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Chapter 1

Introduction

Numerical simulations are carried out for many purposes, such as industrial

processes or medical issues. It is the task of physical and engineering sci-

ences to determine the necessary parameters and find corresponding boundary

conditions to design a model that fits the dynamics of the underlying appli-

cation. At present, this is frequently done for computational fluid dynamics

(CFD) simulations of cerebral blood flow giving insights into its hemodynamics.

This interest refers to cardiovascular diseases as a dominating cause of death.

Among cardiovascular diseases, subarachnoid bleedings show a high mortality

rate (28-day case fatality rate of 42% [17]) and can be ascribed to ruptured

intracranial aneurysms in the majority of cases.

Intracranial Aneurysms An intracranial or cerebral aneurysm is a permanent

balloon-like dilation of a cerebral blood vessel. In 80–90%, their morphology

can be characterised by an aneurysm sac that clearly distinguishes from the

actual vessel [44]. The transition region is called the neck [23].

Epidemiologic studies concerning the occurrence of cerebral aneurysms

vary due to a laborious acquisition of data and time-dependent stages of the

disorder [44]. The prevalence in the general population ranges from 2.3% [31]

to 3.2% [43] and up to 3.6–6% [45].

To prevent a cerebral aneurysm from rupturing, different treatments are

current practice. The clipping approach benefits from the common presence

of a neck region and aims at blocking the inflow by the placement of a metal

clip. In contrast, a coil that is placed inside the sac is supposed to reduce

the aneurysmal velocity and thereby support blood clotting. The coagulation
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2 CHAPTER 1. INTRODUCTION

should close the sac eventually and restore an unimpeded flow. A stent has

the same purpose, but works as a stabiliser for the vessel. Its close-meshed

boundary surface is intended to hamper and to divert the blood flow such that

its majority does not enter the aneurysm sac.

Despite the rupture risk, the intervention involves a high risk itself. As a

consequence, a general treatment of intracranial aneurysms should be avoided.

Instead, the rupture potential can be assessed by considering suitable influencing

factors [44].

Influencing Factors Among hemodynamic parameters of cerebral aneurysms,

vortical flow patterns are qualitative parameters of special interest. In a study

of 210 aneurysms, Cebral et al. [7] linked complex flow patterns to the rupture

of aneurysmal walls. The authors refer to complex as “flow patterns that

exhibit flow divisions or separations [...] and contain more than one [...] vortex

structure” [6]. The occurence of a single vortex is referred to as a simple

pattern. In another study involving 119 aneurysms, Xiang et al. [48] confirm

the significance of simple and complex flow patterns.

From a medical point of view, the detection and evaluation of vortices can

contribute to the assessment of whether an aneurysm is treated or not.

Blood Flow Simulations To examine the blood flow in cerebral aneurysms,

numerical simulations of the Navier-Stokes equations that assume blood as

an incompressible Newtonian fluid are performed [11]. These simulations are

based on patient-specific vessel and aneurysm geometries that are processed

in a workflow pipeline as explained in detail by [11]. According to the author,

the first four steps that form the basis of the blood flow simulations can be

outlined as follows:

1. Patient-specific image acquisition of the vascular system of interest

2. Reliable vessel segmentation of all necessary vascular sections

3. Vessel surface reconstruction and its geometric processing to obtain high-

quality surface meshes and anatomical landmarks

4. Volume grid generation based on a surface mesh to establish a numerical

grid for the simulation
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Having isolated the vessel surface, the simulations can especially consider

the subsequent fluid-structure interactions [44], meaning the interaction of a

deformable structure (surface) with an internal fluid flow (volume). The general

necessary partition of the volume in finite compartments results in a set of

nodes, edges, faces and cells. Depending on the topology, these sets are referred

to as structured or unstructured grids. The former is based on a regular topology

entailing a systematic indexing of elements. While the regular structure allows

for efficient computations, it is not suitable for complex geometries that partly

require adaptive grid sections. Unstructured grids feature exactly this flexibility

by allowing an arbitrary topology of grid elements as well as varying cell forms.

The Navier-Stokes equations include partial derivatives that, by definition,

assume the domain as a continuum. In a numerical solution process, this model

transitions into discrete grid points that hold values of the domain [44]. The

discretisation process distinguishes finite-difference methods (FDM), finite-

volume methods (FVM) and finite-element methods (FEM).

Feature-Based Visualisation Due to the large amount of data arising from

high-resolution numerical simulations, a manual investigation with direct vi-

sualisation techniques is tedious, time consuming and inaccurate. Instead, to

automate parts of the analysis that are mostly not parametrised is favourable.

The purpose of feature-based visualisations or feature-based algorithms is to

reduce the amount of data to a smaller size by automatically extracting features.

In the context of aneurysm diagnosis by means of vortices, a feature-based

algorithm fits to the mental work flow, since researchers know beforehand what

kind of feature they are looking for in the data.

1.1 Scope of Thesis

The definition of vortices as well as their extraction is a research area that is

extensively and continuously discussed by a vast number of publications. The

intense scholarly interest is attributable to vortices being a complex field of

research that involves many physical and geometric quantities. Furthermore,

vortices are in general unsteady features, which means that measured values

can also vary over time. As a result, there are many approaches regarding the

definition of a vortex. Popular studies distinguish core regions and core lines of
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a vortex, whereas others do or do not consider the unsteady aspect. In some

cases, various algorithms try to map the same definition.

Despite the numerous studies, there is no evidence of how to define a vortex

in a generally valid manner down to the present day. Due to different fields of

applications and datasets, that result from a variety of simulations, different

algorithms show varying strengths and weaknesses. In the particular domain

of intracranial aneurysms, recent studies [6, 26] examined vortices based on a

steady view and vortex core lines.

As a consequence, this thesis involves a comparison of six vortex core line

definitions [1, 22, 24, 34, 41, 42] that are restricted to steady simulations respec-

tively to a single timestep of unsteady simulations. Since the implementation is

based on the Parallel Vectors Operator [28], it can be applied to unstructured

grids. The comparison features practical datasets that explicitly make use of

this grid type.

The comparison is divided in a qualitative and a quantitative part. The

qualitative part considers the number of vortices, their types based on critical

points and to which extent vortices are found completely (by continious core

lines) or incompletely (by fragmented or too short lines). The quantitative part

estimates the amount of false positives based on post-processing steps proposed

in this thesis.

The outcome of this thesis attempts to find the best vortex core line

definition for the given context. Moreover, the question is answered whether

and, if so, which fixed combinations of definitions produce core lines in close

proximity and hence, which vortices are captured. In other words: Would it be

possible to produce a comprehensive result if a set of interpolated streamlines

is computed from the outputs of several individual definitions approximating

their behaviour? In the context of vortex core regions a similar approach is

proposed by Biwas et al. [3].

The one or the other attempt aims at finding a set of core lines that is the

best possible, in order that it can be used for advanced analysis or visualisation

techniques: The already mentioned classification of simple and complex flow

patterns [7] is based on the number of vortices as well as on streamlines that

are integrated from core lines. In particular, Byrne et al. [6] quantitate the

complexity of blood flow by the length of the core lines which makes accurate

lines essential. In a paper on the detection of embedded vortices (see section 2.4),
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Oeltze et al. [26] examine critial points along core lines. Although the authors

propose own pre-processing steps to connect fragmented lines, the underlying

concept relies on continious lines that span the entire vortex nevertheless.

1.2 Notations

In the context of this thesis, vectors have the dimension of three as well as

matrices being 3-by-3 square matrices. To differentiate them from scalar values,

their variables are printed bold. Moreover, matrices use capital letters as

variable names. The following symbols appear consistently throughout the next

chapters:

υ: velocity

∇υ: velocity gradient/Jacobian

ω: vorticity
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Chapter 2

Theory

The purpose of this chapter is to introduce vortices in the sense of a feature that

can be extracted by a feature-based algorithm. Formal aspects are explained

based on general properties of features as well as by taking the example of

critical points. In the course of this chapter, vortex definitions are distinguished

by their representation. Moreover, embedded vortices are introduced.

2.1 Features

“In the field of feature-based visualization, there is no formal definition of a

feature in general” [33]. Intuitively, one would call any structure or pattern of

interest in the data a ‘feature’ [19, 33].

In the context of spatial data, these patterns are geometric objects. This

implies the first property of a feature: its localizability [33]. Consequently, the

location in turn implies the dimensionality [33]. A set of locations, which is a

set of single points, may belong to a feature of higher dimension such as a line,

a surface or a region. Therefore, a feature can be classified into being a point

feature (0D), a line feature (1D), a surface feature (2D) or a region feature (3D).

The mentioned properties are essential, meaning that a feature needs them to

exist. Depending on the kind of feature, there are further properties such as its

physical extent (length, area, volume), shape, strength or energy [19].

7
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2.1.1 Well-Defined Features

A feature is well-defined, if there is a mathematical definition for it that can

be applied to a dataset in order to extract the feature [19, 46]. A well-known

example for features of this kind are critical points.

From the existence of a definition, further properties, like Galilean invariance,

arise. This property can be explained by the metaphor of an ‘ideal’ train, moving

with constant speed in a relative uniform motion. Any experiment carried

out on the moving train would produce the same results as in a stationary

environment. In the context of velocity fields, this property implies that a

feature does not change after a constant is added to the field. A definition based

on quantities that do not directly depend on the velocity (velocity jacobian, its

invariants, λ2, vorticity) is Galilean invariant. With the occurence of velocity

or a directly dependend quantity, a definition loses this property.

The mathematical definition also determines the locality of data, the feature

depends on. According to [19] and [33], a definition is called local, if the feature

only depends on quantities in a small neighbourhood around its locations. If

these quantities in turn could be anywhere in the domain, the definition is

called global. For example, a definition that is based on a certain streamline

behaviour is global, since a streamline can potentially reach every point in the

domain.

2.2 Critical Points

A critical point is a very basic feature and, in the context of vector field

topology, helps to partition the flow field into regions of characteristic flow [37].

Such a point can be understood as a degenerated streamline [33]. Thus, a

streamline that integrates into a critical point ends, because the streamline

slope is indeterminate at this point [9].

A critical point is defined as the location x where the vector field v is zero.

v(x) = 0 (2.1)

This point is called an isolated critical point, if, in addition, the vector field in
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Figure 2.1: Stream line patterns near critical points and eigenvalue plane for spiralling
flow. Illustration adapted from [14].

a small neighbourhood ε around it is defined [46].

v(x± ε) 6= 0 (2.2)

2.2.1 Classification of Critical Points

According to critical point theory (also known as the ‘phase-plane’ or ‘phase-

space’ theory [29]) a critical point of first order can be classified by an eige-

nanalysis of ∇υ [46]. This classification refers to the patterns of nearby

streamlines [15]. A complete and detailed overview of critical points and their

flow patterns in 3D is given by Chong et al. [9].

Of special interest for vortical flow are critical points of a spiraling type

(see Figure 2.1). They have in common that the eigenanalysis of ∇υ yields a

single real eigenvalue and a pair of complex conjugate eigenvalues. The plane

on which the flow spirals is defined by the complex pair [14].

2.3 Vortices

As well as critical points, vortices are features that can occur in vector fields.

However, there is no agreement on their formal definition [33].

2.3.1 Informal Vortex Definitions

An informal definition, which probably reflects one’s intuition, is given by

Roth [33]:

Everybody has an intuitive conception of a vortex and typically

imagines something like a tornado.
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Lugt [25] defines a vortex as

the rotating motion of a multitude of material particles around a

common center.

Another definition was given by Robinson [32]:

A vortex exists when instantaneous streamlines mapped onto a plane

normal to the vortex core exhibit a roughly circular or spiral pattern,

when viewed from a reference frame moving with the center of the

vortex core.

Byrne [4] describes the tornado metaphor on a more formal basis:

If you are unlucky enough to be hit by a hurricane you will experience

the following. The wind will gradually increase to a ferocious velocity

until you pass into the eye of the hurricane. The wind velocity will

suddenly drop, and as the eye passes over you the velocity will drop

to zero. After the center of the hurricane passes you the velocity

will gradually increase until you pass out of the eye, when the wind

will suddenly start howling again. The same thing happens with a

tornado, but it is far more dangerous to observe this phenomenon.

In the past decades, researchers tried to translate these or similar ideas into

mathematical definitions and algorithms. With the exception of a few publi-

cations [30, 35], most studies define the core of a vortex. These again can be

divided into region-based and line-based representations.

2.3.2 Vortex Core Region

A vortex core region is based on the isosurface of a scalar field [21, 38] eval-

uated on grid nodes as shown in Figure 2.2a. For instance, thresholds on

pressure, vorticity magnitude or helicity result in spatial regions of vorticity-like

behaviour [13]. Advanced definitions are mostly based on ∇υ or its decomposi-

tion into its symmetric part S and antisymmetric part Ω. These last-named

values can also be evaluated on grid cells [19], because the velocity gradient is

linear on tetrahedron elements, which are the basic modules for volume cells [14].

Grid node based regions, respectively isosurfaces, may appear smoother due
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(a) (b)

Figure 2.2: (a) Vortex cores defined by isosurfaces. In (b), streamlines are integrated
from seedpoints within the interior. Images taken from [19].

to the procedure of the marching cubes algorithm. On the other hand, this

procedure could produce surface fitting errors while grid cell based regions

represent the core region accurately [19].

Complex Eigenvalues of Jacobian The same basic idea, that leads to a

classification of critical points in section 2.2.1, is used in the ∆ criterion by

Chong et al. [9]. Spiraling flow, which was common to all above-mentioned

critical points, can be verified at an arbitrary point in the domain. A vortex is

defined as the regions, where ∇υ has a complex conjugate pair of eigenvalues.

The characteristic equation for ∇υ is given by

λ3 + Pλ2 +Qλ+R = 0. (2.3)

where P , Q and R are the invariants of ∇υ. In the case of incompressible flow,

with P = 0, the discriminant ∆ can be expressed as

∆ = (1
2
R)2 + (1

3
Q)3. (2.4)

To verify a complex conjugate pair of eigenvalues, it is sufficient to check for a

positive ∆. Due to different definitions for the discriminant in the literature, a

complex pair may have the opposite sign. The derivation of the discriminant

based on Cardano’s Formula, as stated in [33], considers compressible flow

as well and simplifies to (2.4) in the incompressible case. In another step,

eigenvalues can be computed directly.
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Swirl Parameter Berdahl and Thompson [2] extend the ∆ criterion and

introduce the swirl parameter τ . This parameter tells how much a fluid particle

that convects through spiraling flow is captured by the swirl. Given a threshold,

the authors define a vortex as regions of a complex conjugate pair of eigenvalues

in combination with a certain impact of swirling motion to a particle.

Swirling Strength Zhou et al. [50] extend the ∆ criterion as well. They

define the imaginary part of the complex conjugate pair of eigenvalues as

the swirling strength. Since this value is signed, they suggest to use the

squared swirling strength, which is analogous to enstrophy (squared magnitude

of vorticity [1]) and thereby dimensionally consistent. A threshold subsequently

filters out regions of strong swirling motion.

In [37] and [39], the authors define vortex strength respectively rotations

strength in the same manner as swirling strength, but reference Chong et al. [9]

as their source, which I, to the best of my knowledge, cannot confirm. Instead,

Zhou et al. should be referenced. Chong et al. [9] name a rate of spiral, which

they define as σ
ω

, where σ is the real part and ω the positive imaginary part of

the complex conjugate pair. This idea was later continued by Chakraborty et

al. [8].

Positive Second Invariant of Jacobian The second invariant of a general

matrix, Q, is given by

Q = 1
2
(‖Ω‖2 − ‖S‖2). (2.5)

The Q criterion by Hunt et al. [16] identifies the vortex core as regions, where

the second invariant of ∇υ is positive. Additionally, the pressure has to reach

a minimum in that region. Jeong and Hussian [18] state, that the second

condition is true in most situations when the first one is true, although this

cannot be guaranteed.

A positive Q means a domination of the absolute vorticity magnitude over

the absolute strain rate and vice versa [10, 37, 50].

In the context of incompressible flow, the Okubo-Weiss criterion [27, 47] is

identical to the Q criterion [37].
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Figure 2.3: A vortex core line (white) with streamlines (black) spiralling around the
core. Image taken from [19].

Lambda2 (λ2) Jeong and Hussian [18] present an improved version of

the Q criteron. According to the authors “Q can also be interpreted as the

source term of pressure” [18]. After deriving the pressure Hessian from the

Navier-Stokes equations, they define a symmetric matrix as S2+Ω2. In contrast

to Q, this matrix neglects two unwanted effects: Unsteady irrotational straining

and viscosity [18].

The authors define a vortex core as a connected region where S2 + Ω2 has

two negative eigenvalues. The title λ2 refers to an ascending sorting of the

eigenvalues.

Shortcomings of Region Definitions A known disadvantage of vortex core

regions is that they cannot distinguish between different vortices in close

proximity [19], even if they have a different sense of rotation [33]. This is

attributable to the fundamental assumption that a vortex core region is the

uniform interior of a boundary surface. Another disadvantage is that this

boundary surface depends on a threshold, given that the chosen definition

includes one. But even if a definition is parameter free, the field of application

may require further thresholds on intuitive values like vorticity magnitude or

helicity to eliminate false positives [36, 37, 50]. In conclusion, the extent of the

boundary surface, and thereby the extent of the vortex core region, is hard to

define [33].
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2.3.3 Vortex Core Line

Another way of representing a vortex core is by a line. It follows the intuitive

concept of a “center line of the swirling flow structure, around which the flow

spirals” [33]. A centerline, as shown in Figure 2.3, brings several advantages over

regions. First of all, vortex core lines can differentiate between vortices that are

in close proximity [33]. Furthermore, a line is a 1D feature and therefore it only

has an extent in one dimension. The extent in other dimensions is infinitesimal

and hence, no boundary, as with regions, has to be defined. Although the

extraction of lines can generally depend on parameters, this may lead to more

robust solutions [33].

The main disadvantage of line definitions is the computational complex-

ity [21]. Additionally, in special cases, when the center of swirling flow is an

extensive region of constant flow, line definitions could produce many individual

lines that actually belong to one single core [21, 33].

The representation as a centerline is common to all following definitions.

What differs is the understanding of what the center is [37].

Streamlines from Critical Points Globus et al. [12] suggest to represent

the center as a streamline that originates from a critical point [49]. Yates et

al. [49] add to demand minimal curvature along the streamline. They also

discuss the study of Levy et al. [24], in which the authors state that a streamline,

that is integrated from an extremum of normalized helicity, will eventually

converge to a critical point.

The underlying assumption of these studies is that a critical point can make

predictions on streamline characteristics and vice versa. As critical points,

being a local feature, and streamlines, being a global feature, there is no reliable

fundament for that assumption [33]. However, Roth [33] states that “for well-

formed vortices the core is often close to a streamline”. The author implicitly

as well as the above-mentioned studies explicitly assume that vortices do not

comprise a critical point.

As long as a core line (or region) does not exclude critical points by definition

(streamlines do that explicitly, as stated in section 2.2), a vortex can potentially

comprise a critical point at an arbitrary position.

The relation of vortices, critical points and the consequent streamline
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patterns are revisited in section 2.4 and 3.2.

Generalized Definitions As mentioned above, core line definitions are

computationally more intense. While core regions are based on an isosurface

computed from grid points or grid cells, core lines involve various interpolations

of values and their reasonable connection. Beside the named definitions based

on streamlines from critical points, most definitions are procedural algorithms

and therefore implicit. For the same reason, a systematic overview of definitions

is complicated.

The Parallel Vectors Operator [28] is a “fundamental building block for

defining and computing a number of line-type features of vector and scalar

fields” [33]. As suggested by Peikert and Roth [28], the thesis at hand employs

the operator “as a basis for comparing feature definitions and for reuse of

algorithms and implementations”.

2.4 Embedded Vortices

Before presenting vortex core line definitions with the aid of the Parallel Vectors

Operator, a special type of vortex, an embedded vortex as mentioned by Byrne

and Cebral [5], is introduced. Without having detailed information about core

lines yet, the basic concept of an embedded vortex can be understood by means

of the already mentioned idea of a center line and critical points.

Accordings to [5], these structures can be “described by a vortex which is

enclosed within a larger vortex flowing in the opposite direction”. The authors

refer to concepts of dynamical systems theory, which relate the formation and

collapse of embedded vortices over the cardiac cycle to saddle-node bifurcations

of equilibrium points [26]. In an unsteady case of vector fields, a saddle-node

bifurcation is determined by a pair of critical points, that can be classified as

spiral saddle and spiral node (see Figure 2.1), restricted to a common sense of

rotation. The inner vortex spirals from the repelling to the attracting critical

point, changes orientation and subsequently moves with the outer vortex in

the opposite direction. A visualisation of an embedded vortex as well as the

illustration of the described behaviour is depicted in Figure 2.4. During the

cardiac cycle, the critical points “converge along the core line, collide, and

disappear causing a collapse of the embedding and a regression to uni-directional
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Figure 2.4: Visualisation of an embedded vortex and its characteristic flow behaviour.
© Steffen Oeltze-Jafra

vortical flow” [26].

Although the thesis at hand approaches only steady vector fields, it is

possible for a core line to capture an embedded vortex at a time step while the

pair of critical points is in the converging state. This fact is revisited in section

3.2.



Chapter 3

Methods

Vortex core lines are extracted by means of the Parallel Vectors Operator. The

extraction process can be understood as being parameter-free, since thresholds

are intended to be chosen without loss of generality. The penalty for this

generality is a set of lines that will still contain false positives.

Therefore, further post-processing steps that aim at discarding all false

solutions are applied. These steps depends on parameters that have to be

set individually with respect to different datasets as well as different core line

definitions.

3.1 Parallel Vectors Operator

The Parallel Vectors Operator was first published in [28] and is explained in

more detail in [33]. For features, such as vortices, there is a lack of explicit

definitions. If these were available, it would be easy to distinguish between

different feature algorithms based on the mathematical definitions [28]. The

operator provides this explicitness by reducing line features to locations where

two given vector fields, f and g, are parallel. The locations are preliminary

to the final result. To map the original feature algorithms exactly, varying

additional selection criteria have to be applied. Taking up vortex core region

definitions, some of these criteria already occured in the same or a similar

manner in section 2.3.2. These selection criteria are binary, thus they label a

location as a valid or invalid point. Only the subset of valid points is then used

for the following construction of polylines.

17
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Figure 3.1: Structure of the Parallel Vectors Operator accompanying this thesis

Although the operator is based on essential steps, for some of them Roth [33]

proposed different variations. In the course of this thesis, a choice concerning

these variations is made to the effect that the whole extraction process is free

of any parameters. However, the final criterion turned out not to be suitable in

the context of aneurysmal blood flow, which is why a new quantity is proposed

in section 3.2.

In conclusion and in preview of the next sections, the implementation of

the operator accompanying this thesis is based on the structure illustrated in

Figure 3.1.

3.1.1 Categories of Line Features

Since the operator is not designed to extract vortex core lines in particular, but

line features of vector and scalar fields in general, it provides a categorisation

of line features that does not distinctly mark core lines. Instead, different

definitions of core lines are assigned to different categories of line features.

Locations of Zero Curvature

The curvature of a streamline is zero at locations where velocity υ is parallel

to (∇υ)υ.

υ ‖ (∇υ)υ. (3.1)

For steady vector fields, the latter is known as acceleration, the first derivative

of υ. If these vector fields are parallel, the motion of a fluid particle will

momentarily follow the direction of υ in a straight line [33].
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Sectional Extrema

These extrema are based on the parallelism of a vector field f and the gradient

of a scalar field s.

f ‖ ∇s (3.2)

At these preliminary locations, a vector of f defines a plane perpendicular to

it, in which s has to be an extremum. The kinds of extrema can be evaluated

by the scalar’s Hessian matrix, projected onto that plane. The additional

constraint serves as a selection criterion for this category.

Extremum Lines

Similar to the last category, extremum lines involve extrema in a plane perpen-

dicular to a vector of f . In contrast, the scalar is replaced by the magnitude of

f .

f ‖ ∇(‖f‖) (3.3)

In terms of vector parallelism this is equivalent to

f ‖ (∇f)Tf . (3.4)

Ridge and Valley Lines

The definition for ridge and valley lines is related to extremum lines and the

locations of zero curvature but only considers a single scalar field s. Given that

s is a scalar potential, a vector field f can be written as f = ∇s. The parallel

vectors expression can then be formulated as equation (3.4). Ridge and valley

lines are in fact minimum lines of the gradient f = ∇s [33]. Because ∇f is

the symmetric Hessian, the transposition can be omitted, which leads to an

equation that looks identical to the condition for zero curvature (3.1).

f ‖ (∇f)f (3.5)

In conclusion, ridge and valley lines are zero curvature lines of the gradient

of a scalar potential. To differentiate between ridges and valleys, the Hessian

∇f = ∇(∇s) is examined. An example of ridge lines can be seen in Figure 3.2.
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Figure 3.2: Ridge lines of a height field by extracting the zero curvature lines of ∇s
and applying the criterion for ridges (two negative eigenvalues of the
Hessian). Image taken from [33].

General Vector Parallelism

If none of the previous categories apply, the authors speak of a general vector

parallelism, which is exactly what the name suggests.

f ‖ g (3.6)

3.1.2 Compute Vector Fields

Every definition is based on two vector fields whose computation is the very

first step. Moreover, the choice of these vector fields is what explicitly defines

the extraction process. The selection criterion that will be named along with

its definition only limits the result to a subset of locations. An overview of the

definitions that are compared in the course of this thesis is given in Table 3.1.
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Levy, Degani and Seginer

Levy et al. [24] propose to define vortex core lines based on large absolute

values of normalized helicity hn.

hn =
υ

‖υ‖
· ω
‖ω‖

(3.7)

It is equal to the cosine of the angle between velocity υ and its curl ω = ∇×υ.

The latter is also known as vorticity. It can easily be translated into a general

vector parallelism.

υ ‖ ω (3.8)

By that, the definition really captures only values of hn of ± 1. In the original

publication, a selection criterion is not proposed. Following the example of

Byrne et al. [6], a valid location must exhibit a complex pair of eigenvalues of

∇υ as well.

Sujudi and Haimes

Sujudi and Haimes [42] published a core line definition which requires spiralling

flow identified by complex eigenvalues of the Jacobian. In particular, they use

the real eigenvector to compute a line segment respectively a pair of points.

Roth and Peikert [34] show that the latter can be reformulated as velocity υ

being parallel to the acceleration.

υ ‖ (∇υ)υ (3.9)

In other words, these are locations of zero curvature. Still, a complex pair of

eigenvalues is a necessary condition for a valid location.

Banks and Singer

The definition of Banks and Singer [1] is a predictor-corrector algorithm. Start-

ing from a seed point, a step in the direction of vorticity ω is predicted. After

that, the step is corrected to the minimum of pressure p in a plane, perpendic-

ular to ω at the predicted position. The basic idea of the algorithm is depicted

in Figure 3.3. Imagining very small step sizes, the procedure finds locations,
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where vorticity is approximately parallel to the pressure gradient [33].

ω ‖ ∇ρ (3.10)

With the additional contraint of pressure minima, this algorithm locates sec-

tional extrema. Minima are identified by the projected Hessian having two

positive eigenvalues. Locations that also satisfy the additional constraint are

valid.

Figure 3.3: Schematic of the predictor-corrector algorithm of Banks and Singer.
Image adapted from [1].

Strawn, Kenwright and Ahmad

Strawn et al. [41] use a definition that solely measures vorticity ω and its

magnitude. They look for maxima of the magnitude in planes perpendicular to

the vector. This is equivalent to a definition of extremum lines of ω.

ω ‖ (∇ω)Tω. (3.11)

Maxima, respectively valid locations, are found when the projected Hessian

has two negative eigenvalues.

Kida and Miura

In their study, Kida and Miura [22] defined a pressure-like value, derived from

the divergence of acceleration. As an approximation, the authors always use

the real pressure p and identify a vortex core line by connected locations of

pressure minima. These locations can be reinterpreted as ridge and valley lines

of pressure.

∇p ‖ (∇(∇p))∇p (3.12)
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The Hessian, ∇(∇p), has two positive eigenvalues for a valley. This again

identifies a valid location.

Roth and Peikert

Roth and Peikert [34] carry on the idea of locations of zero curvature by

including higher order derivatives. All previous studies implicitly assumed

piecewise linear flows, by only including first derivatives in the calculations.

According to the authors, this only models core lines that are straight lines.

Especially if the whole flow is curved, a core line could also be bent [33] (see

Figure 3.4). In a steady vector field, acceleration a = (∇υ)υ is derived from

velocity υ. A general vector parallelism that includes the second derivative of

υ can then be expressed as

υ ‖ (∇a)υ (3.13)

or

υ ‖ ∇((∇υ)υ)υ. (3.14)

To stress that this definition is a higher-order variant of [42], it could be named

locations of zero torsion [33]. Independent of higher order derivatives, a valid

location is restricted in almost the same manner as in [42]: Before ∇υ is checked

for a complex pair of eigenvalues, it is projected onto the plane perpendicular

to the core velocity.

Figure 3.4: Front and top view of a bent core line with b = (∇a)υ. Image taken
from [34].

3.1.3 Compute Locations

The fundamental idea of the operator is to find locations of parallel vectors

on the faces of each grid cell. This results in a set of locations of which every
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Authors Year Keywords

Levy, Degani and Seginer 1990 normalized helicity

Banks and Singer 1995 sectional minima of pressure

Sujudi and Haimes 1995 lines of zero curvature

Kida and Miura 1997 valley lines of pressure

Strawn, Kenwright and Ahmad 1998 extremum lines of vorticity

Roth and Peikert 1998 higher-order derivatives

Table 3.1: Overview of vortex core line definitions compared in this thesis

location corresponds to a unique face. In fact, the locations are based on

analytic solutions calculated on triangles. Therefore, if necesary, the faces of

each grid cell are split into 2-simplices. Special care has to be taken of face

duplicates of adjacent cells and their identical splitting. The set of locations

and especially the relation between a location and its corresponding triangle

serves as a basis for subsequent steps. Because it is only about the parallelism

of two given vector fields, the following analytic method is common to all

definitions.

On a triangle ABC, linear interpolants f̂ and ĝ for the two vector fields f

and g can be written as

f̂ = F

s · ht · h
h

 with F =

fA − fC , fB − fC , fC
 (3.15)

and

ĝ = G

s · ht · h
h

 with G =

gA − gC , gB − gC , gC
 . (3.16)

The variables s, t and a constant 1 can be interpreted as affine homogenous

coordinates for the given triangle. Two vector fields are parallel when

F

st
1

 = λG

st
1

 . (3.17)
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vector field f
vector field g

location of f ‖ g

Figure 3.5: Two vector fields being parallel at a highlighted location on a triangle.

A rearrangement of the equation leads to an eigenvector problem.

G−1F

st
1

 = λ

st
1

 (3.18)

If G is singular and F is not, the roles can be swapped. Otherwise no solution

exists.

The outcome of equation (3.18) are eigenvectors that are intended to describe

points in the local coordinate system of the given triangle, which is the real

plane. However, these eigenvectors may be complex refering to points within

the complex plane. In these cases, no geometric interpretation for the current

purpose exists, which is why these eigenvectors are omitted.

Given that equation (3.18) yields a real eigenvector, an additional constraint

for the resulting point is to lie inside of the triangle. Furthermore, only the first

solution is stored for each triangle which is necessary for the topology-based

construction of polylines in section 3.1.5.

Figure 3.5 illustrates a point inside of a triangle, which is a location where

the vector fields f and g are parallel.

3.1.4 Apply Selection Criteria

For every location, an additional selection criterion is applied that labels the

point as valid or invalid. The reformulated definitions in section 3.1.2 involve

selection criteria that measure the velocity gradient or the Hessian of a scalar.

The necessary values are available on the grid nodes or can be derived from them,

as they are closely related to the vector parallelisms (see section 3.1.2). Every
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Tetrahedron Hexahedron Wedge Pyramid

Figure 3.6: Different cell forms that might occur in an unstructured grid. Illustration
adapted from [40].

location refers to the three grid nodes, that were involved in its computation

based on triangle (see Figure 3.5). For a location to be labelled valid the

selection criterion has to turn out valid at all three nodes.

3.1.5 Construct Polylines

Up to this point, the extraction process led to a set of unconnected points.

These points are found on triangles that belong to two adjacent cells or a single

cell. The latter occurs if the face is on the boundary of the domain.

From a cell’s point of view, a triangular face can be one of the initial

triangles, that are induced by the cell form, or a triangle that originated from

the splitting of a non-triangular face. Different cell forms are illustrated in

Figure 3.6. Connections ‘through’ a cell (line segments) are constructed based

on two rules.

1. If a valid point is found on both triangles of a splitted face, only the

‘first’1 one is considered while the other one is omitted. This choice is a

reasonable simplification, since it only slightly changes the path of a line

segment but not the affiliation to the original non-triangular face.

2. If the overall number of considered valid points is two, these points are

connected by a line segment. This case is illustrated in Figure 3.7.

In every other case, the whole cell is disregarded and no line segment is

constructed. A cell with more than two valid points on its faces is assumed to

1first refers to the point, that was first stored during the computations in section 3.1.3 and is
determined by the underlying implementation of the ’Parallel Vectors Operator’.
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vector field f
vector field g

locations of f ‖ g
line segment

Figure 3.7: A line segment is constructed from two locations that lay on a cell’s
surface.

be an invalid cell, since a vector parallelism on three or more sides of a cell is

not sensible in the context of spatial flow data.

Because almost every point belongs to a face that is shared by two cells,

line segments that contain a mutual point can be concatenated. This way, the

grid topology is used to construct polylines from line segments.

3.1.6 Filter Polylines

As described above, polylines are constructed from valid points regardless of

the polyline’s length or the number of comprised points. However, a polyline

has to be composed of at least three points. This minimum is accounted for by

the computation of core line tangents in the next steps.

Until now, the implementation of the operator followed the suggestions

of [28] and [33] and leaves a set of polylines. As a next step, the authors propose

to apply yet another criterion that measures an angle in order to eliminate false

positive parts. At this stage, the implementation of the operator accompanying

this thesis deviates from the original publication by proposing and using a more

suitable criterion for the context of aneurysmal blood flow, which is discussed

in the next section.

3.2 Angle Criteria

Depending on the pair of vectors, involved in varying angle criteria, different

characteristics arise that are examined with respect to vortices and critical

points respectively embedded vortices.
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Core Line Tangent — Velocity

In the original publications covering the Parallel Vectors Operator [28, 33],

the authors define the feature strength, that measures the cosine of the angle

between core line tangent t and core line velocity υ at a given point.

|cosα| =
∣∣∣∣ υ‖υ‖ · t‖t‖

∣∣∣∣ (3.19)

By taking the absolute value, it only gives information about the angle, not

about the orientation of vectors. To disregard the orientation is reasonable

because the tangent’s orientation depends on the arbitrary situation whether

the core line is sampled from the one or the other end. The described angle

is expected to be low along true positive parts, because the rotary motion of

a vortex does not occur in a plane, but is stretched along the whole core line

reducing the angle.

These lines are connections of points, which are based on vector parallelism.

However, the parallelism at a single point is independent of the core line, of

which it is part. As a consequence, there is no indication that the core line

always follows the trajectory of a streamline through the velocity field. Hence,

in [33], the angle between core line tangent and core line velocity is restricted

to be smaller then 45◦ (30◦ in a stricter manner) without exception. In due

consideration of critical points that can occur along a core line and embedded

vortices in particular, this procedure is disadvantageous. In the segment around

the attracting critical point, the flow of the inner vortex changes direction and

moves with the outer vortex. For a core line that has captured an embedded

vortex the angle between its tangent and the local velocity would reach a

maximum in that segment. For the repelling critical point, and for other

possible spiral saddles or spiral nodes, that do not emerge in linkage of an

embedded vortex on the core line, the angle reaches a maximum as well, due

to the attracting or repelling characteristic. As a consequence, strict filtering

based on the angle criterion would systematically cut out segments around

critical points.



3.2. ANGLE CRITERIA 29

Velocity — Vorticity

Although originally intended to be a core line definition [24], normalized helicity

can also serve as an universal angle criterion that discards false positives. It

is defined as the cosine of the angle between velocity υ and vorticity ω and

measures “the degree of knottedness of tangled vortex lines” [24]. In [6], core

lines were restricted to be composed of line segments that exhibit extremums

of normalized helicity over a tetrahedral element.

This quantity has similiar characteristics to the aforenamed. The more

stretched a vortex is along its core line, the lower the angle between velocity

and vorticity. Particular attention has to be payed once more to critical points

and embedded vortices. Since normalized helicity is the cosine of an angle, a

change of sign indicates a change of orientation of υ or ω. Oeltze et al. [26]

state that for embedded vortices “the direction of ω is stable along the core

line”. Whereas in section 2.4, the direction of υ was described as unstable, due

to a change of the direction of flow in the segment around the attracting critical

point. For core lines that represent embedded vortices the sign of normalized

helicity flips in these segments while the values approach zero. In other words,

the angle between velocity and vorticity reaches a maximum, similar to the

angle mentioned before. The same applies again for single critical points of type

spiral saddle or spiral node. A strict filtering based on extrema of normalized

helicity would cut out segments around critical points as well.

Nevertheless, if the purpose is to specifically locate critical points of a

spiralling type along the core line, as done among other things in [26], a

changing sign of normalized helicity serves as a perfect indicator provided that

the local flow exhibits a rotary motion.

Core Line Tangent — Vorticity

In the preceding paragraphs, true positive parts of core lines were almost every-

where characterised by small angles of both discussed quantities. Embedded

vortices, as well as single spiralling saddles and spiralling nodes as an exception,

feature maximal angles in short segments of the core line. Especially in the

context of cerebral aneurysms, it would be useful to find a quantity that features

consistent values along true positive parts, independent of critical points and

thus the kind of vortex it has captured.
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Figure 3.8: A vortex core line containing a critical point. (a) Streamlines are seeded
along the core line. Values of (a) normalized helicity, (b) feature strength
and (c) absolute corelicity are plotted.

To achieve the very same thing, the essential characteristics of both herein

before mentioned criteria are combined in a new quantity, normalized corelic-

ity cn, defined as

cn =
t

‖t‖
· ω
‖ω‖

. (3.20)

Since the orientation of vorticity ω was described as stable for the problematic

case of embedded vortices (implicitly involving the case of a single critical

point), the sign only depends on the direction in which the core line is sampled.

In order to be independent of that direction, the absolute corelicity is defined

by taking the absolute value of normalized corelicity. In other words, this

quantity measures the cosine of the angle between core line tangent t and core

line vorticity ω.

|cos γ| = |cn| (3.21)

Because the angle γ is a more intuitive quantity, it is used in the next sections

and is referred to as the corelicity angle. In terms of using one of the new

quantities as a parameter, it is just a matter of agreement whether the absolute

corelicity, ranging from zero to one, or the corelicity angle, ranging from 0◦ to

90◦, is used. Figure 3.8 illustrates the consistent distribution of high absolute

corelicity (respectively a low angle) along the core line particularly covering

the segment that comprises a critical point. Whereas, no general statement

can be made about false positive parts.
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Figure 3.9: False positive ends of an actual true positive core line

3.2.1 New Criterion

In order to replace the angle criterion of the original publication with the

measurement of the corelicity angle, a combination of two steps is proposed.

First Step The first step is similar to the filtering in section 3.1.6 but is

based on a rough threshold on corelicity angle (60◦) combined with a moderate

tolerance of successive angle violations. It is intended to discard parts that are

false positives in a general comprehension. The need of this step is most evident

for polylines that mainly consist of a true positive part but also include false

positive ends as illustrated in Figure 3.9. With these parts of high corelicity

angles being excluded from the set of polylines, a subsequent step that assesses

an average value per line can further differentiate true and false positives.

Second Step Since only a rough threshold was applied to the polylines, true

positives still show their uniform distribution of low corelicity angles in contrast

to false solutions whose distribution is more diverse. In this second step,

decisions are made for entire lines, based on the average values of corelicity

angle that are derived from the individual values at every point of the line.

Another threshold filters out a subset of polylines that have an average corelicity

angle smaller than 45◦. Besides false positives, this value is intended to generally

comprise all true positives.
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3.3 Post-Processing

The post-processing depends on parameters that have to be adjusted indi-

vidually for every combination of dataset and core line definition. Since the

absolute corelicity has convenient properties concerning core lines, especially

the distinction between true and false positives, it is used in another step to

further exclude false solutions. In combination with a threshold on the minimal

length of polylines, false positives can be discarded to the greatest possible

extent.

Post-Processing Filtering The filtering occuring in the post-processing can

be understood as a stricter and at the same time user-driven version of the

first step in section 3.2.1. It depends on two parameters, the maximal corelicity

angle γ and the maximal number of violations of that angle. To discard as

much false positives as possible, these parameters have to be set individually

with respect to different datasets and underlying core line definitions. The

stricter the parameters, the more fragmented the final result becomes.

Threshold on Length Actually, the above-mentioned parameters also depend

on the individual shapes of lines that belong to a single dataset. However,

in the majority of practical examples that were examined in the course of

this thesis the remaining false positives at this stage were shorter than the

shortest true positive. Hence, a length filter can be used to remove all false

solutions. In the case of a true positive that is shorter than a false solution the

implementation is not able to separete both groups flawlessly.
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Comparison

To compare six vortex core line definitions that have been presented in section

3.1.3 the Parallel Vectors Operator was applied to seven datasets of ruptured

aneurysms, for each definition individually. For one thing, lines were compared

qualitatively to examine which and to which extent vortices of a dataset are found

by different vortex definitions. For another thing, a quantitative comparison

estimated the amount of false positives.

Throughout the following sections, the different algorithms are abbreviated

by their author’s initials:

sh: Sujudi, Haimes (lines of zero curvature)

lds: Levy, Degani, Seginer (normalized helicity)

rp: Roth, Peikert (higher-order derivatives)

ska: Strawn, Kenwright, Ahmad (extremum lines of vorticity)

bs: Banks, Singer (sectional minima of pressure)

km: Kida, Miura (valley lines of pressure)

It should be noted that the definitions of bs and km additionally require

pressure information. Since this quantity is directly associated with velocity

during a simulation, its availability is only a matter of data export.

33
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4.1 Qualitative Comparison

The qualitative comparison is based on a visual inspection of vortex core lines

and their resulting streamline patterns. In particular, it makes use of the

output of the Parallel Vectors Operator without any post-processing, since the

set of lines at this stage does not depend on any user-defined parameters. The

penalty for this generality is a set of lines that still contains false positives.

However, the qualitative comparison only evaluates which and to which extent

vortices are found.

Firstly, overall assumptions on the actual number of vortices per dataset

and their types were made by means of the lines of all compared definitions.

The number of vortices was assumed on the basis of stream lines seeded from

the pooled set of lines while the type of a vortex was determined by the lines’

profiles of normalized helicity. As pointed out in section 3.2, a changing sign of

normalized helicity indicates a critical point of a spiralling type. The type of a

vortex is referred to as follows:

Embedded Vortex (EV): a vortical structure featuring a saddle-node

bifurcation

Critical Point Vortex (CPV): a vortex comprising a single critical point

Well-Defined Vortex (WDV): a vortex without any critical points

Subsequently, the definitions were examined individually, regarding to which

extent vortices were found completely (by continious core lines) or incompletely

(by fragmented or too short lines).

Overall Assumptions A streamline structure was counted as a vortex if the

streamlines indicated a rotary motion around a common axis. This ‘common

axis’ can be understood as a fuzzy guide, that arises from streamline patterns

of multiple shifted lines or an individual one. Subsequently, the type of the

vortex was determined. Therefore, the profiles of normalized helicity of core

lines, from which the corresponding streamlines had been integrated, were

examined. If a changing sign of normalized helicity was found in each two

distinct segments on involved core lines in combination with the characteristic

stream line pattern described in section 2.4, an EV was assumed.
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dataset an 01 an 10 Case 347 Case 380 Case 381 Chlg 1 Chlg 2

sh �� ����� � ���� � � ��
lds �� ����� � ���� � � ��
rp �� ����� � ���� � � ��
ska �� ����� � ���� � � ��
bs �� ����� — — — — —

km �� ����� — — — — —

Table 4.1: (�) Well-Defined Vortex, (�) Critical Point Vortex, (�) Embedded Vortex,

(�) Vortex not found, (�) Vortex partly found, (�) Vortex entirely found,

The same procedure applied for CPVs, but for a single change of sign.

However, if the sign did not change, the vortex was assumed to be well-defined.

To differentiate WDVs from turbulent flow, a common axis was essential.

Individual Examinations A line, running with the common axis of a struc-

ture that had been assumed to be a vortex in the last paragraph, labelled the

vortex as found. If this line did not capture the whole rotary motion around

the axis or if more than one core line did, the vortex was labelled as ‘partly

found’. Otherwise, it was ‘entirely found’ by a single core line. Lastly, if a

vortex was not captured by any line, it was labelled as ‘not found’.

An overview of the results for the qualitative comparison is given in Table

4.1. Based on the visual inspection, the number of icons in Figure 4.1 represent

the assumed total number of vortices per dataset.

Qualitative Score Based on the results of Table 4.1, the vortex core line

definitions are scored on the basis of points. The resulting score is the quotient

(in percent) of a definitions’s total number of points divided by the maximal

Definition Qualitative Score

sh 90%

lds 96%

rp 72%

ska 19%

bs 50%

km 29%

Table 4.2: Qualitative score of vortex core line definitions
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number of points it could have reached (see Table 4.2). For the total number

of points, the vortices of all datasets are awarded: A vortex entirely found gets

two points, a vortex partly found gets one point and a vortex that was not

found at all gets zero points. The maximal number is the sum of points if all

vortices were found to their full extent.

4.2 Quantitative Comparison

Besides the visual inspection of a dataset, a quantitative estimation of the

relation between true and false positives is of common interest. It indicates the

precision of a definition, which is in turn a measure of the definition’s quality

or exactness. To quantify the necessary values of true and false solutions,

post-processing steps, as proposed in section 3.3, were carried out. As already

mentioned in the corresponding section, these steps depend on parameters that

need to be adjusted for every combination of dataset and vortex definition

individually.

On the one hand, the post-processing cannot ensure, that all false positives

can be discarded, while on the other hand, a strict setting of parameters can

exclude true positives from the final set of lines. In terms of comparing the

exactness of definitions, both cases are undesired. However, in the course of

this thesis, a set of parameters that perfectly separates true from false solutions

could not be found for every dataset and definition. Nevertheless, an overview

of optimal parameters, in terms of not excluding any core line that belongs to

a vortex that had been found by the visual inspection, is given in Table 4.3.

Fraction of False Positives Directly associated with the sets of parameters

are the fractions of false positives that can be taken from Table 4.4. The values

are measured by means of the lengths of line segments, of which core lines

(polylines) are composed.

Given the ith polyline that is composed of n points its length Li is the sum

of the individual euclidean distances between two successive points.

Li =
n−1∑
k=1

‖pk − pk−1‖ (4.1)
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dataset an 01 an 10 Case 347 Case 380 Case 381 Chlg 1 Chlg 2

sh 30/1/1 35/4/0.3 20/30/1 25/3/0.6 35/10/0.5 30/4/1 30/7/3.5

lds 27/1/1.5 45/1/0.4 20/30/1 25/3/0.6 35/20/0.5 50/1/3 30/4/4

rp 30/1/0.5 40/2/0.4 20/30/1 25/7/0.3 40/20/0.2 30/4/1 30/3/3

ska — 35/1/1.5 — — — — 20/2/2.5

bs 30/1/0.5 35/5/2 — — — — —

km 35/2/0.4 40/1/1.1 — — — — —

Table 4.3: Optimal parameters for post-processing:
maximal γ / maximal violations of γ / minimal core line length

dataset an 01 an 10 Case 347 Case 380 Case 381 Chlg 1 Chlg 2

sh 0.358* 0.118* 0.394 0.483 0.689 0.211 0.560

lds 0.780* 0.198* 0.284 0.549 0.589 0.637 0.665

rp 0.633* 0.316* 0.770 0.691 0.634* 0.760 0.839

ska 1 0.737* 1 1 1 1 0.922

bs 0.310* 0.203 — — — — —

km 0.543* 0.745* — — — — —

Table 4.4: Estimated fraction of false positves
(*) The post-processing was not able to discard all false positives

The summed up length of all unprocessed lines (direct output of the operator)

is denoted as Lpv, while for the set of lines after post-processing their sum is

denoted as Lpp. Based on these values, the fraction of true positives can be

estimated as

rt =
Lpp
Lpv

. (4.2)

Therefrom results the fraction of false positives rf among the output of the

Parallel Vectors Operator as

rf = 1− rt. (4.3)

It has to be noted that for cases marked with an asterix (*), the post-processing

was not able to discard all false positives. On the one hand, this led to an

increased value of rt respectively a decreased value of rf . On the other hand, the

definitions to which this applied showed a higher absolute value of false positives

generally which is why the distorted values are assumed to be comparable

nevertheless.
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4.3 Results

In the following, the various true positive results, as they were included in the

qualitative comparison, are described for every dataset individually. Hence, the

accompanying figures rest upon the parameters described in the quantitative

part of the comparison. The visualisations show the vortex core lines of all

definitions separated by distinct colours, that can be gathered from the captions.

Critical points are slightly indicated by black circles. Since the purpose of

the comparison is to show differences in the core line’s paths, no smoothing is

applied.

an 01 : (Figure 4.1) The core lines of sh, lds and rp capture the two vortices

to their full extent and only differ slightly in length. While they

meet the center axes of both vortices, the core lines of bs and km

strongly depart from the others in the bent section. The spacing

from the actual axis can also be seen to a lesser extent at the straight

axis of the other vortex. By these ‘gaps’, they miss two critical

points besides the one that is not captured by both definitions at all.

The definition of km produces the shortest and at the same time

incomplete lines, while longer lines of bs solely find the straight

vortex to its full extent.

an 10 : (Figure 4.2) The largest structure of a WDV is found by all defi-

nitions with the exception of ska that lacks the right end of the

vortex. The CPV on the right side in Figure 4.2 is captured to a

diverse extent. While the definitions of sh and bs extract an entire

core line, the others solely find individual parts which include or

not include the critical point. In the foreground of Figure 4.2, two

small CPVs are found by the definitions of sh, lds and rp. If the

lines capture the critical point, the vortex is considered as entirely

found. Another vortex that is not visualised in the accompanying

figure is solely found by core lines of lds and ska.

In this particular dataset, the smaller vortices are captured to

different extents, which could be an indication of a rotary motion,

that is not as distinct as for the large structure. Their rotation could

be primarily caused by critical points as well. Additionally, the
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datasets an 01 and an 10 exhibit lower grid resolution in contrast

to the others.

Case 347 : (Figure 4.3) The definitions of sh, lds and rp extract vortex core

lines that successfully represent the vortex’ full extent. It has to be

noted that the definition of rp produces a shorter core line, ending

at the critical point. The extended lines of the other definitions

represent a segment, that not necessarily belongs to the vortex

structure. It rather indicates a region in which the vortical motion,

caused by the critical point, decreases.

Case 380 : (Figure 4.4) At first sight, the definitions of sh, lds and rp produce

consistent results and all vortices of the dataset can be visualised

by means of the single sets of lines. On closer examination, the

definition of rp actually exhibit three individual lines separated

by two small gaps for the bent EV. In fact, this line features five

critical points, of which four form a double EV while the third can

be understood as an isolated critical point. In the segment around

the latter critical point, the first gap is found. It is a ‘real’ gap,

where no valid locations had been found. Intuitively, one would

expect this gaps to be closed, since a short connection of mutually

opposite endings is reasonable. The second gap is located near the

double EV. Its occurence can be attributed to the construction of

polylines in section 3.7 which disregards cells with more than two

valid points. The gap indicates that multiple valid points on a cell’s

faces can contain a ‘correct’ pair and that the cell as a whole can

not be disregarded in general.

Case 381 : (Figure 4.5) The results in this case are similar to Case 380 to the

effect, that a gap, caused by a disregarded cell, is responsible for

the incomplete detection of the vortex structure. This affects again

the definition of rp while the others do not show this peculiarity

but instead produce almost identical results. It is conspicuous, that

the core lines of rp are more winding in contrast to the other lines.

A similar behaviour can also be noted for Case 347.
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Chlg 1 : (Figure 4.6) The dataset features a large EV that is found by

the definitions of sh and lds, while the definition rp finds two

individual core lines. In contrast to Case 380, where one would

expect the endings to be connected, these should not, because of

the gap’s significant width. However, all true positive lines are in

close proximity to each other.

Chlg 2 : (Figure 4.7) The results for this dataset can be divided in two

groups. The first group contains the definitions of sh and lds that

successfully detect both vortices to its full extent and comprise

almost the same locations. In contrast, the second group of rp

and ska finds individual parts of the vortex located in the vessel.

Compared to the other results, the core line of rp is too short,

whereas the definition of ska produces a small gap. This time, the

gap can no be traced back to a disregarded cell.
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0-1 1

Normalized Helicity

Figure 4.1: Results of dataset an 01
(�) sh, (�) lds, (�) rp, (�) bs, (�) km,

0-1 1

Normalized Helicity

Figure 4.2: Results of dataset an 10
(�) sh, (�) lds, (�) rp, (�) ska, (�) bs, (�) km,
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Figure 4.3: Results of dataset Case 347
(�) sh, (�) lds, (�) rp
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Normalized Helicity

(a) Overview

0-1 1

Normalized Helicity

(b) Core line, that features two gaps (arrows).

Figure 4.4: Results of dataset Case 380
(�) sh, (�) lds, (�) rp
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Figure 4.5: Results of dataset Case 381
(�) sh, (�) lds, (�) rp
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Figure 4.6: Results of dataset Chlg 1
(�) sh, (�) lds, (�) rp

0-1 1

Normalized Helicity

Figure 4.7: Results of dataset Chlg 2
(�) sh, (�) lds, (�) rp, (�) ska,
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Chapter 5

Discussion

An interpolation between multiple sets of lines from several vortex definitions

is not reasonable, due to the significant amount and diverging distribution of

false positives at the parameter-free stage. Especially the high variation among

definitions for the same dataset complicates any attempt to unify their results.

Although different approaches to unify the lines are conceivable, one would

have to know beforehand, which lines are relevant for the current purpose.

Relevant lines would probably be true positives or lines close to them, resulting

in the necessity of post-processing steps. In fact, one could interpolate between

the lines after they were processed in datasets like Case 347, resulting in a set

of lines that minimizes the error with respect to the original sets. Obviously,

this proceedure would not be very reasonable, since optimal parameters for a

number of datasets would have to be found, if that possible, for all definitions.

As a consequence, it is more efficient to find a best definition, that finds

vortices in the majority of cases and to invest an overhead in the lines’ post-

processing.

Based on the qualitative comparison in section 4.1 and the qualitative scores

(see Figure 4.2), the vortex definition of Levy et al. [24] succeeded in most

datasets. The only vortex, where an entire detection failed, belongs to a dataset

whose grid resolution is significantly lower, compared to the majority of others.

Additionaly, the mentioned vortex was only partly or not at all found by other

definitions indicating that it does exhibit a motion, that is not as intuitive as

the others.

The definition of Levy et al. [24] was additionally restricted to complex

45
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eigenvalues of ∇υ. This decision was made, due to the original definition

not featuring an additional selection criterion. At the same time, it only

discards solutions without altering the characteristic definition of the vector

parallelism. The addition of that criterion can be evaluated as successful,

since it was possible to discard all remaining false positives by the successive

post-processing in the majority of cases.

Since the flexibility of an own implementation is not always given, the

definition of Sujudi and Haimes [42], that often serves as the recommended

standard implementation, can be assessed just as good. Both vortices, that

were not found by their definition were rarely found by others indicating that

these vortices exhibit a fuzzy rotary motion, in contrast to a strong rotation

around a clear axis of a significant length.

The definition of Roth and Peikert exhibit an unique characteristic regarding

grid cells with more than two valid points on the cell’s faces. In two cases, these

disregarded cells gave rise to gaps, that cut a true positive line in multiple pieces.

As a consequence, the corresponding vortices where labelled only as partly

found, according to the qualitative comparison. Another characteristic is the

more winding shape of true positives which could be explained by the inclusion

of higher order derivatives in the definition. In comparison to both already

mentioned definitions, the core lines of Roth and Peikert missed significant

parts in three cases.

The definition of Strawn, Kenwright and Ahmad did not produce applicable

results in the majority of cases, which is conspicuous since it is the only

definition that is solely based on vorticity. As a consequence, a combination of

two different quantities in a vortex definition seems advantageous.

Vortex definitions based on pressure could only be tested on two datasets,

which at the same time featured a low grid resolution. Limited to these

examples, the definition of Banks and Singer produced longer true positives in

contrast to Kida and Miura.

In conclusion, many vortex core lines of aneurysm datasets contained critical

points which prompted the proposal of a suitable criterion. The attempt to

explicitly consider critical points was not found in the literature, that adresses

the Parallel Vectors Operator. Since the underlying application area of these

publications are turbomachinery flows, critical points on core lines are perhaps

more common in the field of blood flow.
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5.1 Outlook

A consequence of the results is the handling of multiple valid points on a grid

cell’s faces. In fact, a more elaborate handling of different cases is necessary,

since a cell with multiple valid points cannot be disregarded in general. This

comes especially apparent for grid cells other than tetrahedrons providing more

possibilities for the interpretation of the spatial flow.

Another consequence is the need of a mechanism that closes gaps in a

reasonable way by connecting mutually opposite line endings below a certain

distance. To not depend on a parameter respectively the scale of a dataset, the

maximal distance should be automatically derived from previous steps.

The current implementation cannot handle closed core lines respectively

removes a core line from the set of lines the moment it would be closed. This

leads to a deletion of points whose effects are difficult to oversee and needs to

be approached in a follow-up.

An alternative or addition to the post-processing could be an implementation

of a geometric verification approach with the help of streamlines, as proposed

by Jiang et al. [20]. It basically automates the visual inspection process by

determining whether or not streamlines seeded from a core line are swirling

around the core. Provided that this technique succeeds, the idea of combining

different vortex definitions, as stated by Biwas et al. [3] in the context of core

region, can be reassessed.
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