

Virtual Tales: Narrative Virtual Reality for Patient Education

- T. Maienschein¹, M. Allgaier¹, F. Huettl², T. Huber², B. Preim¹, and M. Meuschke¹
- ¹Department of Simulation and Graphics, University of Magdeburg, Germany
- ²Department of General, Visceral and Transplant Surgery, University Medicine of the Johannes Gutenberg-University Mainz, Germany

Motivation

Problems of **patient education** (using information sheets):

- many incomprehensible technical terms
- irrelevant information due to general applicability
- doctors have little time to answer questions

Narrative Visualization:

- uses storytelling methods to convey complicated scientific facts to non-experts^[1]
- promising approach to convey important information in a patient-friendly way

Virtual Reality:

- enables various interactions
- promotes a sense of presence
- may help patients feel closer to a story

Template Structure

We identified two main challenges for the creation of Narrative Virtual Reality Stories:

- narrative paradox: challenge of author influence vs. free exploration enabled by interaction^[1]
- **loss of frame**: a scene cannot be framed like in theatre or movies but needs attention cues instead^[2] We introduce a template structure consisting of two scene types:

CINEMATIC SCENES

- convey all necessary information
- no user interaction
- unskippable
- full **control** granted to the **author**
- use of narrative elements to pique interest

INTERACTIVE SCENES

- convey additional information
- full use of user interaction
- parts skippable
- simple design
- reuse of designs (e.g. interactive stations)

How is the narrative paradox solved?

- either free exploration or full author control for each scene
- scene type determined by importance of information
- easy & intuitive way to solve the narrative paradox

Climax

How is the loss of frame solved?

- focus lies on story or interaction (is never split)
- simple design amplifies given attention cues
- → no need for a frame, as focus can be directed anyways

Denouement

Figure 1: Structure of the Liver Resection Prototype using the introduced template structure with cinematic (green) and interactive (yellow) scenes.

Prototype

As proof of concept we created a prototype for patient education regarding liver tumors, using Unity.

Story arc of the prototype:

- follows Freytag's Pyramid
- Exposition:
- introduction of patient
- cinematic scene
- Rising Action:
- introduction to the liver & it's functions
- interactive scene
- Climax:
- doctor's consultation
- conclusion: liver resection necessary cinematic scene
- Falling Action:
- further information to liver resections
- interactive scene
- Denouement:
- resolution in form of a positive check-up
- cinematic scene

Results

Feasibility study (n = 9):

- Focus on: general usability (SUS)^[3], learning effect (questions regarding the information given inside the prototype application), our template design and qualitative feedback
- Qualitative feedback:
 - Positive: desired features of the application (e.g. understandable language, interactive, plausible)
 - Negative: realted to yet incomplete parts of the prototype (e.g. depiction of characters)

The results show the **potential of our approach**.

Characteristics	Value
Age	
– 20 – 30 years	7
– 50 – 60 years	2
VR experience	
– None	2
- < 15 times	3
– > 15 times	4
Medical background (Likert scale)	
- 1	3
- 2	2
- 3	1
- 4	2
– 5	2
Experience with 3D visualization (Likert scale)	
<u> </u>	2
- 2	2
- 3	0
_ 4	4
– 5	1

Figure 2: Study results regarding the template/scene design.

References:

- [1] SEGEL E., HEER J.: Narrative visualization: Telling stories withdata. IEEE Trans Vis Comput Graph 16, 6 (2010), 1139-1148
- [2] TRICART C.: Virtual reality filmmaking: Techniques & best prac-tices for VR filmmakers. Taylor & Francis, 2017 [3] BROOKE J.: Sus-a quick and dirty usability scale. Us-ability Evaluation in Industry 189, 194 (1996), 4-7