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Abstract

Aortic dissection is a life-threatening cardiovascular disease characterized by blood
entering the media layer of the aortic vessel wall, creating a second flow channel. This
new flow channel, called false lumen, not only weakens the vessel wall but can lead to
various complications such as branch vessel malperfusion or even fatal aortic rupture. The
tissue separating true and false lumen is called dissection flap and comprises one or more
tears called fenetrations. Current risk stratification of aortic dissections mostly relies on
morphologic features such as location and size of fenestrations, number of fenestrations,
and aortic diameter. Increasingly, hemodynamic features such as flow rate and wall
shear stress (WSS) are used in risk stratification. However, effective visualization of
the complex hemodynamics of aortic dissections remains challenging. Flow visualization
methods commonly used to show flow in vascular structures such as streamlines, pathlines,
and streaklines suffer from occlusion and clutter. We investigate the use of a smoke-like
rendering technique for the visualization of flow to mitigate these issues. Smoke Surfaces
developed by von Funck et al. [1] are used to create a real-time visualization of aortic
dissection hemodynamics. Their technique uses streak surfaces augmented with opacity
modulations to create a smoke-like appearance and hide possible artifacts arising from
the streak surface structure. We use aortic dissection datasets created through 2-way
fluid-structure interaction (FSI) computational fluid dynamics (CFD) simulations, that
provide detailed, high quality hemodynamic and morphologic data. To improve the visual
fidelity when applying Smoke Surfaces to the complex hemodynamics of aortic dissections,
we adapt the computation of the opacity terms. Additionally, hemodynamic measures are
dispayed on the streak surfaces through color mapping. Aside from the commonly color
mapped velocity magnitude, measures specific to the flow in aortic dissections, namely
lumen of origin and retrograde flow, are displayed. Furthermore, a circular seeding
structure mimicking the shape of the surrounding vessel is employed and the structure of
the streak surface adapted accordingly. Von Funck et al. [1] proposed a tubular topology
for the streak surface mesh, whereas we use a toroidal topology. To provide valuable
context to the visualization of flow, the aortic vessel wall is rendered transparent with a
Fresnel effect and the dissection flap is rendered opaque. We demonstrate the visualization
results by comparing Smoke Surfaces to streaklines. Both techniques are applied to two
aortic dissection datasets.





Kurzfassung

Aortendissektion ist eine lebensbedrohliche Herz-Kreislauf-Erkrankung, die dadurch
gekennzeichnet ist, dass Blut in die Mediaschicht der Aortenwand eindringt und einen
zweiten Flusskanal bildet. Dieser neue Flusskanal, genannt falsches Lumen, schwächt
nicht nur die Gefäßwand, sondern kann auch zu verschiedenen Komplikationen wie
Malperfusion von Seitenäste oder sogar fatalem reißen der Aorta führen. Das Gewebe,
welches das wahre und das falsche Lumen trennt, wird Dissektionsmembran genannt
und umfasst einen oder mehrere Risse, die als Fenestrationen bezeichnet werden.
Die aktuelle Risikostratifizierung von Aortendissektionen basiert hauptsächlich auf
morphologischen Merkmalen wie Lage und Größe der Fenestrationen, Anzahl der
Fenestrationen und Aortendurchmesser. Zunehmend werden hämodynamische Merkmale
wie Flussrate und Wandschubspannung (WSS) in der Risikostratifizierung verwendet.
Die effektive Visualisierung der komplexen Hämodynamik von Aortendissektionen
bleibt jedoch eine Herausforderung. Die üblicherweise verwendeten Methoden
zur Strömungsvisualisierung in Gefäßstrukturen wie Stromlinien, Pfadlinien und
Streichlinien leiden unter Verdeckung und Überladung. Wir untersuchen die Verwendung
einer rauchähnlichen Rendertechnik zur Visualisierung der Strömung, um diese
Probleme zu mildern. Smoke Surfaces, entwickelt von von Funck et al. [1], werden
verwendet, um eine Echtzeit-Visualisierung der Hämodynamik von Aortendissektionen
zu erstellen. Ihre Technik verwendet Streichflächen, die durch Transparenzsmodulationen
erweitert wurden, um ein rauchähnliches Erscheinungsbild zu erzeugen und mögliche
Artefakte, die aus der Struktur der Streichfläche resultieren, zu verbergen. Wir
verwenden Aortendissektionsdatensätze, die durch numerische Strömungssimulationen
mit 2-Wege-Fluid-Struktur-Kopplung erstellt wurden und detaillierte, hochwertige
hämodynamische und morphologische Daten liefern. Um die visuelle Genauigkeit bei der
Anwendung von Smoke Surfaces auf die komplexe Hämodynamik von Aortendissektionen
zu verbessern, passen wir die Berechnung der Transparenzparameter an. Zusätzlich
werden hämodynamische Messwerte durch Farbkodierten auf den Streichflächen
dargestellt. Neben der üblicherweise farbkodierten Geschwindigkeit werden zwei
spezifische Messwerte des Flusses bei Aortendissektionen, Ursprungs-Lumen und
retrograder Fluss, angezeigt. Darüber hinaus wird eine kreisförmige Saatstruktur
verwendet, welche die Form des umgebenden Gefäßes nachahmt, und die Struktur der
Streichfläche entsprechend angepasst. Von Funck et al. [1] zeigten eine röhrenförmige
Topologie für das Streichflächen-Mesh, während wir eine toroidale Topologie verwenden.
Um einen wertvollen Kontext zur Visualisierung des Flusses zu bieten, wird die
Aortenwand transparent mit einem Fresnel-Effekt gerendert und die Dissektionsmembran
undurchsichtig dargestellt. Wir demonstrieren die Visualisierungsergebnisse, indem
wir Smoke Surfaces mit Streichlinien vergleichen. Beide Techniken werden auf zwei
Aortendissektionsdatensätze angewendet.
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1 Introduction

Cardiovascular diseases like aneurysms and aortic dissection pose a significant
health risk for patients. The formation of these diseases is closely related to local
hemodynamics as they are accelerated by increased pressure inside vessels. After
and during their development, aortic dissections impact the local blood flow, often
leading to more complications. Detailed analysis of the anatomy and hemodynamics
is challenging as the specific configuration of a dissection varies greatly between
patients.

1.1 Aortic Dissection

Aortic dissection is a cardiovascular disease characterized by the formation of a second
flow channel inside the aorta. The aortic vessel wall is composed of three layers. The
innermost layer is called tunica intima and is in direct contact with the blood carried by
the vessel. The outermost layer is called tunica adventitia and anchors the vessel to the
surrounding tissue. In between these two layers there is a media layer, which provides
support to the vessel.

An aortic dissection is caused by blood entering into the media layer of the aortic vessel
wall and carving a second flow channel. This phenomenon is depicted in Figure 1.1. The
new flow channel is called the false lumen and runs parallel to the original flow channel
of the aorta, called the true lumen. The extent of the false lumen varies greatly between
patients, with the dissection starting at a so-called entry tear, extending distally and
ending at one or more exit tears. After the formation of an aortic dissection both true
and false lumen carry blood to varying degrees. The two flow channels are separated
by a thin layer of the aortic vessel wall, the tunica intima. The section of the intima
separating true and false lumen is called the dissection flap and commonly comprises
two or more tears also called intimal tears. These are the primary entry and exit
tears, while additional intimal tears may be present, which are commonly referred to
as fenestrations.

Aortic dissections are rare with an incidence of 15 in 100,000 patient years and in-hospital
mortality of 39% [6], most often occurring in patients between the ages of 65 and
75 [7]. The disease is life-threatening [8] requiring patients to be under constant clinical
monitoring to prevent complications including pericardial tamponade, branch vessel
malperfusion or even aortic rupture [9]. Any of these complications may require urgent
surgical or endovascular treatment.
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Figure 1.1: The structure of the aortic wall. In aortic dissection, a tear in the intima
layer results in blood entry to the media layer, developing in an intimal flap and dividing
the original vessel into true and false lumen. Illustration from Yuan et al. [5]

1.2 Diagnosis, Prognosis and Treatment

Currently, the classification, treatment and prognosis of aortic dissection is mostly
informed by morphological features captured on imaging studies [10]. However, phantom
studies suggest, that true lumen collapse and branch vessel malperfusion are related to
number, size and location of intimal tears as well as the distribution of branch vessels
draining the false and true lumen [11, 12]. Also, increased false lumen pressure may
relate to false lumen dilation [13, 14], which can culminate in aortic rupture. At
the same time, limited false lumen outflow has shown to contribute to overall disease
progression [15, 16, 17, 18]. These findings show that hemodynamics of aortic dissection
impact disease progression. As a result, detailed analysis of hemodynamic information
may help inform treatment and prognosis of aortic dissection, ultimately improving patient
quality of life.

1.3 Flow Simulation

Measurements of in vivo blood flow have become part of clinical routine since
the introduction of 2D phase contrast-magnetic resonance imaging (MRI) in the late
1980s [19]. More recently, 4D flow MRI providing time-resolved three-dimensional velocity
encoding has been developed and enabled comprehensive evaluation of complex blood
flow patterns. The 4D flow MRI studies performed in order to analyze patient-specific
blood flow yield large amounts of measured flow data. This data presents with a plethora
of information about aortic dissection hemodynamics such as stroke volume, primary
entry tears, helical flow, and velocity. These measurements are related to the rate of
aortic expansion [20]. However, such data is associated with noise and artifacts while
missing an important measurement: pressure.
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Using patient-specific morphology captured using e.g. computed tomography angiography
(CTA) and flow data captured using 4D flow MRI, flow simulations can be performed. The
resulting data is not only of high quality, but can also contain a multitude of information
about the simulated flow, which is not accessible through MRI imaging. Most importantly
computational fluid dynamics (CFD) simulations allow for the accurate calculation of
pressure inside a fluid. As mentioned before, pressure inside the aorta, especially the false
lumen, can lead to false lumen dilation [13, 14] and also to flow obstruction of the true
lumen by the dissection flap [21].

1.4 Flow Visualization

While the measurement of aortic blood flow has been possible for decades, clinical practice
mostly relies on morphological features and only employs well-known flow visualization
techniques such as maximum intensity projection (MIP), arrow glyphs, streamlines, and
pathlines. However, these techniques are often limited in terms of information density,
perceptual effectiveness, occlusion, and clutter.

Both MRI imaging and CFD simulations result in large datasets, which include critical
information for both diagnosis and treatment planning. Due to the sheer size of the
datasets and the complex phenomena they encode, efficient and meaningful visualization
is challenging. Aortic dissection presents with complex pathologies also leading to
complex flow patterns. Varying location, extent and curvature of the dissection
flap as well as number, location and size of intimal tears can create vastly different
hemodynamics.

Traditional means of flow visualization often do not suffice for such complex data, creating
the need for visualization techniques tailored to the analysis of hemodynamics in and
around intricate pathologies. Visualizations enabling the assessment of blood flow in
two parallel channels while highlighting hemodynamic features like flow direction and
dissection flap movement could not only help researchers improve their understanding
of the development of aortic dissections, but also impact treatment development and
selection.

1.5 Goal of the Thesis

Virtual flow visualization is fundamentally inspired by real-life experimental flow
visualization methods, which typically entail introducing a medium such as smoke or
dye into a flow and observing its advection. This methodology also finds application in
contrast-enhanced angiography, where a contrast agent is introduced into the blood flow
to highlight vessels in non-invasive medical imaging procedures. The contrast agent is
injected at a single location and spreads through the vascular structure as it is advected
by the flow.

Our objective, is to replicate this process familiar to radiologists and physicians by
simulating the injection of smoke or dye into the blood flow. This goal can be achieved
through the utilization of various techniques.
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Commonly, rendering of individual particles is utilized to simulate highly realistic
smoke. However, this technique necessitates the advection and rendering of very
large numbers of particles to be effective, which does not lend itself to real-time flow
visualization.

An alternative approach tailored specifically for real-time flow visualization was
introduced by von Funck et al. [1]. They employ streak surfaces to represent the flow and
modulate the surface’s opacity to create a smoke-like appearance. Their method, termed
Smoke Surfaces, offers a balance between realism and computational efficiency, making
it suitable for real-time visualization applications. The presented visualization technique
was not tested on any blood flow datasets.

Given the intricate and distinct geometry inherent in aortic dissections, our objective is
to employ Smoke Surfaces for visualizing dissection hemodynamics. Meanwhile, possible
challenges caused by the parallel flow channels separated by a thin wall and multiple
connections between the flow channels need to be addressed.

To enhance the information density and visual fidelity of the visualization, we
plan to employ color mapping and additional opacity modulation. Our aim is to
implement and test the encoding of multiple measures such as velocity through color
mapping.

1.6 Structure of the Thesis

In the following chapter we begin by reviewing the state-of-the-art regarding the
evaluation and risk stratification of aortic dissections as well as medical flow
visualization. We also discuss different techniques for the smoke-like visualization
of flow.

Subsequently, we give a comprehensive overview of the preparation of the medical
flow data and important implementation details. Furthermore, the visualization
technique used to produce an interactive smoke-like visualization of flow inside
aortic dissections is discussed, including our augmentations and contributions to the
technique.

Afterwards, the results are presented and compared to a widely used flow
visualization technique. Several examples are shown, demonstrating the visualization’s
effectiveness. Lastly, we give a short conclusion and discuss potential future
work.



2 Related Work

Medical visualization techniques have revolutionized the field of healthcare and education,
providing a more meaningful and engaging way to visualize the life sciences. These
techniques include surface and volume rendering, as well as interaction techniques to
adjust these visualizations with appropriate transfer functions [22]. In addition, advanced
visualization techniques such as multiplanar reformation (MPR), MIP, and 3D rendering
are now a standard-of-care in the interpretation of medical images in many clinical
scenarios [22].

Medical flow visualization techniques, on the other hand, are a subset of medical
visualization techniques that focus on visualizing fluid flow, such as blood flow in
the human body. These techniques are particularly useful in diagnosing and treating
cardiovascular diseases [23] and mostly based on either MRI measuremtens or CFD
simulations [24]. Specialized techniques for flow visualization of specific vascular
structures such as the aorta [25] or carotid arteries [26] and specific diseases such as
aneurysms [27, 28] were presented in the past. Despite these advancements, there remain
areas, such as the visualization of aortic dissections, where specialized techniques are still
scarce.

Little work has been done on techniques tailored to the visualization of the anatomy
and blood flow within aortic dissections. Ostendorf et al. [29] made a first attempt to
assess shading styles for the rendering of multiple vessel wall surfaces, specifically the
outer vessel wall and dissection flap. We use their findings to render the aortic vessel
wall and dissection flap. While multiple approaches for the visualization of anatomy and
hemodynamics have been presented in the past, they were not necessarily designed for
the visualization of aortic dissections, which presents unique challenges. Related work on
this topic is covered in the following sections.

2.1 Morphological and Hemodynamic Evaluation of
Aortic Dissection

Aortic dissection poses significant morbidity and mortality risks, underscoring the critical
importance of selecting appropriate treatment strategies. This selection process relies
on extracting a multitude of features from standard anatomical imaging modalities such
computed tomography (CT) and MRI.

Recent research has increasingly focused on understanding the relationship between
aortic hemodynamics, particularly those of the false lumen, and adverse aortic
remodeling. However, despite these advancements, there remains a need for enhanced
risk stratification [30]. Noninvasive techniques for measuring and analyzing false lumen
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hemodynamics hold promise in improving risk stratification, offering potential avenues
for further research and clinical application.

2.1.1 Morphological Risk Stratification

Noninvasive imaging is a key tool for diagnosis and risk stratification in aortic
dissection. Multiple morphological features have been studied in an effort to improve
risk stratification. Maximum aortic diameter is the largest diameter of the dissected
aorta measured in a cross-section perpendicular to the aortic centerline. An increased
maximum aortic diameter has been shown to predict aortic complication in several
studies [10]. Both the size of the false lumen and its size relative to the true lumen
have been studied, showing increased false lumen diameter to predict late aneurysmal
degeneration [31]. Similarly, a later study found increased false lumen area to be
associated with higher incidence of complications such as limb ischemia, progression of
dissection and aortic rupture [32].

The ratio between true lumen and false lumen volume was investigated by Lavingia
et al. [33]. They found that lower relative volume of the true lumen was highly
predictive of patients requiring aortic intervention, while higher true lumen volume
compared to the false lumen was highly predictive of freedom from delayed
operation.

The location of the primary entry tear can be identified in most patients [30], and some
authors have suggested that location and size of the primary entry tear correlate with
adverse events. A study found entry tear size to be predictive of dissection-related adverse
events and mortality [34]. They also found proximal location of the primary entry tear
to be a significant predictor of complications. The number of intimal tears was shown to
be related to aortic growth, with a single tear showing more aortic growth than zero or
multiple tears [35].

2.1.2 Hemodynamic Risk Stratification

False lumen pressurization seems to be associated with adverse false lumen remodeling and
complications [36] as the main treatment methods of aortic dissection, antihypertensives,
reduce mean arterial pressure [37] and thoracic endovascular aortic repair (TEVAR)
limits false lumen inflow [38]. Primarily two methods, namely CFD and 4D flow MRI
are used to study the complex interplay of multiple hemodynamic features in aortic
dissection.

CFD has been used to study factors that contribute to false lumen outflow resistance
and the aortic consequences. Cheng et al. [39] found a larger primary entry tear to cause
increased false lumen flow rate. Elevated percentage of total aortic flow passing through
the false lumen was found to increase risk of aneurysm formation [40]. Furthermore, low
wall shear stress (WSS) showed to be associated with increased false lumen thrombus
formation [41], while elevated WSS showed to be associated with aortic growth [40, 42].
Finally, the pressure gradient between true and false lumen was shown to be correlated
to false lumen dilation [39, 43], tear propagation, and branch vessel malperfusion [44,
45].
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4D flow MRI is used for both quantitative and qualitative measurements of aortic
dissection hemodynamics. Using this technique further findings on hemodynamic risk
factors were made. Allen et al. [46] showed a correlation between primary entry tear
size and the amount of false lumen flow occurring both at its peak and averaged across
the cardiac cycle. Two studies showed that retrograde flow is more prevalent in the
false lumen than in the true lumen [21, 47]. Furthermore, increased false lumen stroke
volume (the sum of the average velocity within a false lumen cross-section multiplied
by the cross-sectional area for all time steps) showed association with more rapid aortic
growth [20].

2.2 Medical Flow Visualization

Flow Visualization is a well established area of scientific visualization, which has become
invaluable to many fields, such as automotive and aerospace design, meteorology and
medical imaging. Dense 2D flow fields can be effectively visualized using texture-based
techniques. These techniques are well-known and can be extended by color mapping and
glyphs to encode the direction of the flow and additional features [48]. Hemodynamic flow
data typically consists of 3D vector fields, with simulated datasets providing additional
measures like pressure or WSS. Visualizing 3D flow data poses significant challenges
beyond simply handling the large volume of data. Occlusion and clutter are common
issues in 3D flow visualizations, primarily due to the dense and overlapping nature of
structures like streamlines. Moreover, encoding various measures such as velocity or
pressure, along with the dynamic behavior of the flow, introduces additional complexity
to the visualization process. Although a multitude of techniques have been presented to
cope with the increased complexity and size of flow datasets enabled by modern hardware,
extracting detailed information from flow data of highly complex nature like of aortic
dissections requires specially tailored visualizations.

In an attempt to create more expressive flow visualizations, a branch of visualization
approaches inspired by handcrafted illustrations emerged. These illustrative visualizations
aim to maximize the amount of information communicated in a comprehensive way
through the use of visual abstraction techniques. Brambilla et al. [49] provide an overview
of illustrative flow visualization techniques. Born et al. [50] presented an approach
to visualizing aortic and cardiac blood flow by combining multiple techniques. They
use streamlines rendered as bundles of tapes to reduce visual clutter. A set of line
representatives is selected to reflect the most important flow aspects, further decreasing
the number of lines. In addition, vortices are highlighted using hatched tube-like
structures.

2.3 Focus and Context Visualization

In addition to showing hemodynamics, we display the anatomy of the surrounding vessel.
As a result, even more structures need to be visualized simultaneously while minimizing
visual overload for the user. This problem is typically addressed by using a visualization
technique called Focus and Context visualization, where main structures are highlighted
for better visibility, while maintaining a view of the surroundings to provide essential
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context. This technique plays a crucial role in enhancing the comprehensibility of complex
visualizations.

Focus visualization involves emphasizing specific structures or regions of interest within
the visualization to draw the viewer’s attention and facilitate a more detailed examination.
This can be achieved through techniques such as color-coding, outlining, or magnifying
the relevant structures. On the other hand, context visualization aims to provide a
broader overview of relevant local structures. This is crucial for ensuring that users
can understand the relationships between different structures and appreciate the overall
complexity of the system. Different approaches to focus and context visualizations of
anatomical structures have been presented in the past, as discussed in the subsequent
paragraphs.

Blood flow inside aneurysms in conjunction with the aneurysm surface was visualized by
Gasteiger et al. [27]. They used color-coded streamlines to create focused visualizations of
flow and applied a ghosted view approach to the aneurysm surface as context. Front facing
surfaces are rendered transparently with a Fresnel effect, while backfaces are opaque.
Atmospheric attenuation is used to fade out objects farther from the viewer and therefore
improve depth perception.

Lawonn et al. [51] proposed an approach using a similar ghosted view and animated
pathlines. Color coding on pathlines is used to display information, such as curvature
or vorticity. Vessel surfaces are also color-coded, but use a 2D texture lookup table to
display both surface curvature and proximity to pathlines. Again, the technique focuses
on visualizing flow, but supplies important context in the form of the vessel surface. This
technique was also applied to aneurysm datasets.

Köhler et al. [25] developed a tool for visual exploration and analysis of 4D phase contrast
MRI data. With a focus on detecting and characterizing vortices, they display flow
using pathlines, augmented by different color mappings and rendering styles. To reduce
clutter, they filter pathlines according to different criteria. Together with direct volume
rendering (DVR) of the MRI data as context, they create a combined visualization
of both flow and anatomy. Additionally, different attributes, such as velocity, axial
velocity and rotation direction, are displayed through minimum/maximum intensity
projection.

Behrendt et al. [28] presented an approach similar to Lawonn et al. [51] for the visual
exploration of intracranial aneurysms, which employs a combination of the Fresnel effect
and traditional Phong lighting. In addition, the pathlines used to show flow are seeded
using evolutionary algorithms based on user-specified regions of interest on the vessel wall.
This reduces clutter caused by unwanted pathlines, while also reducing undersampling in
important areas.

All of this previous work relies on integral lines for the display of flow. Approaches that
aim to create a more realistic visualization of flow through the emulation of smoke are
discussed in the next section.
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2.4 Smoke-Like Flow Visualization

Instead of taking inspiration from illustrated depictions of flow, one can also take
inspiration from flow appearing in the real world. By taking inspiration from experimental
flow visualization, which uses injection of particles into the flow, realistic, detailed
visualizations can be created. Typically, these visualizations mimic the injection and
advection of smoke or dye into the flow, but simulations of experimental techniques like
wool tufts are also possible. The realistic depictions of flow created using these techniques
can aid in the intuitive understanding of complex flow dynamics and the interpretability
of those visualizations.

The line-based techniques for the visualization of 3D flow data mentioned in the previous
sections do not lend themselves well to creating a smoke-like appearance. Instead, there
are different techniques, which can be used to simulate smoke being advected by a
flow.

2.4.1 Particle-based techniques

Probably the most natural approach to visualizing smoke is to simulate it, as it appears
in the real world using individual particles. To achieve a convincing approximation
of real-world smoke, large amounts of particles need to be created, advected and
subsequently rendered. Each particle provides a negligible contribution to the entire smoke
visualization, but the sum of all particles is able to create a complex visualization showing
smoke motion as well as density. Because of the small contribution of each particle, particle
counts of multiple millions are not uncommon for a visualization to appear convincing.
Such high numbers of particles require lots of processing power and specialized algorithms
to be advected and rendered efficiently. The first particle systems could not be rendered
interactively even for smaller numbers of particles.

One of the first interactive particle systems was proposed by Krüger et al. [52], making
use of modern graphics processing units (GPUs). Interactive frame rates are achieved
by performing particle advection on the GPU and rendering them using techniques by
Kipfer et al. [53]. All the while expensive transfer operation between central processing
unit (CPU) and GPU are avoided. Using Krügers approach, Van Pelt et al. [2] present an
early application of particle-based flow visualization to measured aortic blood flow. They
also demonstrate the use of pathlines and streak surfaces to show flow inside the aorta
captured using 4D flow MRI (see Figure 2.1).

Multiple different approaches for the rendering of particles were developed, aiming to
improve the appearance of smoke as well as reduce the number of particles required
to achieve a convincing effect. Those techniques include surface-particles [54], which
are rendered as points with normals, semi-transparent billboards [55] and point
sprites [56].

Particle systems, while providing an accurate simulation of real-world smoke, suffer
from possible over-/undersampling of specific areas. As with other flow visualization
techniques such as streamlines or pathlines, the number and location of seeding positions
is crucial for the effectiveness and efficiency of a visualization. There is always a trade-off
between sparse and dense seeding. Sparse seeding, while producing less cluttering, can
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Figure 2.1: Blood flow visualization by van Pelt et al. [2] using illustrative particles
(left), pathlines (center) and streak surfaces (right). © 2011 IEEE

lead to important features being missed. Dense seeding may capture more features,
but necessarily increases clutter. However, dense seeding does not guarantee that no
features are missed, as particles tend to accumulate in regions of slow or converging
flow.

Engelke et al. [57] proposed a new type of particle system consisting of autonomous
particles. Particles are terminated or split based on user defined criteria, controlling
the density of particles in specific areas. This reduces cluttering caused by large
amounts of particles in less important areas and ensures sufficient sampling of regions
of interest.

Aiming to simulate the injection of particles into the blood flow, De Hoon et al. [58]
created flow visualizations of aortic flow based on phase-contrast MRI data. A
smoke-like appearance was achieved by advecting numerous particles and rendering them
semi-transparently. While particle counts as high as 2 million where tested, interactive
frame rates could be achieved using up to 400,000 individual particles. Color mapping
was applied to the particles, which encoded seeding position or particle age but no
hemodynamic properties.

Although high numbers of particles simulate the appearance of smoke quite well, advecting
millions of particles is computationally expensive. Lowering the number of particles
increases performance but also destroys the illusion of smoke. To mitigate this issue,
particles can be connected to form streak surfaces.

2.4.2 Streak Surface Techniques

Streak surfaces are part of the group of integral surface structures. Stream surfaces,
being the equivalent surface structures to streamlines, have been used extensively in flow
visualization [59, 60, 61, 62]. Starting at a polygonal seeding structure, new vertices are
introduced while integrating over a vector field. The front of the surface, which results
from connecting these vertices to a mesh, constantly advances. This front may need to be
adaptively modified however, as converging or diverging flow can lead to too large or too
small distances between vertices. To mitigate these over-/undersampling artifacts, either
new vertices need to be inserted into the mesh or existing vertices need to be collapsed.
In specific cases, such as the flow being parted by an obstacle, the surface may even need
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to split into multiple parts, necessitating splitting the frontline and tracing multiple parts
independently. In unsteady flows, both stream and path surfaces can be created similarly
to the steady case.

Streak surfaces on the other hand are created by periodically emitting vertices at the
seeding polygon and continuously advecting them. While stream and path surfaces are
built by only updating the frontline, all vertices of the streak surface need to be advected
simultaneous. Therefore, structural changes such as collapse or splitting, which could
previously only occur at the frontline, may occur at any place on the surface, requiring
constant checking of all vertices. These expensive operations limited the use of streak
surfaces in interactive application for a long time.

The first approach to making streak surfaces interactive was made by Von Funck et al. [1].
They presented a technique based on streak surfaces, which simulates smoke through
clever opacity modulation of the surface and omitting any restructuring. Multiple
factors including the quality and size of the triangles in the mesh are combined
to create a smoke-like appearance and hide parts of the mesh, which are deformed
too much as a result of advection. Although, it could increase the information
density of the visualization, the authors did not test any color mapping on the streak
surfaces.

Shortly after, Bürger et al. [63] were the first to produce interactive streak surface
visualizations including proper restructuring of the mesh. They achieved this
by performing all computations on the GPU and two different approaches to
generating a streak surface. The first techniques improved parallelization by using
a patch-representation that avoids interdependence between patches. The second
approach used a particle-based surface representation including particle refinement and
coarsening. Both techniques produced interactive streak surfaces, while the second
approach resulted in better performance and reduced artifacts. Unfortunately, the
second approach does not allow for a dynamically moving seed polygon. Therefore,
Ferstl et al. [64] adopted the patch-based approach for their generation of interactive
separating streak surfaces. They place the seeding structure at separation locations, so
that the generated streak surface shows separating profiles and allows the user to detect
unstable manifolds.

Focusing on the rendering of integral surface structures, Hummel et al. [3] created
an illustrative rendering approach. They employ multiple techniques to improve the
rendering of stream, path and streak surfaces. Transparency is used to allow the user to
see multiple overlapping layers of the surface. As this introduces more clutter, careful
modulation of surface opacity is important. They provide two different transparency
modulation schemes. Additionally, silhouettes are used to reveal the shape and highlight
creases in the surface. Lastly, different stripe patterns are used to texture integral surfaces,
further improving the display of shape and curvature of the surface. The entire collection
of rendering techniques is compatible with interactive visualization of integral surfaces
and does not require expensive preprocessing. An example of the possible visualization
results is shown in Figure 2.2.
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Figure 2.2: A rising plume streak surface rendered using techniques presented by
Hummel et al. [3]. © 2010 IEEE

Recently, Schindler et al. [65] applied the transparency modulation presented by
von Funck et al. to animated streak surfaces. They use Smoke Surfaces for the
comparison of multiple trajectories emerging from different initial conditions of a 4D
biological dynamical system.

2.4.3 Volumetric Techniques

With the advances in computer hardware, real-time visualizations of gaseous phenomena
became possible through the use of volumetric approaches. Instead of rendering geometric
primitives, the rendering is performed using ray casting, where rays passing through
volumetric data are sampled at regular or adaptive intervals to produce an image.
This rendering technique is also widespread among medical imaging, as the slice-based
volumetric data, volume rendering relies on, is directly supplied by imaging techniques
such as MRI and CT.

One of the first volume renderings of gaseous phenomena was produced by
Schpok et al. [66], who rendered realistic animated clouds. They performed the
necessary complex computations in parallel on the GPU. Using features of modern
graphics processors such as 3D textures, geometry shaders and compute shaders,
real-time realistic renderings of volumetric smoke, fire and water were made possible [67].
Later, interactive smoke rendering incorporating dynamic environmental lighting using
compensated ray marching was presented by Zhou et al. [68].

In the field of flow visualization, flow volumes [4] were introduced as the volumetric
counterpart to streamlines. This technique allows for interactive exploration of vector
fields through the use of volumetric tetrahedral meshes, which are rendered transparently.
Instead of seeding at individual locations and advecting to form integral lines, like with
streamlines, flow volumes are formed by seeding at a mesh and advecting the entire
mesh. Similar to the creation of stream surfaces, new vertices of the flow volume are
periodically created as the mesh front is advected. The resulting segments are subdivided
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Figure 2.3: Flow Volume visualization presented by Max et al. [4]. © 1993 IEEE

into tetrahedra before being rendered using volume rendering, as seen in Figure 2.3.
During the ray casting, no large volume, which may only contain important information
in small areas needs to be traversed. Instead, only the flow volume itself needs to be
considered, while the remaining space can be skipped.

2.5 Advection Performance

Yenpure et al. [69] provide an overview of state-of-the-art techniques to increase the
performance of particle advection for flow visualizations. Cell localization and access
performance are important when trying to achieve interactive frame rates while performing
live advection. The efficiency with which this process can be performed is governed by
the structure of the flow data. While uniform, structured data typically enables quick
cell localization, unstructured data often requires specialized techniques to be accessed
efficiently. Medical flow data often originates from MRI scans which provide a vector field
in a structured grid format. When using this data directly like in InkVis developed by De
Hoon et al. [58], it can be easily used on a GPU. The uniform structure of the voxel data
also allows for cell localization in constant time, improving overall advection performance.
When flow visualizations need to be performed in unstructured data, different techniques
can be used to speed up the cell localization process.

One approach is to organize cells of the flow data in a hierarchical data structure.
Commonly octrees are used for this purpose [70, 71]. Similar to octrees, kd-trees
allow for hierarchical subdivision of space, but do so while facilitating non-uniform
subdivisions. This is useful when cell density varies greatly in the original data,
but kd-trees introduce more storage overhead compared to octrees. Andrysco and
Tricoche [72] presented an efficient storage scheme for kd-trees and octrees to address
this issue. Their Matrix *Trees store tree levels in compressed sparse rows removing most
of the memory overhead introduced by kd-trees. Vectorization of non-uniform hierarchical
subdivision is challenging, but possible on modern hardware with good performance as
shown by Garth and Joy [73].
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Another approach to speeding up the localization of cells in unstructured data is successive
neighbor search. Particle advection relies on repeated interpolation in cells of the
flow data grid, which are typically close. As a result, particle advection can be sped
up by searching the cell which contains the current location through a neighborhood
search starting with the cell used during the last integration step. This technique
works for all integration steps apart from the first especially with small step lengths.
Bußler et al. [74] even presented a GPU-based successive neighbor search on tetrahedral
cells, which could perform both the initial cell localization and subsequent searches
without interaction of the CPU. Their algorithm was heavily based on the prior work
of Schirski et al. [75].



3 Methods

Our previous work, covering the simultaneous display of flow and anatomy is now being
extended through the use of Smoke Surfaces in the context of this thesis. The previously
used pathlines lead to a lot of clutter and occlusion when many lines are seeded. Smoke
Surfaces on the other hand consist of continuous streak surfaces augmented by opacity
modulation to create a smoke-like appearance. Therefore, this work mainly focuses on the
utilization of Smoke Surfaces developed by von Funck et al. [1] to visualize blood flow in
aortic dissection. Simultaneously the outer vessel wall and the dissection flap need to be
shown, while they should not obstruct the view of the flow.

The outer vessel wall is rendered semi-transparently with a Fresnel Effect [27]. This allows
the user to look inside the vessel but still shows the extent and important features of the
vessel. The dissection flap is rendered opaque so as to not create too many transparent
layers and simultaneously give a detailed look at the shape and curvature of the flap.
Multiple hemodynamic and derived measures can be mapped onto the vessel wall and
flap surfaces through color. The surfaces are also animated, showing the movement of the
vessel.

All aspects of our visualization including display of aortic dissection morphology,
flow visualization, and color mappings were developed in close collaboration with
cardiovascular imaging scientists, radiologists, and clinicians with experience in the
treatment of aortic dissections.

The desired visualization was implemented in the Visician framework for medical
visualizations. It provides tools and techniques for the display of flow data of aortic
dissections. A renderer, which enables the effective visualization of both hemodynamics
and vessel anatomy was already implemented.

3.1 Smoke Surfaces

Streamlines and pathlines are most commonly used when visualizing hemodynamic flow.
Both line structures represent the movement path of a massless particle advected by the
flow. Additionally, there are streak lines, which are created by continually seeding particles
at a single location and connecting the advected points. Streaklines most accurately
simulate experimental flow visualization carried out using the advection of smoke or dye.
Similar to these integral line structures, integral surfaces can be created. Analogous to
streak lines, streak surfaces result from continually seeding multiple particles at once. All
particles are connected to form the streak surface mesh.

Because every vertex of the mesh is individually advected, they can move arbitrarily.
This can lead to triangle cells of the mesh being deformed and becoming too large
(undersampling of an area), too small (oversampling of an area), or of poor quality, i.e.
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Figure 3.1: Conceptual prism used to compute αdensity. Smoke density is simulated by
conceptually intersecting the view ray along r with a prism of height h over a triangle cell
of the streak surface mesh. With shallower angles between triangle cell and view ray, the
distance between the intersection points p0 and p1 increases and more of the simulated
smoke is traversed by the view ray. © 2008 IEEE

having very acute internal angles. To mitigate this, the distance between mesh vertices of
a streak surface need to be checked to detect, where vertices may need to be inserted or
joined in every advection step. However, accurately inserting a vertex requires the vertex
to be inserted at the seeding location and advecting it until it matches the advection
time of the rest of the mesh. This can occur at multiple locations within the mesh at
once. Afterward, the mesh needs to be triangulated again to include potentially newly
inserted vertices and creating high quality triangles. This process is very costly and is
not beneficial to the real-time integration of streak surfaces.

Von Funck et al. [1] circumvent the process of inserting or joining vertices, by retaining
constant connectivity between vertices of the mesh and modulating the opacity of
severely deformed triangle cells. Using this method, no vertices need to be inserted
or joined. Also, there is no need for retriangulation, as the mesh connectivity is set
up only once in the beginning. Multiple opacity factors contribute to the smoke-like
appearance and avoiding artifacts. The opacity of each mesh vertex is calculated as
follows.

αdensity = k

area (x0, x1, x2) cosγ
,

αshape =
(

4 area (x0, x1, x2)√
3 max{d0d1, d1d2, d2d0}

)s

,

αcurvature = 1 − b · max{|n0ei| : i = 1..valence (x0)},

ei = xi − x0

∥xi − x0∥
,

αfade = 1 − t

tmax

,

α = αdensity αshape αcurvature αfade.

(3.1)
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(a) (b)

Figure 3.2: Distortion of an equilateral triangle integrated towards the saddle point in
the linear vector field v = (x, −y)T . The left figure shows three instances of an integrated
triangle. The right figure plots the triangle area and shape quality over integration time.
© 2008 IEEE

The opacity value α assigned to each vertex is the product of αdensity, αshape, αcurvature

and αfade.

Depending on the area of a mesh cell (triangle x0, x1, x2), αdensity is calculated, simulating
the density of smoke. A larger cell and therefore lower density of smoke leads to a
more transparent surface. The term k controls the initial density and is linked to the
height of the conceptual prism seen in Figure 3.1. This figure also shows the view
ray intersecting the prism. γ denotes the angle between a mesh cell and the view
ray.

αshape is also calculated per mesh cell and indicates the quality of each triangle cell.
d0, d1, d2 denote the lengths of the edges of a mesh cell while s controls the influence
of αshape on α. αshape = 1 for equilateral triangles and decreases as the triangle
is deformed. The effect of triangle deformation on its shape quality can be seen
in Figure 3.2

αcurvature computes the curvature of the surface at a vertex x0 using the neighboring
vertices xi in the 1-ring of x0 (i = 1..valence(x0)). If all vertices are on a plane, αcurvature

is equal to 1. n0 denotes the estimated surface normal at x0 and b controls how strong a
large surface curvature influences αcurvature.

Finally, αfade simulates the dispersion of smoke, by steadily decreasing opacity
over time t. The value starts at 1 and approaches 0 as t reaches tmax, which is
set to the maximum integration time after which a particle is reset to its seeding
position.

αdensity and αshape of a vertex are set to the minimum value of its adjacent triangles, as
these values are initially defined per triangle. αcurvature and αfade are already defined per
vertex and all values have to be clamped to the interval [0,1] individually. As a result, α
determines the per-vertex opacity with a value between 0 and 1 so that it can be linearly
interpolated across the entire streak surface.
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3.2 Simulation Data

The use of CFD simulations to obtain detailed flow data of patient-specific hemodynamics,
while not being clinical routine, is becoming more common. Bäumler et al. [9] created
high resolution flow simulations of aortic dissections using CTA and 4D Flow MRI data
of multiple patients and phantom models, which we are using as input data for our
visualizations. The CTA data was used to segment the aorta and extract not only the
outer aortic vessel wall and blood volume, but also the dissection flap. The flow field
provided by 4D Flow MRI was used to inform the simulation about the flow velocity and
its change over the cardiac cycle at multiple locations (aortic root, branching vessels, etc.).
Subsequently, blood flow was simulated alongside the deformation of the outer vessel wall
and dissection flap using 2-way fluid-structure interaction (FSI) CFD simulations. These
were carried out over the course of multiple cardiac cycles to allow the flow to equalize and
used 4000 simulation steps per cycle. The last cardiac cycle was recorded at every 50th
simulation step, resulting in 80 captured timesteps. We choose to only use 40 out of the 80
exported timesteps, as this provides sufficient temporal resolution for visualization while
limiting computational cost and memory requirements.

Simulation results comprise two separate, unstructured tetrahedral meshes. The
first mesh contains the volume occupied by the blood inside the aorta, while the
second mesh contains the vessel tissue including outer vessel wall and dissection flap.
Every vertex on either of the meshes contains multiple hemodynamic and mechanical
measurements such as pressure, WSS or displacement in addition to position and
velocity.

Real time advection of hundreds of points inside a fluid requires fast access to the flow
data. As discussed in Section 2.5 the structure of the data impacts performance heavily.
These CFD results are organized in an unstructured grid, meaning vertices are arbitrarily
spread throughout 3D space and not aligned to a regular grid. As a result of the irregular
structure of the data, integration is very slow and cumbersome. To reduce access times
we convert the simulation data to a regular grid data structure. The following section
describes the data structure chosen to facilitate quick access to the vector field and the
necessary steps to convert the simulation results.

3.3 Data Structure

Vector fields can be organized using different techniques to support specific requirements
for both acquisition/simulation and visualization [69]. A common way of organizing
vector fields [69] is using a regular grid with uniform spacing along each axis. Aside
from simplicity this method offers consistent sampling of space while allowing for fast
access times. Given a regular 3D grid, the cell containing an arbitrary location can easily
be calculated using the data’s bounding box and the voxel size/spacing (see Equation 3.2)
without the need of costly searches or complicated data structuring like octrees or kd-trees.
Flow data acquired using 4D flow MRI commonly consists of voxels, organizing the data on
a regular grid. We resample the tetrahedral mesh data provided by the CFD simulations to
a regular rectilinear grid to improve access efficiency. Simultaneously, compatibility with
MRI datasets is improved, as their voxel data structure is very similar to the structure
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we convert the simulation data to. As a result, both simulated and measured flow data
can be accessed and visualized in the same manner.

3.3.1 Data Conversion

Augmenting an unstructured grid to improve access performance by using an octree
for example, does not necessarily require resampling the data. In order to convert an
unstructured grid to a structured grid, on the other hand, the data needs to be resampled,
creating a new set of vertices located at regular intervals and connected to form a voxel
structure instead of a tetrahedral mesh.

Before starting the conversion, the bounding box of the unstructured grid needs to be
found and a voxel size needs to be chosen. The size of the voxel determines the distance
between vertices and consequently the number of vertices. Smaller voxel size translates
to higher resolution through more vertices but also increased memory consumption.
Ideally, the voxel size is chosen to be half of the average size of a tetrahedral cell
of the unstructured mesh. This allows sufficient sampling of the original data to not
lose large amounts of detail. However, a trade-off between quality and memory usage
needs to be made, as the size of the voxelized data increases rapidly with reduced voxel
size.

After choosing an appropriate voxel size and determining the bounding box of the data,
a regular grid is created by computing its dimensions to fill the bounding box with evenly
sized voxels and allocating memory. Subsequently, the mesh data is resampled to fill
the regular grid. All values such as velocity vectors, pressure, WSS, and displacement
are linearly interpolated, transferring the simulation results into a structured grid and
enabling fast access. Importantly, the individual positions of the vertices do not need
to be determined and saved but are intrinsically defined by one vertex of the bounding
box and the voxel size (see Equation 3.2). The conversion of an unstructured grid into
a structured grid including interpolation is carried out using the Visualization Toolkit
(VTK). Example of a tetrahedral mesh as well as the resampled voxel structure are shown
in Figure 3.3.

cell = ⌊(loc − minbounds)/voxelsize⌋
dimension = ⌈(maxbounds − minbounds)/voxelsize⌉

cellindex = cellx + celly ∗ dimensionx + cellz ∗ dimensionx ∗ dimensiony

(3.2)

The tetrahedral mesh provided by the simulation is not static due to deformation of the
vessel wall, meaning all vertices of the mesh move over the course of a cardiac cycle. When
converting to a structured grid, the same tetrahedron cell might end up in a different voxel
of the structured grid depending on its position, which changes over time. As a result,
each timestep needs to be converted to a structured grid individually, while maintaining
the same bounding box and voxel size. Finally, all converted timesteps are combined by
concatenation.
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(a) Tetrahedral mesh. (b) Closeup of tetrahedral mesh.

(c) Uniform grid. (d) Closeup of uniform grid.

Figure 3.3: Data converted from volumetric tetrahedral mesh, with non-uniform cell, on
the top, to a uniform rectilinear grid with voxel size of 1.5 mm on the bottom. Images
generated using Paraview [76].
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3.3.2 Sparse Grid Representation

To optimize the fidelity of our simulated blood flow datasets, it is imperative to select a
small voxel size and a high number of time steps. This ensures the preservation of crucial
information and facilitates the generation of intricate flow visualizations. However, when
resampling all 40 timesteps over the course of one cardiac cycle with a voxel size of one
millimeter, the resulting regular grids often exceed the size of 10 gigabyte (GB), which is
commonly manageable by main memory but exceeds the capacity of most consumer-grade
GPUs. Without altering the data structure this problem can only be mitigated by
reducing either spatial or temporal resolution, or both.

Given our focus on vascular flow visualization, the volume of the bounding box is
seldom entirely occupied by important data. Particularly in the context of the aorta’s
geometry, a significant proportion of voxels in the generated regular grid remain empty.
To reduce the memory overhead of our regular grid, we adopt a sparse representation,
eliminating the majority of empty voxels. The primary objective of this optimization is
to ensure efficient utilization of computational resources while preserving the integrity of
our vascular flow visualizations. Maintaining constant access time for non-empty voxels is
paramount to ensure real-time performance and seamless interaction with the visualization
system.

Our sparse voxel representation is based on a two level hierarchical data structure.
At the higher level, the voxel grid is divided into larger cubic regions called chunks.
Each chunk represents a section of the voxel grid and can either be filled (containing
data) or empty (containing no data). This top-level structure serves as a coarse
representation of the overall voxel grid. Each filled chunk in the top-level structure
contains a finer subdivision of smaller cubic regions. These smaller regions are traditional
voxels, representing the finest level of detail in the grid. Unlike the top-level nodes,
which are only either filled or empty, these voxels can individually contain data or be
empty.

In the initial structure, data for each timestep is stored as concatenated blocks, meaning
that all the data for each timestep is contiguous. Each block represents a specific timestep,
containing voxel data for that moment in time. To convert to a sparse voxel representation,
each block corresponding to a timestep is further divided into smaller blocks, each sized
to fit within a single chunk of the hierarchical structure. These smaller blocks are cubic
and contain voxel data for a portion of the overall voxel grid. Only blocks of filled
chunks are kept, while empty chunks are omitted. The location in memory of each
chunk, filled or empty, is kept in a separate field to enable constant access. When
accessing a filled chunk, the necessary location can simply be read, while access to empty
chunks can be denied. An illustration of the sparse grid data structure can be seen
in Figure 3.4
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Figure 3.4: Illustration of our sparse grid data structure. On the top the spatial layout
of multiple timesteps, chunks and voxels are shown. On the bottom is the corresponding
memory layout. Orange represents the extent of a timestep, which is the bounding box
surrounding the data. Black represents the extent of a chunk and blue the extent of a
voxel. The hierarchical structure can be seen at the top with each timestep encoding the
same space at a different point in time. Memory is laid out to enable dense packing of
filled chunks. The above example shows chunk 1 being omitted in memory across time
steps, demonstrating the dense packing of filled chunks.
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(a) 0 cycles (b) 2 cycles (c) 4 cycles (d) 17 cycles

Figure 3.5: Labeling of grid cells according to the local lumen. The initially set labeling
at the luminal centerlines (a) is iteratively dilated until all cells are labeled (e). The
true lumen is colored red, while the false lumen is colored blue. Images generated using
Paraview [76].

3.3.3 Additional Features

Expanding on the measures provided in the simulation results, we calculate
additional hemodynamic measures, which have been selected in collaboration
with cardiovascular imaging scientists and cardiovascular radiologists. These
additional measures enable a more comprehensive analysis of aortic dissections,
and in some cases, facilitate visualization of phenomena that are conventionally
imperceptible.

Determining Lumen Origin

Visualizing the origins of individual flow streams in complex flow scenarios can pose
significant challenges. In case of aortic dissections, distinguishing between the true lumen
and the false lumen can be particularly challenging. To address this, we introduce a color
mapping technique applied to Smoke Surfaces, aiding in the identification of flow origins.
To enable this visualization the dataset is segmented, wherein each grid cell within the
fluid domain is assigned a label indicating its association with either the true lumen or
the false lumen.

Utilizing the regular grid structure of the converted data, we leverage parallel processing
capabilities of the GPU for efficient labeling. Initially, a set of voxel cells is labeled based
on the luminal centerline for both lumina. Subsequently, this initial labeling is dilated
until all cells are accurately categorized as belonging to either the true or false lumen.
This iterative process is illustrated in Figure 3.5.
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(a) Full dataset (b) closeup

Figure 3.6: Arrow glyphs illustrate the direction of the local antegrade vector applied
to grid cells. A subset of all data points, color-coded based on the local lumen is shown.
Arrows representing voxel cells of the true lumen are colored red, while those representing
voxel cells of the false lumen are displayed in blue. Images generated using Paraview [76].

Identification of Flow Direction

While retrograde flow near the aortic root was shown to indicate aortic valve disease [77],
aortic dissections also appear to lead to retrograde flow in specific areas. Retrograde
flow occurring at the entry tear inside the false lumen might be related to false
lumen pressurization, while retrograde flow inside the whole false lumen might
indicate recirculation of blood through the exit tear [78]. Such complex hemodynamic
phenomena, which only occur in dissections are typically hard to identify and
visualize.

To address this, we introduce a visual mapping technique that emphasizes retrograde
flow in any lumen. The relative flow direction (retrograde or antegrade) of a triangle
cell of the Smoke Surface is determined by comparing the local velocity vector and the
overall trajectory of the vessel. To facilitate efficient computation during visualization
the vessel’s trajectory is established for each voxel cell of the uniform data structure in a
preprocessing step.

After labeling each voxel cell based on the local lumen, the local trajectory of the lumen is
determined using its lumen-specific centerline. Initially, the closest point on the relevant
centerline is identified. Subsequently, a vector tangent to the centerline at this location is
computed. Employing a highly parallelized process, each voxel is assigned such a vector
representing the local trajectory of the lumen. An example of the resulting vectors is
shown in Figure 3.6.
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(a) Line structure (b) Ring structure

Figure 3.7: Streak surface seeding structures. Figure (a) shows the open, polygonal
seeding structure used by von Funck et al., while Figure (b) shows the ring structure we
use for seeding inside of vessels.

3.4 Seeding

As shown in the original work of von Funck et al. [1], the location and design of
the seeding structure has large impact on the visualization results and can be used
to create Smoke Surfaces, that approximate different experimental flow visualization
techniques. Von Funck et al. used a polygonal seeding structure (s0, ..., sn), most
commonly chosen to represent a continuous line or curve. As a result, the location
and extent of the generated Smoke Surface can be chosen arbitrarily, with the surface
starting out smooth near the seeding structure and being deformed by the flow, as it is
advected. To facilitate the constant connectivity of the Smoke Surface and produce a
closed surface even when continuously advecting vertices and resetting them to the seed
location after reaching the maximum advection time, it is defined as a closed surface
of cylindrical topology. This means in the vertex array (xi,j; i = 0, ..., m; j = 0, ..., n)
the first column of vertices (x0,0, ..., x0,n) is connected to the last column of vertices
(xm,0, ..., xm,n).

Continuous curve seeding structures were shown to be suitable for the visualization of flow
around aerofoils, car bodies or well-known phenomena like the von Kármán vortex street.
Vascular structures, particularly aortic dissections present with distinct geometry, which
requires a tailored seeding structure. We adapt the curve seeding structures, presented
by von Funck et al. [1] by closing it to form a ring. This structure mimics the tubular
morphology of vascular structures, creating a closed Smoke Surface, which in itself appears
tubular. Following the adaption of the seeding structure, the Smoke Surface mesh is now
defined as a closed surface of toroidal topology. In addition to the connection of first and
last column of the mesh, we also connect the first (x0,0, ..., xm,0) and last (x0,n, ..., xm,n)
rows of the mesh. Figure 3.7 depicts the structure of the line as well as ring seeding
structures.
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(a) Position = 0.1 (b) Position = 0.1 (c) Position = 0.5 (d) Position = 0.5

Figure 3.8: Demonstration of seeding structure generation in the cross-section of an
aortic dissection. Each example includes a streak surface extending from the seeding
structure, displayed in green, along with the outer vessel wall in gray and the dissection
flap in red. In Figures (a) and (b), the relative position of all polygon points between the
center and the vessel wall is 0.1. In Figures (c) and (d), the relative position is 0.5.

Due to the unique geometry of aortic dissections and our use of a closed ring the generation
of appropriate seeding structures requires special treatment. We generate a seeding
structure based on the cross-section of the surrounding lumen, resulting in a roughly
circular polygon of evenly spaced points, which are located inside the lumen. The distance
between seed points and vessel wall can be adjusted by the user, with all points being
placed on the same relative position between vessel wall and cross-section center, as can
be seen in Figure 3.8.

3.5 Vulkan Implementation

Vulkan is a modern Graphics API developed by the Khronos Group [79]. It provides
a cross-platform standard for high-performance 3D graphics, and a number of built-in
extensions. Most importantly for our implementation Vulkan provides an extension,
which allows for rendering using GPU accelerated ray tracing. Additionally, non-graphics
workloads can be handled by Vulkan through the use of compute shaders, allowing for
highly parallelized computations.

3.5.1 Ray Tracing

Ray tracing has emerged as a powerful technique in computer graphics for simulating
the behavior of light in virtual environments, enabling highly realistic rendering effects.
Because of our goal to create realistic visualizations of smoke we chose ray tracing as a
rendering technique. Advanced rendering effects were not yet implemented, as this thesis
focuses on the flow visualization technique.
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Vulkan has introduced ray tracing support, offering developers unprecedented control
and flexibility in crafting immersive visual experiences. In this section, we discuss the
rendering pipeline of Vulkan ray tracing and the associated shaders that play a crucial
role in the process.

Acceleration Structures

Acceleration structures (ASs) are fundamental data structures employed in ray tracing
algorithms to efficiently identify intersections between rays and scene geometry. These
structures play a crucial role in optimizing ray traversal, enabling real-time rendering of
complex scenes with high visual fidelity. In this section, we explore the ASs commonly
used in Vulkan ray tracing.

ASs organize scene geometry in a hierarchical manner, facilitating rapid ray-object
intersection tests. These structures serve as spatial indices, partitioning the
scene into manageable regions and enabling efficient culling of geometry that
lies outside the view frustum or is occluded by other objects. By leveraging
ASs, ray tracing algorithms can dramatically reduce the number of geometric
primitives that need to be tested for intersection, leading to significant performance
improvements.

Bounding volume hierarchies (BVHs) represent one of the most commonly used ASs
in Vulkan ray tracing. BVH organizes scene geometry into a binary tree structure,
where each node corresponds to a bounding volume enclosing a subset of primitives.
The hierarchy is constructed recursively by partitioning bounding volumes along spatial
splits, such as axis-aligned bounding boxes (AABBs) or spatial median planes. BVH
traversal involves descending the tree from the root node to the leaf nodes, testing rays
against bounding volumes and efficiently pruning subtrees that do not intersect with the
ray.

During the setup of a scene for ray tracing, Vulkan distinguishes between two types of
ASs. These two types, namely top-level acceleration structure (TLAS) and bottom-level
acceleration structure (BLAS), represent different levels in the hierarchy of the scene and
need to be build in a specific order.

The BLAS represents the lowest level of the acceleration hierarchy and is responsible for
encapsulating individual or grouped geometric primitives. In Vulkan ray tracing, a BLAS
is constructed from vertex and index buffers containing geometry data, such as vertices,
normals, and texture coordinates. The construction of a BLAS involves partitioning the
geometry into primitive groups, such as triangles or AABBs, and encoding them into a
compact representation optimized for ray traversal.

At the opposite end of the acceleration hierarchy lies the TLAS, which provides a
high-level representation of scene geometry for ray traversal. The TLAS encapsulates
instances of BLAS, allowing multiple instances of geometry to be efficiently organized
and traversed during ray tracing. Each instance in the TLAS specifies a transformation
matrix, enabling dynamic positioning, scaling, and orientation of geometry within
the scene. TLAS serves as the entry point for ray traversal, initiating intersection
tests against scene geometry and facilitating efficient occlusion culling and visibility
determination.
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Figure 3.9: Schematic of the Vulkan ray tracing pipeline including ray generation, hit,
and miss shaders as well as the optional any hit and intersection shaders.

Ray Tracing Pipeline and Shaders

The Vulkan ray tracing pipeline encompasses a series of stages designed to efficiently
trace rays through a scene and compute the resulting color values. At its core, the
pipeline revolves around the concept of ray generation, intersection testing, and shading.
Each stage contributes to the overall rendering process, from initializing rays to evaluating
material properties and computing final pixel colors.

The ray generation stage serves as the entry point for the ray tracing pipeline.
Here, developers define a shader responsible for generating primary rays that
originate from the virtual camera and traverse the scene. This shader typically
computes the initial ray directions based on the pixel coordinates and camera
parameters.

Following ray generation, the intersection stage comes into play, where rays are tested
for intersections with scene geometry. Utilizing ASs, Vulkan efficiently traverses the
scene to determine ray-object intersections. Upon detecting an intersection, the any-hit
shader is invoked, which allows culling geometry or prematurely terminating the ray.
After determining all intersections along a single ray, the closest-hit shader is invoked
to compute the color contribution based on surface properties such as color, reflectance
and transparency. If no intersection is detected for a ray, the miss shader is invoked.
This shader is essentially used to render the scenes background by providing a constant
color, sampling a texture, etc. A schematic of the ray tracing pipeline can be seen
in Figure 3.9

One of the key advantages of Vulkan ray tracing is its flexibility and performance. By
providing low-level access to hardware resources and execution control, developers can
optimize shaders and pipeline configurations to achieve desired rendering effects while
leveraging the full capabilities of modern GPUs.
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3.5.2 Smoke Surface Computation

Vulkan, as a low-level graphics API, offers more than just rendering capabilities. It
provides a versatile framework for general-purpose parallel computing through compute
shaders. Compute shaders are specialized programs executed on the GPU that perform
parallel computations without the traditional graphics pipeline. Unlike graphics shaders,
which are primarily concerned with rendering geometry and pixels, compute shaders
are tailored for general-purpose computations, offering a flexible and efficient means
of harnessing the computational power of modern GPUs. We use compute shaders to
perform highly parallelized computations such as advection and mesh updates without
the restrictive structure of a rendering pipeline.

Vulkan compute shaders operate in the compute pipeline stage, which is distinct from the
graphics pipeline. They are dispatched by the CPU and executed in parallel by multiple
shader invocations, or workgroups, on the GPU. Each workgroup comprises multiple
threads, with the exact number determined by the developer during shader dispatch. The
size of these workgroups impacts performance and needs to be specified at compile time.
We optimized the workgroup size for streak surface sizes commonly used during testing.
Compute shaders have access to specialized memory regions, such as shared memory and
global memory, enabling efficient data sharing and communication among threads. This
is crucial for efficient computations in our real-time application, especially because of a
high number of memory accesses.

One of the notable features of Vulkan compute shaders is their integration with
the graphics rendering pipeline. Compute shaders can be used to perform
pre-processing tasks, post-processing effects, and off-screen rendering operations,
augmenting the capabilities of traditional graphics shaders. We make use of this
integration as live advection of the streak surfaces needs to be synchronized with their
rendering.

The workload of streak surface advection lends itself well to parallelization, as each vertex
of the surface mesh can be processed individually. The generation and animation of Smoke
Surfaces not only relies on advection of the surfaces vertices, but also on additional
parameters, which need to be reevaluated for every frame. In order to perform the
necessary calculations quick enough to enable interactive frame rates, they are also carried
out in a compute shader. This is a multistep process, which uses 3 distinct shaders,
to advect the vertices, compute per-face parameters as well as normals and compute
per-vertex parameters and normals. Finally, the individually computed parameters are
combined upon ray intersection using the closest-hit shader.

Advection Shader

The advection shader is responsible for the sampling of the vector field, integration and
interpolation to update the positions of the Smoke Surface vertices. Along with the
common inputs, namely seeding positions and vector field, the advection shader receives
additional parameters, such as voxel grid dimension and origin, streak surface size, and
elapsed time. To be able to access the correct cell of the vector data, the dimension of
the grid, the origin / minimum bounds and the size of a cell need to be known. Using
these information and the calculations from Equation 3.2 the cell containing a given 3D
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location can be identified. Important for the proper advection of streak surface vertices
is the size of the surface mesh, meaning the number of rows and columns, as well as the
time difference between columns (tcol). This difference is used to delay the advection of
vertices at the beginning of the visualization and determine, when they need to be reset
to their seeding position. Lastly, since the shader only keeps track of how far a vertex is
in its cycle, before it needs to be reset and not of the overall duration of the visualization,
the elapsed time is provided, which is also used to delay advection and reset vertices to
their seeding position, as can be seen in Equation 3.3.

As described in Section 3.4 a vertex (xi,j) starts at its seeding position (sj) and is then
advected. To space out the vertices of the mesh, vertices with matching i are released
simultaneously, only after the time since start (tstart) exceeds their release time (trel).
Subsequently, they are advected until the time since release (tstart − trel) exceeds tmax.
This is determined using the fade, which indicates, how much longer a vertex is advected
before being reset. Each vertex starts with fade = 1 when it is released and is reset as soon
as fade = 0. As tstart continuously increases, even over multiple cardiac cycles, a modulo
operation of 1 is applied to restrict fade to the interval (0,1].

tmax = m ∗ tcol

trel = i ∗ tcol

fade = 1 −
(

tstart − trel

tmax

mod 1
) (3.3)

Mesh Face Shader

The face shader operates on a thread per triangle mesh cell (face) of the Smoke Surface.
Multiple values are then computed, which need to be determined per face before being
assigned to vertices by the subsequent shader. First, the face normal, essential for shading
and the calculation of αdensity, is determined. The area of the face, also needed for αdensity,
is calculated and passed on. Finally, the opacity value αshape is determined within the
face shader (see Equation 3.1). This concludes the necessary computations for the original
Smoke Surface visualization. Additionally, we compute the longest edge length of the face
for an augmented computation of αshape.

Mesh Vertex Shader

Analogous to the face shader, the mesh vertex shader operates on a thread per mesh
vertex. Here, the per-face values are converted to per-vertex values using the following
methods. As described in Section 3.1, αshape and the triangle area values of a vertex are
set to the minimum value of its adjacent mesh cells. The vertex normal is computed
by normalizing the sum of the normals of all adjacent mesh cells. Lastly, αcurvature is
computed according to Equation 3.1.
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Closest Hit Shader

The closest hit shader is called once the closest ray intersection is determined. The
indices of the intersected object and primitive, provided through shader variables, are
used to select the applied shading style and surface properties. If the ray hits a part
of the Smoke Surface, the final value of αdensity is calculated using the triangle’s area,
computed in the Mesh Face Shader and the incident angle of the ray (see Equation 3.1).
Subsequently, all parameters are combined. Lastly, the final opacity value and a color,
which can be determined through different color mappings, are passed back to the ray
generation shader.

3.5.3 Synchronization

Synchronization is a crucial part of developing with the Vulkan API. Proper
synchronization of shaders becomes especially important when working with multiple
consecutive shaders to ensure correct results.

In our case the Advection, Mesh Face and Mesh Vertex shaders are executed sequentially
and cannot be easily combined. As mentioned before, the advection shader computes the
new positions of all mesh vertices. Subsequently, the Mesh Face shader computes per-face
parameters. These shaders cannot be combined, because all vertices of a face need to be
updated by the advection shader before the face parameters can be computed. Similarly,
the Mesh Face and Mesh Vertex shaders follow the same principle, where the parameters
of all faces adjacent to a vertex need to be set before the per-vertex parameters can be
computed. Consequently, each shader execution must be completed entirely before the
next one can commence. Unfortunately, this sequential processing hampers performance,
as the computations cannot be executed in parallel.

Furthermore, the entire streak surface advection process is intertwined with rendering.
Since Vulkan ray tracing is accelerated using hierarchical ASs any mesh alterations
necessitate updating the BLAS to ensure both optimal performance and accurate
rendering. Given that during the animation of a streak surface, its vertices regularly
undergo significant movement, updating the positions of the mesh’s vertices mandates
a subsequent update of the corresponding AS. Only after updating the AS can the
rendering of a new frame commence.

While operations on ASs can not be performed during rendering, streak surface advection
and mesh updates could possibly be decoupled, potentially increasing performance.
However, implementing such decoupling requires careful consideration of data transfer and
synchronization, which may introduce significant overhead. Ultimately, this optimization
may not yield the desired performance benefits, as the overhead incurred could potentially
offset any gains achieved through decoupling. Further testing is required to ascertain the
effectiveness of this approach.

We implement the synchronization between compute shaders using Vulkan’s Memory
Barriers, which defer the execution of processes until a specific type of memory access
has been completed. To ensure the proper timing of AS updates, so-called Fences are
utilized. These Fences are accessible by the CPU and serve as signals indicating when
the execution of a command has finished. AS rebuild operations issued by the CPU must
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(a) (b)

Figure 3.10: Demonstration of our adapted fade opacity term. Both figures show a
streak surfaces seeded in the ascending aorta extending into multiple branching vessels
and towards the descending aorta. Figure (a) uses the original fade opacity term without
a lead-in fade. As a result, artifacts connecting the start and end of the streak surface
can be seen. Figure (b) uses our adapted computation of αfade introducing a gradient at
the start of the streak surface, effectively hiding the artifacts.

wait for all compute shaders to finish. Additionally, Pipeline Barriers are employed to
defer rendering until all AS rebuilds have been completed.

3.6 Addressing Artifacts

The techniques involved in creating the Smoke Surfaces of von Funck et al. [1] were
developed for and tested on datasets, that are focused on the aerodynamics around
different objects such as cars or aerofoils. The distinct geometry of vascular structures,
presents new circumstances and challenges for the use of this technique. As a result
of the unique flow inside of vessels, aortic dissections in particular, we adapt multiple
aspects of the original Smoke Surfaces, including the mesh structure and opacity
calculations. Our adaption of the opacity calculations will be described in the following
sections.

3.6.1 Fade Opacity Term

During testing of the original opacity mapping, a high number of artifacts could be seen.
Some of these appeared as faint surfaces extending from the seed location to the end of the
streak surface, as seen in Figure 3.10a. The reason for these artifacts is the application of
the fade opacity term. The value of αfade is determined by the time a particle has spent
in the flow since it was released at its seed point. As a particle reaches the maximum
time, it is reset to the seed point, waiting to be released again. A subset of cells of the
streak surface mesh therefore span between the very end and the very beginning of the
streak surface, while at least one of the vertices receives an αfade of 1. Two solutions
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to this issue were considered. First, to only reset a particle’s time spent in flow as it is
released. Second, to apply a small fade-in on top of the original fade-out effect of αfade.
We decided to implemend the second solution, as it does not change the behavior of a
particles time spent in flow t, but rather the opacity calculated from it. This solution
effectively removes the artifacts, as seen in Figure 3.10b. Adjusting the length of the
fade-in, also allows smoothing of the otherwise harsh starting edge of the streak surface.
Additionally, we add a factor f controlling the influence of fade on the overall opacity
similar to the factors k, s and b. Our calculation of αfade can be seen in Equation 3.4,
with l representing the length of the fade-in relative to the length of the entire streak
surface. The value of l was set to 0.05 for all renderings of Smoke Surfaces in this
work.

αfade =



(
t

tmax − l

tmax

)f

, if t

tmax

< l.

(
1 − t

tmax

)f

, otherwise.

(3.4)

3.6.2 Shape Opacity Term

After removing the artifacts produced by the application of the fade term, some artifacts
still remained. Those mostly occured due to diverging flow, in particular, when the flow
splits into true and false lumina. Due to the constant connectivity of the streak surface
mesh, vertices advected into the false lumen are still connected to other vertices, which
stayed in the true lumen inspite of the dissection flap physically separating both flow
channels. The original opacity terms do not succeed in completely hiding the mesh cells
connecting vertices in separate lumina (see Figure 4.4a and Figure 4.4c). Most of those
connecting cells are very thin and long, because they get stretched across the dissection
flap. Therefore, as mentioned in Subsection 3.5.2, we introduce a per cell measurement
of the longest edge length denoted e. The original shape opacity term is raised to the
power of e, to drastically reduce the opacity of long mesh cells. A lower limit of 1 must be
applied to e however, to not also increase the opacity of cells with e < 1. Our computation
of αshape can be seen in Equation 3.5.

αshape =
( 4 area (x0, x1, x2)√

3 max{d0d1, d1d2, d2d0}

)max(1,e)
s

(3.5)

3.7 Color-Mapping

Color mapping plays a pivotal role in enhancing the interpretability and information
density of flow visualizations. By effectively assigning colors to represent various data
attributes or parameters, complex information can be conveyed in a visually intuitive
manner. In this section, we discuss the application of color mappings to Smoke Surfaces,
aiming to augment the information conveyed and improve the overall comprehension of
the presented data.
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flow jet

(b)

false lumen true lumen

(c)

retrograde flow
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Figure 3.11: Demonstration of various color-mappings applied to the same streak surface.
(a) presents the surface in a solid high-contrast color, facilitating the easy differentiation
between vessel and streak surface geometry. (b) shows a heated-body color scale encoding
flow velocity magnitude applied to the streak surface. The luminal origin of flow is encoded
through a diverging red-blue color scale in Figure (c). Lastly, (d) showcases our visual
mapping of flow direction using a monochrome color scale, highlighting retrograde flow in
red.
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3.7.1 Flow Velocity

One of the most common, but also most important measures encoded through color
in flow visualizations is the velocity magnitude [80]. When assessing flow in aortic
dissections a clear distinction between fast and slow flow is critical for identifying different
phenomena such as flow jets or areas of stagnant flow. For this reason, we map the
magnitude of the flow velocity vector to a heated-body color scale, ranging from black
(minimum) to bright yellow (maximum). An example of this color-mapping is shown
in Figure 3.11b.

3.7.2 Lumen-of-Origin

The accurate depiction of the originating lumen of branching vessels is of high importance
in clinical evaluations of aortic dissection hemodynamics and in the strategic planning
of stent graft interventions, as indicated by our colaborating clinicians. To this end, we
identify the originating lumen of streak surfaces based on the lumen classification assigned
to each voxel (recall Subsection 3.3.3). Each vertex of the streak surface mesh starts at
a seed point whose lumen label is associated with its enclosing lumen. During advection,
the lumen label Lt(v) of vertex v at time t adapts to the visited voxel element Lt(e) as
follows:

Lt(v) = (1 − δ)Lt−1(v) + δLt(e), (3.6)

with δ = 0.05 controlling the rate of adaptation. This value was determined through
testing and can be adjusted by the user. This allows the streak surface to slowly
change flow channel association when transitioning between channels. Figure 3.11c
shows how this information is displayed using a diverging color scale, from red (true
lumen) over white (transition) to blue (false lumen). This reveals the immediate
interaction of the flow at a fenestration, while the contrast between sections of a
single surface or between multiple streak surfaces is reduced when the flow unifies
downstream.

3.7.3 Flow Direction

Our colaborating clinicians emphasize the importance of observing the development of the
already weakened false lumen. To visualize flow direction, we determine the difference
between a streak surfaces direction of movement and the designated luminal flow. For a
given position p on a streak surface with velocity vector v we calculated the corresponding
luminal flow direction as the tangent vector t at the luminal centerline point closest to p
(recall Subsection 3.3.3). The angle γ = ̸ (v, t) then allows us to distinguish between
antegrade (γ ≤ 90◦) and retrograde (γ > 90◦) flow. To represent a continuous change of
direction, we modulate the colors of antegrade and retrograde streak surfaces depending
on γ. When using a monochrome color scale from white to red, as show in Figure 3.11d,
the predominant, normal, antegrade flow is shown in white, while the retrograde flow is
highlighted.





4 Results and Discussion

This chapter presents the results of our flow visualization for aortic dissections. The
primary objective was to create an effective approximation of smoke being advected
by the flow, enabling a detailed examination of the complex flow dynamics inherent in
such a pathological condition. Adaptations were made to the original opacity terms to
mitigate artifacts and enhance the visual fidelity of the Smoke Surfaces within the vascular
environment.

To enhance the interpretability of the visualizations, color mappings were employed to
encode flow attributes, such as velocity magnitude, flow direction, and the lumen-of-origin.
This encoding scheme not only facilitated a comprehensive understanding of the flow
behavior but also enabled the differentiation between flow patterns originating from
different lumina.

The results are structured to provide a detailed demonstration of individual techniques
involved in creating the final visualization, as well as exploration of the flow characteristics
observed within the aortic dissections. We demonstrate our visualization’s ability to show
intricate flow phenomena, including flow separations and flow interactions between both
lumina. Our results are showcased through two distinct datasets. For an overview of both
datasets, refer to Figure 4.1.

4.1 Sparse Voxel Grid

The sparse voxel grid data structure was tested on the two datasets shown in Figure 4.1
as well as a third dataset, which is not used to demonstrate our visualization. All
three datasets were initially read from the simulation results in tetrahedral mesh format.
Subsequently, each of the 40 timesteps underwent individuall conversion to a structured
voxel grid, with a voxel size of 1.5 mm. The resulting dataset sizes are as follows: 1.89
GB for dataset 1, 13.45 GB for dataset 2, and 4.04 GB for dataset 3. Following this,
the convertion to the sparse voxel representation was applied, using a chunk size of 4,
wherein each chunk contains 43 voxels. Consequently, this operation reduced the size of
dataset 1 to 0.43 GB (22.8%), dataset 2 to 1.18 GB (8.8%), and dataset 3 to 0.82 GB
(20.4%). As illustrated in Figure 4.2, the original size of all three datasets is depicted by
the bounding box, while the reduced size is visually represented by the volume rendered
in blue.
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Figure 4.8 & Figure 4.10

Figure 3.11

(a)

Figure 4.3

Figure 4.9

(b)

Figure 4.1: Overview of datasets 1 (a) and 2 (b). (a) shows an aortic dissection starting
in the aortic arch and ending in the lower thoracic aorta. A single entry tear and renetry
tear as well as a fenetration in the upper thoracic aorta can be seen. (b) shows an
aortic dissection starting in the aortic arch and extending into both femoral arteries. The
dissection comprises a single entry tear and two reentry tears, one in each femoral artery.
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(a) (b) (c)

Figure 4.2: Visualization of sparse voxel grid representation. The black outline shows
the bounding box of a dataset. Originally all voxels in the bounding box were included
in the voxel grid structure. Rendered in blue is the sparse representation only comprising
chunks, that contain data. Finally, rendered in red is the vessel itself. Images generated
using Paraview [76].

4.2 Morphology

Section 2.3 explains the essentials of focus and context visualizations, which we applied
to our visualization techniques. The surfaces of the aortic vessel wall rendered using
the techniques of Ostendorf et al. [29] serve as context to enhance the interpretability of
the flow visualization. An isolated depiction of the outer vessel wall and the dissection
flap can be seen in Figure 4.1. Through transparent rendering of the outer vessel wall,
the underlying dissection flap is revealed, while simultaneously maintaining visibility
of the vessel’s course, shape, and extent. By rendering the dissection flap opaque,
we mitigate ambiguity arising from an excessive number of transparent layers, thereby
supporting clear assessment of vessel morphology, as well as spatial perception and
navigation.
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(a) (b) (c)

Figure 4.3: Renderings of streak surfaces resulting from seeding structures of different
sizes. All three figures show a streak surface seeded in the ascending aorta of dataset 2.
Figure (a) uses a seeding structure size of 0.3. The resulting streak surface shows the
flow in the center of the vessel does not supply any branching vessels or the false lumen.
Figure (b) shows the streak surface generated from a seeding size of 0.5. It shows flow
supplying mainly the left carotid artery and the true lumen of the aorta. Figure (c) places
the seeding structure closer to the vessel wall with a size of 0.8. The streak surface shows
flow supplying the brachiocephalic artery as well as true and false lumen of the aorta.

4.3 Hemodynamics

We utilize streak surfaces as a visualization technique to represent the hemodynamics
involved in aortic dissection, employing CFD simulations conducted with a 2-way
FSI approach. Moreover, to enhance the visual representation, we implement opacity
modulations, heavily influenced by the methods proposed by von Funck et al. [1].
These modulations are crucial in creating a smoke-like appearance, which aids
in the understanding and interpretation of the complex flow dynamics of aortic
dissections.

4.3.1 Seeding

The streak surfaces used for flow visualization are seeded using a closed polygonal seeding
structure. During the exploration of an aortic dissection dataset, the user can choose
size and location of the seeding structure. A set of example seedings is demonstrated
in Figure 4.3.

Using this technique, the seeding of streak surfaces can be adjusted to the needs
of the user. Seeding at the aortic root may reveal supply of branching vessels and
possible vortices. Figure 4.3 demonstrates the influence of the seeding structure size
on the distribution of the streak surface. Conversely, seeding close before a fenestration
can reveal the magnitude of cross-flow between lumina and possible flow jets, as seen
in Figure 3.11.
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(a) (b)

(c) (d)

Figure 4.4: Demonstration of our improved shape opacity term. Figures (a) and (b)
show streak surfaces seeded in the ascending aorta extending into the branching vessel at
the aortic arch as well as the true and false lumina in the descending aorta. Figure (a)
uses the original computation of the αshape, while figure (b) uses the updated equation.
Figures (c) and (d) show streak surfaces seeded in the descending aorta close before a
fenestration with the streak surfaces passing through the fenestration. Analogous to the
first example, (c) uses the original and (d) the updated equation for αshape.
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4.3.2 Artifact Reduction

The modifications of the Smoke Surface opacity terms described in Section 3.6 were
developed to improve the use of Smoke Surfaces for the visualization of hemodynamics in
aortic dissections. Using the original opacity terms, artifacts can become visible when the
flow is separated by thin walls. While this may occur in non-medical applications, this
phenomenon is especially common in aortic dissections as the flow splits between two flow
channels only being separated by the thin dissection flap. Two examples of these artifacts
are shown in Figure 4.4. Thin, stretched triangle cells of the streak surface mesh show up
as straight lines, that connect parts of the streak surface, which should not be connected
in both Figure 4.4a and Figure 4.4c. The first figure shows, that this does not only occur
at the entry tear, but also, where multiple vessels branch off the aorta (see the highlighted
areas). Figure 4.4c shows artifacts occuring where a streak surface enters the false lumen
through a fenestration. After applying our changes to the computation of the shape
opacity term, the majority of those artifacts were removed, while not interfering with
the remaining triangles of the streak surface mesh. This is demonstrated in Figure 4.4b
and Figure 4.4d by showing the same streak surfaces as in (a) and (b) with the only
change being the computation of αshape.
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Figure 4.5: Execution times in µs of the advection process (solid line) and the mesh
update process (dashed line) ploted over the course of one cardiac cycle. The performance
of the original voxel grid data structure (red) is compared to the sparse representation
(blue).

4.3.3 Performance

The execution time of the preprocessing steps does not impact the visualization, but
the performance of computations during interactive real-time visualization is critical.
Inadequate performance can result in an unresponsive application or even failure to deliver
real-time visualization altogether. The major processes involved in creating an interactive
flow visualization of Smoke Surfaces are (1) advecting the streak surface mesh’s vertices,
(2) updating any surface parameters, and (3) rendering the streak surface as well as any
additional geometry.
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Figure 4.6: Execution time of the advection process (solid line) and integration steps
(cycles) computed per frame (dashed line) are plotted over the course of one cardiac cycle.
The performance of the original voxel grid data structure (red) is compared to the sparse
representation (blue).

Achieving interactive frame rates (>30 frames per second (FPS)) necessitates ensuring
that the combined execution time of these processes remains below 33 ms. Consequently,
optimizing computation efficiency across all processing steps is paramount. The advection
process frequently accesses the simulated flow data, which is optimized through the use of
a regular voxel grid, ensuring constant access times. Furthermore, all three processes
mentioned above are accelerated using parallel processing on the GPU. This enables
simultaneous processing of numerous mesh vertices. Similarly, ray intersection tests
required for rendering are executed in parallel.

The performance of processing step (1) and (2) was evaluated using a streak surface
comprising 25,000 vertices. The sparse representation of the voxel grid introduces
additional computational steps to ensure access to the correct data segments. Application
of temporal as well as spatial interpolation and the 4th order Runge-Kutta integration
scheme result in 64 accesses to the flow data for each integration step. Given that
the computations introduced by the sparse representation must be performed for every
access, they potentially have a significant impact on performance. Hence, we conducted
performance testing of the advection shader using both the original and sparse voxel grid
data structures.

During testing, we maintained consistency in several parameters, including the size and
location of the seeding structure, the size of the streak surface mesh, animation speed,
rendered geometry, and temporal as well as spatial resolution of the input data. This
ensured that any observed differences in performance could be attributed specifically
to the variations in the data structures being tested, rather than fluctuations in other
parameters.

The performance results for (1) and (2) are plotted over one cardiac cycle in Figure 4.5.
In the original data structure (depicted in red), both the advection and mesh update
stages exhibit constant execution times, averaging 1.7 ms and 12.3 ms, respectively.
Since the mesh update stage is unaffected by the change in data structure, the measured
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Figure 4.7: The execution time per integration step (TpC) is plotted over the course
of one cardiac cycle. The performance of the original voxel grid data structure (red) is
compared to the sparse representation (blue).

performance of mesh update for the sparse data structure remains comparable to the
original, with an average execution time of 12.3 ms.

When examining the plot corresponding to the sparse data structure (illustrated in
blue), the execution time of the advection process (solid line) appears slightly increased
compared to the original structure for most of the cardiac cycle, as expected. However, at
approximately 35% of the cardiac cycle, the execution time increases significantly. This
phenomenon occured consistently with large streak surface meshes and persisted even
after attempts to remedy the issue.

Figure 4.6 shows the overall execution time of the advection shader per frame alongside
the number of integration steps (cycles) computed in that frame. The number of cycles is
derived from the frame rate, to keep the speed of the simulation steady. A notable increase
of the number of cycles, indicated by the blue dashed curve, occurs at approximately 35%
of the cardiac cycle. As expected, with the increase in the number of cycles computed
per frame, the execution time also rises. However, it is observed that the execution time
increases disproportionately to the number of cycles. This observation is supported by the
data presented in Figure 4.7, which displays the execution time per cycle. A significant
increase in the per-cycle execution time is evident in the blue curve, corresponding to the
sparse data structure. In contrast, this phenomenon is not apparent in the original data
structure (red).

All processes involved in our real-time flow visualization are designed to maintain a
constant execution time. For this reason, the cause of the sudden increase in execution
time is unclear. Potential causes could include optimization or the lack thereof in the
execution of Vulkan compute shaders, memory transfers, or other internal processes of the
Vulkan API. Further investigation and debugging are warranted to identify and address
this issue effectively.
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(a) (b)

Figure 4.8: Rendering of flow in dataset 1 using streak lines (a) and a streak surface
(b). The seeding structure is placed in the true lumen in the aortic arch, close before the
entry trear. Depth-dependent halos [81] are applied to the streaklines to reduce clutter.
Additionally, both techniques employ a color mapping of the velocity magnitude with
dark red indicating slow flow and bright yellow indicating fast flow.
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4.4 Appearance

In this section, we present the results of our smoke-like visualization of aortic dissection
flow and discuss its application in analyzing various flow phenomena and hemodynamic
aspects of the disease. Throughout our analysis, we frequently compare the Smoke
Surfaces to the previously implemented streak lines computed using the same data and
integration techniques but rendered differently.

Unlike the streak surfaces, no opcacity modulation is applied to the streak lines. Instead,
depth-dependent halos [81] are added to reduce clutter. It is important to note that the
streak line visualization is not part of this work and only serves as example for techniques
commonly used in the visualization of hemodynamics.

Figure 4.8 shows dataset 1 with streak lines (a) alongside a streak surface (b) seeded in the
true lumen in the aortic arch, close before the entry tear. Both techniques employ velocity
magnitude color mapping, representing slow flow in dark red and fast flow in bright yellow.
The seeding location, length of lines/surface, and color mapping parameters are consistent
for figure (a) and (b). Both images were aquired at the same time in the cardiac cycle,
during late systole. Notably, a fenestration in the dissection flap is visible at the center
of both figures.

Upon comparison, both streak lines and the streak surface clearly depict blood flowing
through the true lumen, entering the false lumen through the entry tear, and traversing
the fenestration. The color mapping effectively portrays the velocity of the flow,
highlighting its acceleration as it passes through the narrow fenestration in the dissection
flap.

Upon closer examination, the Smoke Surface appears less cluttered, offering a more
continuous and fine-grained visualization of the flow dynamics. Furthermore, the surface
representation enables a more intuitive understanding of flow. For instance, as the blood
flows through the entry tear, it forms a flow jet that impacts the opposing outer vessel
wall of the false lumen. Consequently, the flow is dispersed, moving along the vessel
wall and predominantly down the false lumen. While streak lines can depict the flow
jet and its deflection at the vessel wall, the streak surface excels at illustrating the
thin, cohesive flow jet and its dispersion at the vessel wall. The reduction in opacity
intuitively conveys the dynamics of the phenomenon, whereas the same understandig
needs to be actively deduced from the increasing distance between lines when observing
streak lines.

Due to the continuous advection of each vertex of a streak line or surface, both techniques
suffer from segments being stretched as the flow diverges (recall Subsection 2.4.2).
However, when using Smoke Surfaces, the resulting artifacts are hidden, which is not
the case with streak lines. The artifacts appearing where the flow diverges can be seen
in Figure 4.8a, where the flow passes through the fenestration. Erroneous, long, straight
sections of streak lines appear to be passing through the dissection flap. In contrast, the
same segments are hidden in the streak surface, producing a smoke-like visualization of
flow without artifacts.

Figure 4.9 presents another set of images diplaying both streak lines and streak
surfaces. The generation parameters for all images only differ in the technique
used for flow visualization and the point in time during the cardiac cycle. The left
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.9: Various visualizations of flow at the reentry tear in the left femoral artery
of dataset 2. Figures (a)-(c) are captured during systole, while figures (d)-(i) are
captured during diastole. The left column displays a low number of streak lines with
depth-dependent halos [81] to reduce clutter. The center column shows a larger number
of streak lines without halos, enabling a more detailed visualization of flow. The right
column shows two streak surfaces. In the top two rows, color mapping is employed to
represent the flow’s lumen-of-origin (red for true lumen, blue for false lumen). In the
bottom row, color mapping represents the flow direction (white for antegrade, red for
retrograde).
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column of figures employs streak lines with depth-dependent halos [81], the center
column uses streak lines without halos and the right column utilizes streak surfaces.
Figures (a)-(c) are captured during systole, while figures (d)-(i) are captured during
diastole.

Comparing the top row of images, all the techniques produce visualizations of flow,
clearly showing the forward flow of true and false lumen, including the true lumen’s
contribution to the profunda femoris. The lumen-of-origin color mapping (red for true
lumen, blue for false lumen) applied to all three techniques aids in this visualization.
While the depth-dependent halos in figure (a) succeed in reducing clutter comparared
to (b), figure (c) clearly appears the least cluttered, simultaneously exceeding the
level of detail displayed through an increased number of streak lines in figure (b).
The halos employed in (a) help distinguish lines in the foreground from lines in the
background. However, this advantage diminishes as the spatial configuration becomes
intuitively recognizable in all three techniques by rotating the view. Arguably, the
transparent streak surfaces allow for the best interpretation of the entire structure
during interactive observation as self-occlusion is reduced. Similar observations can
be made, when comparing the three techniques in the images in the second and third
rows in Figure 4.9. Both rows visualize the flow at the reentry tear during diastole.
Streak surfaces produce the least cluttered visualizations, while displaying equal or greater
amounts of detail.

All three techniques are able to clearly show blood flowing from the true lumen into the
false lumen, as depicted in figures (d)-(f), thanks to the lumen-of-origin color mapping.
As this flow occurs at the reentry tear of the dissection and moves up the false lumen,
retrograde flow occurs. This is further highlighted in figures (g)-(i), which employ the
flow direction color mapping, which displays antegrade flow in white and retrograde flow
in red. The techniques based on streak lines are able to show retrograde flow. However,
the smooth appearance of the Smoke Surfaces makes them easier to interpret, especially
during animation.

To display the constantly changing flow inside an aortic dissection and demonstrate the
ability of streak surfaces to visualize such flow, Figure 4.10 presents six images of a streak
surface seeded in the true lumen in the aortic arch of dataset 1. The surface is advected
throughout the cardiac cycle, conforming to the changing flow. Each image captures
the surface at different point in time, with (a) representing the start of systole, (c) peak
systole and (f) the end of diastole.

In figure (a) the streak surface appears as a short section at the top of the aortic arch,
as the flow velocity is very small shortly before systole. Figure (b) shows the blood
accelerating and flowing through the entry tear, into the false lumen in the form of a flow
jet, as the systole begins. The velocity magnitude color mapping applied to the streak
surface in all images highlights the increased velocity at the entry tear compared to the
true lumen. Peak velocity is reached in the true lumen at the start of the descending
aorta during peak systole, as shown in figure (c). Blood flows down the true lumen and
into the false lumen simultaneously. Comparing the streams through the entry tear in (b)
and (c), complex hemodynamics can be observed, as the flow jet changes over time. The
streak surface also demonstrated how the blood flowing into the false lumen distributes
after it is deflected by the false lumen outer wall.
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(a)

fenestration

entry tear flow jet

(b) (c)

fenestration flow jet

(d) (e) (f)

Figure 4.10: Rendering of a streak surface seeded in the true lumen in the aortic arch of
dataset 1. Figures (a) through (f) depict the same streak surface at distinct, equally spaced
times over the course of one cardiac cycle. A color mapping of the velocity magnitude is
applied, showing slow flow in dark red and fast flow in bright yellow.
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Figure (d) shows the streak surface extending into the false lumen at both the entry tear
and the fenetration located further down the dissection. The false lumen experiencing
inflow through both fenestrations is clearly illustrated by this. This can help improve the
understanding of false lumen pressurization, as the small exit tear may not provide enough
outflow. Appart from the flow through fenestrations, the streak surface also displays the
constantly changing, partially helical flow inside the aorta.

Figure (e) represents the peak of diastole, with the flow slowing down significantly, as
indicated by the color mapping. Finally, the blood flow almost stops completely towards
the end of the diastole. Still, some flow through the true lumen as well as into the false
lumen can be seen in figure (f).

4.5 Limitations

Smoke Surfaces were successfully empoyed to simulate the injection and advection of
smoke in the flow of aortic dissection. During testing a number of limitations became
appearant.

Dispite our efforts to hide artifacts appearing where flow diverges, small artifacts inherent
to streak surfaces without remeshing remain. They could only be observed for a
very short period, when a streak surface passes through a fenestration, during our
testing.

Due to the design of our ring seeding structure and its placement, investigation of the
flow around intricate geometries such as fenestrations often requires the user to adjust
size and location of the seeding structure. The reason for this is the fact, that blood
flow near the vessel wall often differs significantly from the flow in the center of a lumen
While the seeding structure can be adjusted in real time, which promotes exploratory
investigation, simultaneous seeding at the wall and center of a lumen is currently not
supported.

As presented in Subsection 4.3.3, advection performance fluctuates depending on the
number of streak surface mesh vertices. Additionally, larger streak surfaces tend to lead
to more overlapping transparent surfaces, which slows down rendering. This effectively
limits the size and resolution of streak surfaces, as interactive framerates are otherwise
unattainable.
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This thesis aimed to create smoke-like visualizations of the complex hemodynamics in
and around aortic dissections to improve visualization clarity and information density
while providing intuitive means of analyzing blood flow. Different techniques based on
particles, surfaces, and volumes where discussed and a streak surface technique developed
by von Funck et al. [1] selected for implementation. This technique is tailored to
provide real-time visualizations of flow with a smoke-like appearance, by modulating
the surfaces opacity based on multiple factors. The technique was used to display the
blood flow inside aortic dissection and combined with a surface representation of the
vessel morphology, creating a focus and context visualization. The simultaneous display
of morphology and hemodynamics, can provide valuable insight into the complex interplay
between hemodynamics and morphology. Additionally, real-time advection and rendering
of streak surfaces allows for continuous exploration of the intricate dynamics of aortic
dissections.

5.1 Contributions

The opacity modulation of the streak surface proposed by von Funck et al. [1] succeeded in
hiding the majority of artifacts produced by streak surface advection without modification
of the mesh, but significant artifacts appeared when applying the technique to the unique
geometry of aortic dissections. We adapted the shape opacity term to mitigate this issue
by introducing the maximum edge length of a triangle as an exponent. As a result,
the majority of the surface appears as before, while hiding artifacts, appearing as long,
straight lines, intersecting parts of the vessel.

Another adaption of the original work was performed in augmenting the seeding structure.
Smoke Surfaces were developed to use a continuous curve as a seeding structure to simulate
a coherend surface of smoke. Another option presented was seeding at multiple distinct
locations to simulate wool tufts. We adapt their seeding structure to form a closed ring
instead of a curve. This seeding structure leads to a tubular topology in the streak surface,
inspired by the tubular structure of blood vessels.

Mapping color to integral structures is a technique commonly used in flow visualization.
The effectiveness of color mapping on Smoke Surfaces was not tested in the original work.
We apply a commonly used color mapping of flow velocity magnitude to the streak surface
to encode more information. Additionally, we present two new color mappings, namely
lumen-of-origin and flow direction, specifically developed for the use in aortic dissections.
All three color mappings improve the interpretability of the visualization by providing
additional information. The lumen-of-origin color mapping significantly simplifies the
identification of blood flow originating from either true or false lumen and the interaction
of both lumina.
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5.2 Future Work

To the best of our knowledge, we have made the first attempt at enhancing flow
visualizations of aortic dissections through a smoke-like technique. Therefore, there is
potential for refining and extending the methods presented in our work or investigating
the effectiveness of different techniques entirely.

5.2.1 Smoke Surfaces

Von Funck’s [1] succeeds in creating real-time smoke-like visualizations of aortic
hemodynamics. Nonetheless, several aspects such as seeding, color mapping and
performance could be improved.

While our ring seeding structure samples an area of specified distance from the center of
a cross-section, different seeding structures could be used to ensure more even sampling.
For instance, placing a spiral or multiple rings in a cross-section to seed from improves the
sampling across the cross-section but introduces overlapping streak surfaces, potentially
compromising their comprehensibility. Moreover, augmenting color mapping on streak
surfaces by integrating additional metrics such as vorticity, helicity, or residence time
could enrich the visual representation.

Although the advection performance of our implementation proved adequate for real-time
usage and may have the capacity to accommodate larger streak surfaces than those
tested, the synchronization with the chosen rendering solution imposes limitations on
performance. Implementing synchronization techniques that facilitate parallel execution
of advection and rendering processes could yield significant performance enhancements.
Furthermore, optimizations to the rendering pipeline itself hold promise for improving
overall efficiency.

5.2.2 Flow Visualization Techniques

In addition to the streak surface-based technique we selected for our visualization, particle
and volume based techniques were also discussed in Section 2.4. Particle-based techniques,
widely employed across various applications, have been utilized for visualizing aortic
hemodynamics by de Hoon et al. [58]. Given their versatility, it is conceivable that
minimal adaptation would be necessary to apply these methods to aortic dissection
datasets.

Volume rendering is widely used for 3D visualizations of medical volume data. Using
similar rendering techniques to visualize hemodynamics, seems obvious. However, flow
visualizations based on volumetric structures have seen little to no advancement since
their initial development by Max et al. [4]. Nonetheless, volumetric flow visualization
could be considered when investigating alternative techniques for smoke-like renderings
of aortic dissection flow.
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5.2.3 Ray Tracing

Highly realistic visualizations can be created using ray tracing. As mentioned
in Subsection 3.5.1, only basic rendering effects were implemented in this work, as
lighting effects are out of scope.

Lighting effects such as realistic shadows and ambient occlusion can enhance depth
perception. However, casting shadows inside vascular structures is non-trivial and may
require specially tailored techniques. Accurate reflections computed using ray tracing
could be employed to improve the visualization through virtual mirrors, first introduced
by Bichlmeier et al. [82]. Virtual mirrors were originally developed to improve depth
perception interoperatively, but they can also provide a better overview of a structure by
offering views from different directions. This functionality may prove particularly useful
when investigating aortic dissections using a transparent outer wall and opaque dissection
flap.

When viewing one lumen, the dissection flap may obstruct the view of the other lumen,
necessitating the relocation of the camera to obtain a comprehensive view. However, with
a virtual mirror, both the front of the dissection flap and the currently viewed lumen can be
seen simultaneously with the back side of the dissection flap and the flow in the opposing
lumen. This simultaneous visualization may significantly enhance the understanding of
the spatial relationships and dynamic interactions of true and false lumen within the
dissected aorta.

The addition of advanced lighting effects such as global illumination or subsurface
scattering can improve the visual fidelity of the visualization but impacts performance,
potentially compromising the interactivity of our visualization. While advanced lighting
can produce highly realistic renderings, which may be used for patient communication,
it may not necessarily aid in diagnosis or treatment planning. This necessitates further
research to evaluate the clinical utility of such enhancements.
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