
Eurographics/ IEEE-VGTC Symposium on Visualization (2007)
Ken Museth, Torsten Möller, and Anders Ynnerman (Editors)

Hardware-accelerated Stippling of Surfaces derived from
Medical Volume Data

Alexandra Baer Christian Tietjen Ragnar Bade Bernhard Preim

Department of Simulation and Graphics
Otto-von-Guericke University of Magdeburg, Germany
{abaer|tietjen|rbade|preim}@isg.cs.uni-magdeburg.de

Abstract
We present a fast hardware-accelerated stippling method which does not require any preprocessing for placing
points on surfaces. The surfaces are automatically parameterized in order to apply stippling textures without ma-
jor distortions. The mapping process is guided by a decomposition of the space in cubes. Seamless scaling with a
constant density of points is realized by subdividing and summarizing cubes. Our mip-map technique enables ar-
bitrarily scaling with one texture. Different shading tones and scales are facilitated by adhering to the constraints
of tonal art maps. With our stippling technique, it is feasible to encode all scaling and brightness levels within
one self-similar texture. Our method is applied to surfaces extracted from (segmented) medical volume data. The
speed of the stippling process enables stippling for several complex objects simultaneously. We consider applica-
tion scenarios in intervention planning (neck and liver surgery planning). In these scenarios, object recognition
(shape perception) is supported by adding stippling to semi-transparently shaded objects which are displayed as
context information.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism -Color, shading, shadowing, and texture

1. Introduction

The effective visualization of complex anatomic surfaces is a
challenging task since nested surfaces and complex geome-
tries are involved. With conventional surface and volume
rendering, it is often not possible to convey object shapes and
depth relations precisely. This gave rise to sparse visual rep-
resentations, such as hatching and stippling [VKG05]. Saito
and Takahashi [ST90] as well as Interrante and Kim [IK01]
showed that depth perception of medical surface models can
be effectively enhanced by hatching along curvature direc-
tions. Hatching requires high-quality smooth surface mod-
els which are very difficult to create automatically based on
clinical patient data exhibiting noise and minor artifacts, e.g.

from breathing, pulsation or patient movement. Without a
well-defined curvature field, hatching may be misleading by
emphasizing erroneous features of the surfaces. Stippling,
in principle, requires high-quality surface models. However,
since stippling does not produce visually striking primitives
such as lines, this technique is better suited for visualizing
surface models with moderate or average quality. Compared
to hatching, stippling is more adequate for objects which do
not exhibit ridges, valleys or other regions of high curvature.

Stippling is a rendering technique, where small dots are
used to convey shape and shading. The points’ density and
their location on the surface affect the appearance of a stip-
pled object. While densely distributed dots achieve the im-

© The Eurographics Association 2007.

Baer et. al / Hardware-accelerated Stippling of Surfaces derived from Medical Volume Data

pression of dark shading, sparsely covered regions seem like
brighter shaded areas. The points are distributed randomly,
but the spacing among the points is regular without any lin-
ear or regular pattern.

We present an effective hardware-accelerated stippling
method. Compared with existing methods, our approach has
the following advantages:

1. It is frame-coherent and therefore suitable for animations
and interactive exploration. All operations for texture co-
ordinate generation, access and mapping are supported
by graphics hardware.

2. Our multi-cube mapping algorithm minimizes texture
distortions and integrates different shading tones and
scales in one texture while satisfying the constraints of
Tonal Art Maps [PHWF01].

3. The performance is independent of the number of stip-
pling points. Moreover, no preprocessing is necessary to
realize a stippling rendering for any object.

In this paper, we describe our stippling approach and
present scenarios, in which stippling is applied for inter-
vention planning purposes. In contrast to medical education,
where the author may, in principle, work for a long time to
create a few expressive visualizations, intervention planning
is a routine task, which has to be accomplished very fast.
Therefore, automatic adjustment of parameters and render-
ing speed are also considered. Stippling should be used for
context objects which serve as orientation aids and not for
the focus objects, e. g. a tumor, which are immediately rel-
evant for an intervention. Therefore, accuracy is not an im-
portant issue. The major source of uncertainty for these visu-
alizations is the segmentation process, not the stippling ap-
proach.

2. Related Work

Image-, object- and texture-based methods are the main ap-
proaches to illustrate objects with stippling or other render-
ing styles. Deussen et al. [DHvOS00] and Secord [Sec02]
produce high-quality stippling images based on greyscale
images as input. Both use distribution methods based on
Voronoi diagrams and relaxation to achieve a regular posi-
tioning of stippling points that avoids nearly all visual pat-
terns. While the presented images are visually attractive,
these image-based approaches are restricted to single rendi-
tions. The stippling point distribution obtained in one frame
is not guaranteed to correspond with the one obtained in the
next frame. Secord et al. [SHS02] propose a method where
frame-coherence is pursued on the image plane, not in ob-
ject space. Stippling points or hatching strokes (see Eissele
et al. [EWE04]) are attached to the model’s surface. This ap-
proach is not frame-coherent in object space and the non-
photorealistic rendering (NPR) primitives (e.g. points for
stippling or strokes for hatching) will move across the ob-
ject’s surface during an animation by shading changes or

even because the object moves over a sequence of frames.
This "shower door" effect hampers the use of this technique
in animation sequences, in which particles should move
along with the object.

In object space approaches, NPR primitives are associ-
ated with actual locations on the model’s surface to achieve
frame-coherence. Meier [Mei96] used painterly strokes and
Cornish et al. [CRL01] developed a view-dependent parti-
cle system in which the distribution and density of strokes is
regulated by a hierarchical clustering algorithm. Similarly,
Pastor and Strothotte [PFS03] proposed a concept to gener-
ate interactive stippling animations using graphics hardware.
They consider each vertex as a potential location of one stip-
pling point. The amount of stippling points, according to
shading tones and scaling, will be achieved by subdivision
and simplification of the object geometry. As the amount of
points depends on the number of vertices, time consuming
preprocessing steps are necessary. The point distribution is
realized with a point hierarchy based on the polygonal mesh
and a point relaxation.

Lu et al. [LME∗02] introduced an interactive volume vi-
sualization that simulates stippling drawings, thus combin-
ing traditional volume and NPR illustration techniques. Each
volume is illustrated with an appropriate number of stip-
pling points initially generated. Treavett and Chen [TC00]
and Sousa et al. [SESS05] apply NPR techniques to scien-
tific and medical datasets to improve comprehensibility of
medical education and surgical training examples.

Texture-based methods combine aspects of image- and
object-based approaches. Textures with stippling points or
hatching strokes are mapped to the surface of the in-
put model. The first stippled renditions were presented by
Winkenbach and Salesin [WS94] for parametric surfaces us-
ing randomness to distribute the points on the texture and
therefore on the surface of a model. They also developed
prioritized stroke textures to apply a hatching pattern in ob-
ject space. Klein et al. [KLK∗00] used Art Maps and Praun
et al. [PHWF01] introduced Tonal Art Maps (TAMs) and
lapped textures. TAMs are a sequence of hatch images rep-
resenting different tones and mip-map levels. Strokes within
the images are scaled to have an appropriate stroke size and
density at all resolutions. They are organized to maintain co-
herence across scale and tones. Yuan et al. [YNZC05] intro-
duced a 2D geometry-image processing method to generate
stippling renditions. Points are directly rendered and there-
fore the frame rate is roughly inversely proportional to the
amount of generated stippling points.

3. Theoretical Background and Overview

Image space methods are normally fast, but since the points
are placed in image space, undesirable effects (e. g."shower
door" effect) may appear. Object space methods are frame
coherent but commonly require time-consuming preprocess-

© The Eurographics Association 2007.

Baer et. al / Hardware-accelerated Stippling of Surfaces derived from Medical Volume Data

ing steps. Texture-based methods are as fast as image-
based techniques, frame-coherent like object-based ap-
proaches and furthermore predominantly geometry indepen-
dent. However, mapping color information from a 2D image
or some other signal from a 2D domain to a 3D surface is
challenging. The quality of the result heavily depends on the
quality of the underlying surface parametrization. To avoid
any texture distortion, Floater and Hormann [FH04] argued
that the parameterization should be angle-preserving (con-
formal) and area-preserving. Isometric mapping is the opti-
mum, but this is only feasible for developable surfaces like
cylinders, cones and cubes. The main problem relates to the
geometry of polygonal surface models. Since these meshes
are defined at the vertices, an analytical parametrization is
not possible.

We developed a hardware-accelerated technique that vi-
sualizes 3D medical surface models using textures to simu-
late stippling drawings. Our mapping method borrows from
cube maps and the PolyCube-Maps of Tarini et al. to avoid
distortions on a 3D surface [THCM04]. Cube maps are usu-
ally deployed for environment mapping, but they can also be
used to define a seamless texture mapping. With cube map-
ping, the 2D texture is first mapped to a cube to transform
2D texture coordinates into 3D texture coordinates. Cubes
are suitable as intermediate objects because they can easily
be parameterized mathematically. Every 3D texture position
on the cube‘s surface is associated with a position in the 2D
texture space. In the second stage, a 3D texture position is as-
signed to each vertex of the 3D object. Polycubes are a vari-
ant of cube maps and enable cube mapping for models with
arbitrary shapes. The cube used for cube mapping is substi-
tuted with a polycube, a shape composed of axis-aligned unit
cubes that are attached face to face and roughly resemble the
shape of the given mesh.

Our approach to texture mapping is similar to the poly-
cube method, but instead of preprocessing an object specific
polycube, we automatically subdivide the individual object
space into unit cubes. This is possible because of the stip-
pling texture we are using. The texture access and mapping
process are simple enough to be implemented in currently
available graphics hardware. Moreover, we designed a stip-
pling texture and realized a mapping process that minimizes
texture distortions and enables automatic mip-mapping. To
satisfy the spatial and temporal coherence for real-time ren-
dering, we used the TAMs method and assigned it to stip-
pling points (recall Praun et al. [PHWF01]). Furthermore,
we present a self-similar texture that integrates all stippling
images (different shading tones and mip-map levels) used
for the TAM.

4. Texture-Based Stippling Algorithm

The visualization of an object with texture-based stippling,
involves two major tasks:

• the texture design including the representation of various
shading tones by the density of stippling points and

• the texture mapping process based on a parametrization
that minimizes texture distortion.

In this section, we present the texture mapping process fol-
lowed by the texture design. The mapping technique will be
introduced initially to carefully explain the texture design
requirements.

4.1. Texture Mapping Process

Mapping a texture to a polygonal model of arbitrary shape,
e. g. concave or branching objects, requires an appropriate
surface parameterization. We introduce a cube mapping ap-
proach to map a 2D texture to a 3D object. More precisely,
we modify the idea of polycubes that enable a mapping pro-
cess with low distortion to achieve an object specific texture
mapping without object preprocessing. This modification is
possible because there are just points on the texture that have
to be mapped onto the surface.

The following section covers the texture mapping process
consisting of the object parametrization, the calculation of
texture coordinates, the texture selection and mapping.

4.1.1. Object Parametrization

An object parametrization is a transformation that associates
all points in texture space with points on the object sur-
face. We introduce a method that is based on the PolyCube-
Map technique. Instead of constructing an object-resembling
polycube structure, we divide the object space into axis-
parallel unit cubes and then perform cube mapping for ev-
ery single cube (see Figure 1 (a)). We refer to this cube
structure as multi-cube structure. Thus, we achieve a global
parametrization for every object without object-specific pre-
processing steps.

Constructing the multi-cube for an object initially requires
the calculation of the cube’s size. The cube size is based on
the texture size consisting of T ×T texture elements (texel)
where T must be a power of two. To determine the cube’s ex-
tent, we take the texture size in screen space Ts and project
this size to the bounding box center of the object in object
space (inverse mapping). We choose the object’s bounding
box center to consider the distance from viewpoint to object
in our technique. The texture size in object space To is used
as the edge length for each unit cube. This inverse mapping
approach for the cubes enables the adjustment of the cube
size to the objects’ extent. Besides that, we achieve a projec-
tion of the texture from object to screen space and vice versa
with low distortions.

The object lies within this multi-cube construction and
will be thus parametrized for the mapping process (see Fig-
ure 1 (a)). The cubes act as a surface for cube mapping and
every single cube can be treated similarly. First of all, the

© The Eurographics Association 2007.

Baer et. al / Hardware-accelerated Stippling of Surfaces derived from Medical Volume Data

(a) (b) (c) (d)

Figure 1: The pipeline of our texture-based stippling algorithm explained by using a kidney surface. (a) To parameterize the
object for texture mapping, the object space is divided into axis-parallel unit cubes (multi-cube). Cube mapping is performed
for every cube. To assign a texture position to each surface point, (b) the normalized surface normal (here mapped to a color
in RGB-space) and (c) the light intensity at each surface point is calculated. The light’s intensity is used to select a texture with
the appropriate number of stippling points (d) to represent the shape with stippling.

stippling texture is projected to each side of a cube and then
mapped to the objects surface. To assign a texture position
on a cube side to each surface point, we use the normalized
surface normal of every surface point (see Figure 1 (b)). As
in other cube mapping algorithms, the normals’s major di-
rection – defined as the largest component of the vector –
determines the cube side that has to be considered for the
texture coordinate calculation. The intersection point of the
normal vector with the cube side serves as an index for the
texture access to the corresponding texel for each surface
point.

The mapping process is performed per fragment with
fragment shader programs to achieve a hardware-accelerated
continuous texture mapping and will be explained in the fol-
lowing section. There are two major sources of distortions
that will be considered and minimized with our parametriza-
tion. First, the texture distortion at the object’s surface by
subdividing the object into cubes and second the distortion
that may appear by projecting the texture to screen space.

4.1.2. Generation of Texture-Coordinates

Figure 1 illustrates the pipeline of our technique that is sup-
ported by graphics hardware. All necessary operations to
generate texture coordinates as well as the texture selection
and access are implemented in a single rendering pass.

Having built the multi-cube construction, the texture co-
ordinates have to be assigned to each surface point. This
is performed per fragment with a shader program. Sec-
tion 4.1.4 introduces the lighting operations and necessary
vertex transformations that are performed with the vertex
shader. The shader programs handle every vertex of the ob-
ject’s surface and the generated fragments similarly. In Fig-
ure 2 (a), our method is illustrated. Since all cubes are equal
and the surface points lying in this cube are treated similarly,
the relative position of the point in the cube, its normalized

surface normal and the corresponding cube side are the only
requirements for our approach. For this reason, all computa-
tions to obtain the texture coordinates are performed on the
basis of one cube that acts as a reference cube. The reference
cube is defined as an axis-parallel cube with min = (0,0,0)
and max = (Cubesize,Cubesize,Cubesize) and Cubesize be-
ing determined according to the texture size (recall Section
4.1.1).

The stippling texture is mapped to each cube side and
the texture position (rc,sc, tc) is defined as the intersection
point of the normal vector starting from the points’ posi-
tion p = (x,y,z) and the cube side. Since we are perform-
ing all operations on the basis of the reference cube, the sur-
face points’ position is initially transferred into the reference
cube. We simply use the modulo function to get the new po-
sition pc = mod(p,Cubesize) with pc = (xc,yc,zc). This pc
will only be used for the calculation of the texture coordinate

(a) (b)

Figure 2: 2D sketch of the multi-cube method: (a) each cube
can be treated equally for the texture position calculation.
Only the relative position of each surface point according to
a cube is important. (b) The major direction of the surface
normal will select the cube side, even if another cube side is
hit first (see p2 and~n2). This minimizes texture distortions.

© The Eurographics Association 2007.

Baer et. al / Hardware-accelerated Stippling of Surfaces derived from Medical Volume Data

and not as displayed pixel position. The cube side that has to
be considered for the intersection calculation is selected by
the major component of the normal vector. We just use the
major direction (largest component) of the normal vector to
select the side, even if another side is hit first. With this ap-
proach, the texture distortion will be minimized. Figure 2 (b)
shows an example for two neighboring points p1 and p2. The
normal vector~n2 first intersects another cube side but the di-
rection of this vector will select the second intersection point
to be the correct one. The area on the cube’s side between the
two intersection points with~n1 and~n2 will be mapped to the
object’s surface. If we would choose the first side for ~n2 to
be the appropriate side, the texture distortion would exceed.

To set up an equation for a straight line that intersects one
cube side, the position pc and the related normal vector ~np
are used. The cube side itself can be considered as an axis-
parallel plane. Afterwards, the intersection point pi will be
mapped to the interval [0,Cubesize] to achieve a pi that is
definitely within the cube boundaries. This is necessary be-
cause we are performing all operations based on one refer-
ence cube. The (rc,sc, tc) coordinates are now used to access
the corresponding texel of the 2D stippling texture.

4.1.3. Texture Access and Mapping

The texture access and mapping is carried out per fragment
as well as the texture coordinate computation. The intersec-
tion point and the reflected intensity at each point act as an
index for the texture access. First of all, the intersection point
defines the texture position (rc,sc, tc) on the cube side and
is within [0,Cubesize]. To access a texel, the position is nor-
malized to the interval [0,1]. Afterwards, we have the correct
texel and only require the stippling texture with the corre-
sponding shading tone for this current surface point (see Sec-
tion 4.3.1). Since all models presented in this paper are de-
rived from clinical data, the shading and therefore the points’
distribution are influenced by surface artifacts, e. g. stairs or
plateaus caused by reconstructing surfaces from binary seg-
mentation results.

To render a surface, we compute its desired tone value
by performing diffuse lighting computations per vertex (ver-
tex shader) and render the surface using the stippling tex-
tures of the appropriate tones. Different shading tones of the
object’s surface are represented by the amount of stippling
points (recall Figure 1 (d)). A stippling texture with the cor-
responding point density is then determined according to the
reflected intensity. The intensity is composed of the spec-
ular and diffuse reflection and will be passed to the frag-
ment shader. All textures are gray-encoded in one texture
(see Section 4.3.1). Therefore, we compare the gray value
of the texel with the reflected intensity. If the texel’s value
is higher or equal, the surface point will be black other-
wise white. We implemented an extended variant to improve
the object recognition for neighboring structures in one sce-
nario, in which white is replaced by an object-specific color
and transparency (see Figure 5).

4.1.4. Shader Program

Each vertex and each fragment, that enters the correspond-
ing shader program, will undergo the following instructions
independently.

The vertex shader program covers the following opera-
tions for each vertex including the preprocessing for the
fragment shader:

1. compute the homogeneous vertex position (gl_Position),
because the shader replaces the fixed function pipeline,

2. perform diffuse lighting computation: reflected intensity
composed of the specular and diffuse reflected amount
of light and pass this varying variable to the fragment
shader,

3. copy incoming vertex position and normal vector into
varying variables (p, n) to enable the fragment shader to
process them.

The fragment shader program covers the following oper-
ations that are necessary for texture coordinate generation,
texture access and mapping:

1. define cube extension: min = (0,0,0) and max =
(Cubesize,Cubesize,Cubesize), where Cubesize is passed
to the fragment shader as a uniform variable,

2. compute position in reference cube:
pc = mod(p,Cubesize) (recall Section 4.1.2)

3. determine the largest component of the surface normal
and use this result to calculate the intersection point of n
with the selected cube side,

4. the intersection point is mapped to texture interval [0,1]
for texture access,

5. access texture with computed texel value and use it as
Look-Up table according to reflected intensity (see Sec-
tion 4.3.1).

4.2. Multi-Cube Mip-Mapping

In order to use texture mapping for interactive stippling, an
appropriate mip-mapping concept is necessary. For instance,
when objects are magnified the stippling points should main-
tain the same size and the represented shading tones should
be constant over the enlarged screen space area (see Fig-
ure 3 (a)-(c)). Because of that, the stippling points can not
be scaled like the object. A constant stippling rendering will
be achieved, if stippling points appear while magnifying and
disappear while minifying the object. To get consistent den-
sity and size of stippling points on the screen, we apply
distance-dependent cube splitting. The cube size changes ac-
cording to the object and texture size on the screen.

First of all, we compute the cube size as described in Sec-
tion 4.1.1. We keep the initial size until the object is scaled.
To receive a potential new cube size, we determine the tex-
ture’s extent in screen space. If the object is magnified and
therefore the texture exceeds 1.5 of its current size in screen
space, the cube’s edge length will be halved. If the object is

© The Eurographics Association 2007.

Baer et. al / Hardware-accelerated Stippling of Surfaces derived from Medical Volume Data

Figure 3: Stippling points appear while magnifying and dis-
appear while minifying the object. Large structure repre-
sentations contain more stippling points than smaller object
representations. The point size remains constant over differ-
ent scales.

minified and therefore the texture size equals almost halve of
the current size, the new cube size is doubled and 8 cubes are
summarized to one. However, our approach realizes seam-
less scaling automatically by subdividing and summarizing
cubes. This technique requires self-similar textures to avoid
floating points on the surface while mip-mapping. Blend-
ing between different cube sizes and the special texture de-
sign (introduced in Section 4.3.2) avoids visible transitions.
This technique enables scaling without being restricted by
the texture and cube size.

4.3. Texture Design

With stippling, the density and location of small dots con-
vey shape and shading of objects. While densely distributed
dots achieve the impression of dark shading, sparsely cov-
ered regions seem like brighter shaded areas. Similar to the
TAMs from Praun et al. [PHWF01], we discretize the range
of tone values and construct a sequence of stippling textures
representing these discrete tones. By producing diverse lev-
els of textures with different numbers of stippling points, we
achieve different shading tones. In contrast to Praun et al.,
we only need one gray-scale image for all shading tones and
mip-map levels.

4.3.1. Shading Tones

We design the shading tones such that darker tones contain
all the stippling points of brighter tones. This point coher-
ence across tones avoids floating of points over the object
("shower door" effect) and guaranties continuity of points so
that points only appear when illumination is getting darker
and disappear when illumination is more intense. Follow-
ing this definition of point-continuity over tones, the darkest
tone contains the points of all brighter tones and some ad-
ditional ones. We use this observation to encode all tones
in one gray-level texture. Similar to real-time halftoning by
Freudenberg et al. [FMS02], we first create a set of tone lay-
ers that contain black stippling points. An example is shown

(a) (b)

Figure 4: (a) Texture layers (1 brightest tone - 3 darkest
tone) and resulting texture that encodes different tone layers
with unique gray values. (b) One texture tile is replaced by a
patch of (2×2) tiles of the same texture and vice versa. The
(2×2) patch of a texture contains the scaled version of itself
(gray dots).

in Figure 4 (a), where texture 1 represents the brightest tone
and texture 3 illustrates the darkest tone. Then each layer is
encoded by an increasing gray value starting with the darkest
tone to the brightest layer (see Figure 4 (a)). The representa-
tion of all tone layers in one is possible because of the point
coherence across different tones.

4.3.2. Self-Similar Mip-Map Textures

To minimize texture magnification and point size variation,
we apply distance-dependent cube splitting and collapsing
(recall Section 4.2). Hereby one texture tile is replaced by
a patch of 2× 2 tiles of the same texture and vice versa.
Thus, no separate mip-map textures have to be generated.
To achieve coherence between stippling points of one tex-
ture tile and a 2× 2 patch of it, it is necessary to ensure
that the 2×2 patch contains the scaled version of the texture
(see Figure 4 (b)). Thus, we developed a self-similar texture
to avoid floating of stippling points while mip-mapping. Un-
fortunately, with this constraint it is more challenging to de-
sign a stippling texture with randomly distributed but equally
spaced points without any linear or regular pattern. To sup-
port the texture design process, we developed a semiauto-
matic method that overlays the current texture by its 2× 2
tiles during the texture design process (see Figure 4 (b)). We
did not attempt to achieve a fully automated procedure since
there is no need for designing a large variety of stippling tex-
tures. Indeed, all objects stippled in this paper are achieved
with the same texture.

5. Results

We implemented the shader programs with the OpenGL
Shading language and all results shown in the paper are
generated interactively for a viewport of 512× 512 pixel,
on an Intel Pentium4 processor with 3.2GHz and NVIDIA
Quadro FX2000 GPU. The important operations are per-
formed on the GPU (recall Section 4.1.4), except the cal-

© The Eurographics Association 2007.

Baer et. al / Hardware-accelerated Stippling of Surfaces derived from Medical Volume Data

(a) (b) (c) (d)

Figure 5: Medical surface models rendered with our texture-based stippling method. (a) The bones and (b) the head including
the muscles, vessels and glands and are exclusively represented by stippling. A combination of stippling with the object specific
color and transparency to illustrate the context objects with stippling and emphasize (c) the lymph nodes, tumor of the head
and (d) the liver with tumor and vessels for the thorax scenario.

culation of the cube size. In Figure 5, we present some med-
ical surface models generated by our texture-based stippling
method. The models are derived from clinical CT data, based
on segmentation, surface generation and subsequent smooth-
ing. These models are typical anatomic structures. However,
we do not claim these to be representative. The texture used
for all models is 16×16 pixel and integrates 8 different tones
beginning with white. All performance values related to the
models, containing the hip and the liver vessel from the front
page, are presented in Table 1.

As expected, the more polygons the lower the frames per
second (fps). Furthermore if stippling is applied, the fps will
decrease because of the texture mapping process, but this is
not significant since the mapping process is performed only
once. Note, that due to our stippling approach, the fps do not
depend on the number of stippling dots.

Table 1: Performance of our stippling technique.

Models Polygons only Shading with Stippling
(fps) (fps)

Kidney 5.298 61.0 60.1
Head combined 73.728 24.2 21.7
Head stippling 78.332 23.7 21.1
Hip 99.089 21.5 19.3
Bones 146.319 16.0 11.1
Vessel 167.232 13.5 9.1
Thorax 324.568 6.0 5.6

The stippling dots are small to avoid the impression of sur-
face properties, induced by stippling visualization. Stippling
only represents the model’s shape, extension and position, to
integrate the model into the scene as context object. While
Figure 5 (a) is a stippling representation of one structure,
Figure 5 (b) integrates various structures. This example clar-
ifies the arising problems for different neighboring structures

that are rendered with stippling. In this scenario, it is difficult
to identify and distinguish the different anatomic structures.
Because of that, we present a combination technique, shown
in Figure 5 (c) and (d). Instead of black dots and white back-
ground we choose black dots and object-specific colors and
transparency. The additional individual structure properties
(color, transparency) support the object recognition. In com-
bination with stippling, the structure’s shape and position is
emphasized. Even though we are not performing any addi-
tional algorithms to distribute the points, there are no dis-
turbing point patterns visible.

6. Conclusion and Future Work

We developed a texture-based stippling technique for arbi-
trary object shapes, such as anatomic structures. Based on
the multi-cube structure, we can ensure that the stippling tex-
ture is not severely distorted, even in regions of high curva-
ture. The multi-cube (parametrization) automatically adapts
to the objects extension and scaling. The texture design fa-
cilitates different shading tones and scales by adhering to the
constraints of TAMs. Seamless scaling with a constant den-
sity of points is realized by subdividing and summarizing
the cubes used for object parametrization. Furthermore, our
mip-map technique and self-similar texture enables the ob-
ject to be scaled without being restricted by a texture size or
number of mip-map textures.

We optimized the performance by consequently em-
ploying graphics hardware. Our technique avoids time-
consuming preprocessing and individual object modifica-
tions, because the displayed stippling points do not depend
on the amount of existing vertices. Moreover, the perfor-
mance is not dependent on the amount of illustrated stip-
pling points. Due to the high performance, stippling can be
enabled simultaneously for several complex anatomic struc-

© The Eurographics Association 2007.

Baer et. al / Hardware-accelerated Stippling of Surfaces derived from Medical Volume Data

tures. Moreover, our stippling technique provides frame-
coherence which is essential for interactive exploration and
animation. Thus, this approach is applicable for the visual-
ization of context objects in intervention planning.

There are a few extensions, left open for future work. First
of all, it is desirable to integrate more parameters than the
reflected intensity for texture (tone) selection. The reflected
amount is one important criterion but especially local areas
of high and low reflectance need additional adjustments to
improve the point distribution. For example the local sur-
face curvature or intensity are two parameters that may influ-
ence the texture selection for one surface point. Furthermore,
the combination of different NPR-rendering styles (e. g. like
hatching, silhouettes, feature lines) with stippling and the
combination with color for specific therapeutic questions of
medical surface models has to be analyzed to generate sup-
portive medical illustrations.

References

[CRL01] CORNISH D., ROWAN A., LUEBKE D.: View-
dependent particles for interactive non-photorealistic ren-
dering. In Graphics Interface (2001), Canadian Informa-
tion Processing Society, pp. 151–158.

[DHvOS00] DEUSSEN O., HILLER S., VAN OVERVELD

C., STROTHOTTE T.: Floating points: A method for com-
puting stipple drawings. Computer Graphics Forum 19, 3
(2000), pp. 40–51.

[EWE04] EISSELE M., WEISKOPF D., ERTL T.: Frame-
to-frame coherent halftoning in image space. In The-
ory and Practice of Computer Graphics (2004), IEEE,
pp. 188–195.

[FH04] FLOATER M. S., HORMANN K.: Surface param-
eterization: a tutorial and survey. In Advances in Mul-
tiresolution for Geometric Modelling (2004), Springer,
pp. 157–186.

[FMS02] FREUDENBERG B., MASUCH M.,
STROTHOTTE T.: Real-time halftoning: A primitive
for non-photorealistic shading. In 13th Eurographics
Workshop on Rendering (2002), Springer Wien New
York, pp. 227–232.

[IK01] INTERRANTE V. L., KIM S.: Investigating the
Effect of Texture Orientation on the Perception of 3D
Shape. In Human Vision and Electronic Imaging VI
(2001), vol. 4299, SPIE, pp. 330–339.

[KLK∗00] KLEIN A. W., LI W. W., KAZHDAN M. M.,
CORREA W. T., FINKELSTEIN A., FUNKHOUSER T. A.:
Non-photorealistic virtual environments. In Proc. of SIG-
GRAPH 00 (2000), pp. 527–534.

[LME∗02] LU A., MORRIS C. J., EBERT D. S., RHEIN-
GANS P., HANSEN C.: Non-photorealistic volume ren-
dering using stippling techniques. In IEEE Visualization
(2002), IEEE Computer Society, pp. 211–218.

[Mei96] MEIER B. J.: Painterly rendering for animation.
In Proc. of SIGGRAPH 96 (1996), pp. 477–484.

[PFS03] PASTOR O. E. M., FREUDENBERG B.,
STROTHOTTE T.: Real-time animated stippling. IEEE
Computer Graphics and Applications 23, 4 (2003),
62–68.

[PHWF01] PRAUN E., HOPPE H., WEBB M., FINKEL-
STEIN A.: Real-time hatching. In Proc. of SIGGRAPH
01 (2001), pp. 579–584.

[Sec02] SECORD A.: Weighted voronoi stippling. In Sec-
ond international symposium on Non-photorealistic ani-
mation and rendering (2002), ACM Press, pp. 37–43.

[SESS05] SOUSA M. C., EBERT D., STREDNEY D.,
SVAKHINE N. A.: Illustrative visualization for medical
training, visualization and imaging. In Computational
Aesthetics (2005), pp. 201–209.

[SHS02] SECORD A., HEIDRICH W., STREIT L.: Fast
primitive distribution for illustration. In 13th Eurograph-
ics Workshop on Rendering (2002), Debevec P., Gibson
S., (Eds.), Springer-Verlag Wien New York, pp. 215–226.

[ST90] SAITO T., TAKAHASHI T.: Comprehensible ren-
dering of 3-d shapes. In Proc. of SIGGRAPH 90 (1990),
vol. 24(4), pp. 197–206.

[TC00] TREAVETT S. M. F., CHEN M.: Pen-and-ink ren-
dering in volume visualisation. In IEEE Visualization
(2000), IEEE Computer Society Press, pp. 203–210.

[THCM04] TARINI M., HORMANN K., CIGNONI P.,
MONTANI C.: Polycube-maps. ACM Transactions on
Graphics 23, 3 (2004), 853–860.

[VKG05] VIOLA I., KANITSAR A., GRÖLLER M. E.:
Importance-driven feature enhancement in volume visu-
alization. IEEE Transactions on Visualization and Com-
puter Graphics 11, 4 (2005), 408–418.

[WS94] WINKENBACH G., SALESIN D. H.: Computer-
generated pen-and-ink illustration. In Proc. of SIG-
GRAPH 94 (1994), pp. 91–100.

[YNZC05] YUAN X., NGUYEN M. X., ZHANG N.,
CHEN B.: Stippling and Silhouettes Rendering in
Geometry-Image Space. In Eurographics Symposium on
Rendering (2005), Eurographics, pp. 193–200.

© The Eurographics Association 2007.

