed concept of Creating and Deleting Elements in Section 4.2 by automatically
changing the style property display. Additionally, a function that is called when
the corresponding transition is reverted can be specified inside of the customVars
object.

Another, more D3-like way to implement a transition is using the provided gsapTo
method that can be called from any D3 selection. Like aseq.createTransition()
it receives a gsapVars and a customVars object as input values. As this function
also stores the created transition, an instance of the TransitionsManager must
be passed. Thus, this function animates all elements that are contained in the
selection. Moreover, like in D3 transitions, it is possible to animate properties
dependent on bound data. This is done by passing gsapVars or customVars as

34 5 GSAP-ASEQ: A Library Based on GSAP

functions that return an object depending on the bound data (see the code snippet
below).

d3. selectAll ("rect")
.gsapTo(manager , (d, i) =>

{ attr: { height: d }, duration : 2 },
{ autoHideOnReverseComplete : true }

);

The firstly passed function to gsapTo defines the gsapVars. The second object
defines the customVars. (The attr key determines that the height is an attribute
and not a style property.)

When reversing the transitions of a view, GSAP-ASEQ reverses and plays all
corresponding transitions at once. Thus, delays are not taken into consideration.
To correctly reverse staggered transitions, a timeline must be used.

Additional Methods

The TransitionsManager provides a method to display the transition progress of
each view. When creating a TransitionsManager instance, an optional update
function can be defined. This function receives two input values and is called for
each frame. First, the progress value of the current transition to a view (a value
between zero and one). Second, a boolean value that determines if the transitions
are played in reverse. Consequently, this function can be used to visualize the
progress of a transition from one view to another view.

5.3 Implementation of the Lead Scenario

The lead scenario was implemented using the library GSAP-ASEQ. The result is
published on a website6. The corresponding source code7 is available on GitHub.
However, it is not recommended to use the source code for learning purposes
(especially for new users), as the lead scenario is a very complex example. An
excerpt of the website is shown in Figure 5.2. There are two buttons to navigate
to the next or previous view. In addition, the user can navigate to an arbitrary
view in the sequence by clicking on one of the numbered buttons. The transition
progress of each view is visualized in the form of a gray progress bar.

6 https://vinccenttt.github.io/anomaly-heatmap-aseq/ (visited on 02/14/2023)
7 https://github.com/vinccenttt/anomaly-heatmap-aseq (visited on 02/14/2023)

https://vinccenttt.github.io/anomaly-heatmap-aseq/
https://github.com/vinccenttt/anomaly-heatmap-aseq

5.4. Validation 35

Figure 5.2: Screenshot of the implemented lead scenario. The progress bar is annotated.

The lead scenario demonstrates all visualization-related requirements (see Sec-
tion 3.2.1). For example, it is possible to skip views and staggered transitions are
used.

5.4 Validation
GSAP-ASEQ meets all of the established requirements from Section 3.2 (see Ta-
ble 5.1). In the following, the fulfillment of the requirements is analyzed in more
detail.

Visualization-Related Requirements

RBiDiNav, RReverseTrans, RHandleTrans, RSkipViews, RComplete-
Trans, and RStaggerTrans. All these requirements are met by the imple-
mentation of GSAP-ASEQ. As already mentioned, this can be observed in the
realization of the lead scenario.

RExpress. The developed library exclusively supports transitions that are created
with GSAP. As shown in Section 5.1.1, the creation of animated transitions in D3
and GSAP is similar. Like D3, GSAP supports creating an animated transition on
a selected element by providing target values for style properties and attributes.
When creating a tween with GSAP, many animation properties can be defined.
Functions that are invoked on different animation events may be passed. It is

36 5 GSAP-ASEQ: A Library Based on GSAP

Requirements
Visualization-Related Programming-Related

RBiDiNav ✓ ROneDiProg ✓

RReverseTrans ✓ RCodeLines ✓

RHandleTrans ✓ RLeEffort ✓ (tendency)
RSkipViews ✓

RStaggerTrans ✓

RCompleteTrans ✓

RExpress ✓ (same as GSAP)

Table 5.1: Result of the validation of GSAP-ASEQ according to the determined requirements
from Section 3.2.

also possible to define how many times an animation shall be repeated. Based
on the documentation of D3 transitions and GSAP, I suppose that the majority
of transitions that can be generated with GSAP can also be created with D3
and vice versa. However, GSAP substantially simplifies the implementation of
more complex transitions by providing corresponding functions. Predefined D3
transitions, such as transitioning axes, may be programmed manually when using
GSAP. It is also possible to determine style properties or attributes dependent
on the progress of a transition (similar to attrTween in D3, see Section 2.3.2).
This is described in depth in the documentation of GSAP-ASEQ. To conclude,
GSAP-ASEQ supports highly customized transitions.

Programming-Related Requirements

ROneDiProg. GSAP-ASEQ supports one-directional programming. The devel-
oper only needs to program in the forward direction. The reversing of transitions
and skipping of views are handled by GSAP-ASEQ. However, it is possible to
provide code that shall be executed at the start or end of a reversed transition, if
needed.

RLeEffort. I suppose that the learning effort and complexity of using GSAP-
ASEQ are relatively low. The three provided functions to navigate between views
do not need any parameters (except the index of the view when calling drawView)
and no previous checking of any conditions. The possibilities of creating transitions
are all very similar and based on the provided methods by GSAP. D3 developers
probably get used to GSAP quickly, as both libraries use a declarative approach
and the creation of transitions is similar. The required learning effort increases
with the complexity of the transitions.

RCodeLines. The lines of code should not increase notably when using GSAP-
ASEQ. However, an additional function call to save the transition may be neces-
sary when creating a transition. When initiating a transition with GSAP, all the

5.4. Validation 37

properties, e.g., attributes or style properties, are passed as one single object. In
D3, the target value of each animated attribute needs to be set using the attr
operator. This often leads to many calls of the attr operator. Thus, compared to
D3, GSAP reduces the writing expense.

In conclusion, GSAP-ASEQ fulfills all programming-related requirements.

6
Conclusion

This thesis presented a library that substantially facilitates the implementation of
animated sequences, which consist of views that are created using D3. In Chap-
ter 2, I justified the current need and benefits of such a library. After determining
the requirements, I presented and assessed various implementation strategies of
an appropriate library. The final result, the library GSAP-ASEQ, was validated
and showcased in an example. In addition, a publicly available documentation
of GSAP-ASEQ was created. GSAP-ASEQ fulfills the majority of the require-
ments and therefore makes the implementation progress of an animated sequence
more efficient. The library will assist future data story coders in implementing
individual narratives with seamless transitions and high usability.

6.1 Discussion
The requirements were determined together with an employee of the Otto von
Guericke University Magdeburg, who deals with interactive D3 visualizations on
a daily basis. As the library to be developed should focus on animated sequences
but no specific use case, the main aim was that it should be applicable to a
preferably large range of animated sequences. Although I provided arguments
for the reasonableness of the requirements, an empirical analysis to identify the
requirements would have led to more representative results and objectiveness. This
is especially important as the library is not developed for a specific scenario.

Regarding the validation, the fulfillment of the requirements RExpress, RLeEffort,
RCodeLines was analyzed argumentatively and not supported by measurements
or empirical evaluation. However, the assessment of the expressiveness and the
lines of code is challenging if there are no other equivalent libraries to compare to.

40 6 Conclusion

The learning effort could have been evaluated by giving tasks to participants and
using an appropriate evaluation method. Due to a shortage of time and lacking
connections to persons who are experienced in D3, this was not done.

6.2 Future Work
As already mentioned in the previous section, an empirical analysis to determine
requirements and an empirical evaluation could be done. The outcome would
demonstrate whether the defined requirements and the result of the validation line
up with the empirical outcomes. Thus, the mentioned arguments may be affirmed.
If the empirical analysis or evaluation leads to new or contradicting findings, the
developed library may need to be updated to meet these findings.

The published documentation provides a good overview and introduction to how
to use GSAP-ASEQ. However, it would be beneficial to present a simple example
that uses the library, e.g., a well-commented source code. In addition, it would be
helpful to provide examples of the different kinds of transitions and special cases
that might appear during the implementation of an animated sequence. Both
aspects may lower the learning curve, improve the library’s attractivity for new
users and give a better insight into the use cases in which the library is helpful.

GSAP-ASEQ can be imported by referencing it in a <script> tag inside the DOM.
Furthermore, providing GSAP-ASEQ as an npm1 package would be useful. Npm
is a popular and widely used package manager [20] for the runtime environment
Node.js. Npm consists of the npm CLI (Command Line Interface) and the npm
Registry [20]. The npm Registry is a collection of JavaScript packages, including
D3.js2. According to npm’s website [20], the npm Registry is the world’s largest
software registry.

In the context of this thesis, I focused on using buttons for navigating between
views. Thus, GSAP-ASEQ is not applicable to animated sequences that use
scrolling as a navigation technique. Scrollytelling is a popular technique to create
narrative visualizations. Therefore, extending GSAP-ASEQ to support navigation
by scrolling would offer additional value.

1 https://www.npmjs.com (visited on 03/10/2023)
2 https://www.npmjs.com/package/d3 (visited on 03/10/2023)

https://www.npmjs.com
https://www.npmjs.com/package/d3

Bibliography

[1] Edward Segel and Jeffrey Heer. “Narrative visualization: Telling stories with
data”. In: IEEE transactions on visualization and computer graphics 16.6
(2010), pp. 1139–1148.

[2] Jeffrey Heer and George Robertson. “Animated Transitions in Statistical
Data Graphics”. In: IEEE Transactions on Visualization and Computer Graph-
ics 13.6 (2007), pp. 1240–1247. doi: 10.1109/TVCG.2007.70539.

[3] Steven Rich et al. Homicide database: Mapping unsolved murders in major
U.S. cities. url: https://www.washingtonpost.com/graphics/2018/
investigations/unsolved-homicide-database/?tid=graphics-story&
city=detroit (visited on 02/17/2023).

[4] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. “D3 data-driven docu-
ments”. In: IEEE transactions on visualization and computer graphics 17.12
(2011), pp. 2301–2309.

[5] Benjamin Bach, Emmanuel Pietriga, and Jean-Daniel Fekete. “GraphDiaries:
Animated Transitions andTemporal Navigation for Dynamic Networks”. In:
IEEE Transactions on Visualization and Computer Graphics 20.5 (2014),
pp. 740–754. doi: 10.1109/TVCG.2013.254.

[6] B.B. Bederson and A. Boltman. “Does animation help users build mental
maps of spatial information?” In: Proceedings 1999 IEEE Symposium on
Information Visualization (InfoVis’99). 1999, pp. 28–35. doi: 10 . 1109 /
INFVIS.1999.801854.

[7] George G Robertson, Jock D Mackinlay, and Stuart K Card. “Cone trees: an-
imated 3D visualizations of hierarchical information”. In: Proceedings of the
SIGCHI conference on Human factors in computing systems. 1991, p. 190.

[8] Thorsten Hansen, Lars Pracejus, and Karl R. Gegenfurtner. “Color percep-
tion in the intermediate periphery of the visual field”. In: Journal of Vision
9.4 (Apr. 2009), pp. 26–26. issn: 1534-7362. doi: 10.1167/9.4.26. eprint:

https://doi.org/10.1109/TVCG.2007.70539
https://www.washingtonpost.com/graphics/2018/investigations/unsolved-homicide-database/?tid=graphics-story&city=detroit
https://www.washingtonpost.com/graphics/2018/investigations/unsolved-homicide-database/?tid=graphics-story&city=detroit
https://www.washingtonpost.com/graphics/2018/investigations/unsolved-homicide-database/?tid=graphics-story&city=detroit
https://doi.org/10.1109/TVCG.2013.254
https://doi.org/10.1109/INFVIS.1999.801854
https://doi.org/10.1109/INFVIS.1999.801854
https://doi.org/10.1167/9.4.26

42 Bibliography

https : / / arvojournals . org / arvo / content \ _public / journal / jov /
933534/jov-9-4-26.pdf. url: https://doi.org/10.1167/9.4.26.

[9] George Robertson et al. “Effectiveness of animation in trend visualization”.
In: IEEE transactions on visualization and computer graphics 14.6 (2008),
pp. 1325–1332.

[10] Lauren Wood et al. “Document object model (dom) level 1 specification”.
In: W3C recommendation 1 (1998).

[11] Mike Bostock. D3.js - Data-Driven Documents. url: https://d3js.org/
#introduction (visited on 01/16/2023).

[12] Jim Vallandingham. So You Want to Build A Scroller. url: https : / /
vallandingham.me/scroller.html (visited on 01/25/2023).

[13] S. McKenna et al. “Visual Narrative Flow: Exploring Factors Shaping Data
Visualization Story Reading Experiences”. In: Computer Graphics Forum
36.3 (2017), pp. 377–387. doi: https://doi.org/10.1111/cgf.13195.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.
13195. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.
13195.

[14] H. Allen Anderson. Big Die-Up. url: https : / / www . tshaonline . org /
handbook/entries/big-die-up (visited on 01/25/2023).

[15] Ji Soo Yi et al. “Toward a Deeper Understanding of the Role of Interaction
in Information Visualization”. In: IEEE Transactions on Visualization and
Computer Graphics 13.6 (2007), pp. 1224–1231. doi: 10.1109/TVCG.2007.
70515.

[16] Mike Bostock. GitHub - d3/d3-transition: Animated transitions for D3 se-
lections. url: https : / / github . com / d3 / d3 - transition (visited on
01/16/2023).

[17] GreenSock. GSAP - GreenSock. url: https://greensock.com/gsap/ (vis-
ited on 02/07/2023).

[18] GreenSock. GSAP Docs. url: https://greensock.com/docs/ (visited on
02/07/2023).

[19] GreenSock. Standard License - GreenSock. url: https://greensock.com/
standard-license/ (visited on 02/07/2023).

[20] Inc. npm. npm. url: https://www.npmjs.com (visited on 02/14/2023).

https://arvojournals.org/arvo/content_public/journal/jov/933534/jov-9-4-26.pdf
https://arvojournals.org/arvo/content_public/journal/jov/933534/jov-9-4-26.pdf
https://doi.org/10.1167/9.4.26
https://d3js.org/#introduction
https://d3js.org/#introduction
https://vallandingham.me/scroller.html
https://vallandingham.me/scroller.html
https://doi.org/https://doi.org/10.1111/cgf.13195
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13195
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13195
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13195
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13195
https://www.tshaonline.org/handbook/entries/big-die-up
https://www.tshaonline.org/handbook/entries/big-die-up
https://doi.org/10.1109/TVCG.2007.70515
https://doi.org/10.1109/TVCG.2007.70515
https://github.com/d3/d3-transition
https://greensock.com/gsap/
https://greensock.com/docs/
https://greensock.com/standard-license/
https://greensock.com/standard-license/
https://www.npmjs.com

Statement of Authorship

I herewith assure that I wrote the present thesis independently, that the thesis has
not been partially or fully submitted as graded academic work and that I have
used no other means than the ones indicated. I have indicated all parts of the
work in which sources are used according to their wording or to their meaning.

I am aware of the fact that violations of copyright can lead to injunctive relief
and claims for damages of the author as well as a penalty by the law enforcement
agency.

Magdeburg, March 20, 2023

Vincent Göring

	Abstract
	Introduction
	Motivation
	Aim of this Thesis
	Structure

	Background and Fundamentals
	Animation in Visualizations
	Animation in the Context of this Thesis
	D3.js: Data-Driven Documents
	Features
	How to Use D3

	Existing Approaches

	Design Concept
	Lead Scenario
	Subject and Goal of the Lead Scenario
	Concept

	Determination of Requirements
	Visualization-Related Requirements
	Programming-Related Requirements

	Approaches Based on D3 Transitions
	jim's Approach
	How it Works
	Validation

	Implementation-Specific Considerations
	D3-ASEQ: A Library based on D3 Transitions
	Implementation Details
	Validation

	A Deeper Dive into D3 Transitions

	GSAP-ASEQ: A Library Based on GSAP
	GSAP
	Advantages of Using GSAP
	Possible Drawbacks of Using GSAP

	Implementation Details
	Implementation of the Lead Scenario
	Validation

	Conclusion
	Discussion
	Future Work

	Bibliography

