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Abstract
Purpose Assessing the rupture probability of intracranial aneurysms (IAs) remains challenging. Therefore, hemodynamic
simulations are increasingly applied toward supporting physicians during treatment planning. However, due to several assump-
tions, the clinical acceptance of these methods remains limited.
Methods To provide an overview of state-of-the-art blood flow simulation capabilities, the Multiple Aneurysms AnaTomy
CHallenge 2018 (MATCH) was conducted. Seventeen research groups from all over the world performed segmentations
and hemodynamic simulations to identify the ruptured aneurysm in a patient harboring five IAs. Although simulation setups
revealed good similarity, clear differences exist with respect to the analysis of aneurysm shape and blood flow results. Most
groups (12/71%) included morphological and hemodynamic parameters in their analysis, with aspect ratio and wall shear
stress as the most popular candidates, respectively.
Results The majority of groups (7/41%) selected the largest aneurysm as being the ruptured one. Four (24%) of the partici-
pating groups were able to correctly select the ruptured aneurysm, while three groups (18%) ranked the ruptured aneurysm
as the second most probable. Successful selections were based on the integration of clinically relevant information such
as the aneurysm site, as well as advanced rupture probability models considering multiple parameters. Additionally, flow
characteristics such as the quantification of inflow jets and the identification of multiple vortices led to correct predictions.
Conclusions MATCH compares state-of-the-art image-based blood flow simulation approaches to assess the rupture risk of
IAs. Furthermore, this challenge highlights the importance of multivariate analyses by combining clinically relevant metadata
with advanced morphological and hemodynamic quantification.
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Introduction

The assessment of intracranial aneurysm (IA) rupture prob-
ability or the differentiation between stable and unstable
IAs still remains challenging. Hence, image-based hemo-
dynamic simulations are increasingly used to account for
patient-specificflowstructures anddetect potentially harmful
conditions. However, the usefulness of computational fluid
dynamics (CFD) in a clinical context remains uncertain.

After early single-case applications of numerical methods
for IAflowdescription [1, 2],more advanced simulation stud-
ies containing larger case numbers were performed. Xiang
et al. [3, 4] investigated 119 (and later 204) aneurysms
using CFD and found that most ruptured IAs had complex
flow, significantly lower wall shear stress (WSS), and larger
oscillatory shear compared to the unruptured cohort. In con-
trast, Cebral et al. [5, 6] concluded (based on 210 cases)
that rupture more likely occurs in IAs with significantly
higher maximum WSS, concentrated inflow, and complex
flow patterns. Recently, Detmer et al. [7] included 1631
aneurysms in their study and developed an aneurysm rup-
ture probability model based on patient characteristics (age
and gender), aneurysm location, morphology, and hemody-
namics.

In addition to numerical investigations of blood flow, sev-
eral verification and validation studies have been carried out
to improve the acceptance of the underlying methods among
physicians [8–12]. However, reliable acquisition of poten-
tially relevant parameters can be difficult or be subject to
a high variability, due to multiple interdisciplinary work-
ing steps. To address this observation and draw attention
to required conditions for realistic hemodynamic simula-
tions, Steinman et al. [13] organized a broad challenge
(25 groups participating) that compared the fluid dynam-
ics solver, discretization approaches, and solution strategies
employed among participants. Good agreement with respect
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to cycle-average velocity and peak systolic pressure calcu-
lation was obtained, but other clinically relevant parameters
were not addressed. In a follow-up challenge (26 groups par-
ticipating) organized by Janiga and Berg, participants were
requested to predict aneurysm rupture and the corresponding
rupture site using numerical methods [14, 15]. Over 80% of
the groups chose the correct aneurysm, but the rupture site
could not be found based on CFD. To address the overall
variability of the important hemodynamic parameter WSS,
Valen-Sendstad et al. [16] compared simulation results from
28 challenge contributions, providing only the source 3D
images to each team.Based on the normalizedWSS results of
five middle cerebral artery aneurysms per group, they found
that the inter-group variability was around 30%, with the
highest differences with respect to maximum WSS and low
shear area.

The present study focuses on the presentation of state-of-
the-art segmentation and simulation approaches with respect
to IA rupture risk assessment. In the frame of the Multiple
AneurysmsAnaTomyCHallenge 2018 (MATCH), interested
biomedical engineering groups were requested to segment
and simulate a patient-specific dataset harboring five IAs.
Furthermore, rupture probability suggestions were collected
based on arbitrary criteria (e.g., any number of morpho-
logical and/or hemodynamic parameters). The results of
the first phase (segmentation) are presented in Berg et al.
[17], while this study focuses on the second phase (rup-
ture risk assessment). Based on the presented findings,
helpful recommendations regarding realistic and beneficial
blood flow simulations are provided for future investiga-
tions.

Materials andmethods

Case details and image acquisition

All five aneurysms that were the subject of MATCH were
found in a single patient admitted to the hospital with
acute subarachnoid hemorrhage due to rupture of one of the
aneurysms. Two aneurysms were located at the right M1-
segment, one at the left M1-segment, another one at the left
MCA-bifurcation, and the fifth at the left posterior inferior
cerebellar artery (PICA) (see Fig. 1). Four aneurysms were
of similar size ranging between 4.4 mm and 5.6mm. The two
M1-aneurysms on the right were clipped, the others coiled.

The ruptured aneurysmwas clearly identified by imaging.
CT and subsequentMRI showed a subarachnoid hemorrhage
mainly in the left premedullary cistern surrounding thePICA-
aneurysm. In addition, bothM1-aneurysms on the right were
clipped, with no evidence of prior bleeding. This study was
performed in accordance with the guidelines of the local
ethics committee.
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Fig. 1 Illustration of thefive IAs from the investigated aneurysmpatient.
Aneurysms A and B were located on the M1 segment of the right ante-
rior circulation and C on the leftM1 segment, respectively. AneurysmD
was found on the left middle cerebral artery bifurcation and aneurysm E

was located on the left posterior inferior cerebellar artery. The image
data were acquired using 2D and 3D digital subtraction angiography,
while only 3D rotational angiographydatawere provided to theMATCH
participants

Participating groups

MATCHwas initially announced onNovember 03, 2017, and
interested research groupswere able to receive detailed infor-
mation from the associated Web site (https://www.ics2018.
de) and from newsletters of the 15th Interdisciplinary Cere-
brovascular Symposium. Participants were asked to submit
their simulation results until February 02, 2018, wherein the
following items were requested:

• Participants were asked to perform hemodynamic simula-
tions based on their own segmentations, and to identify
which aneurysm ruptured using arbitrary criteria (e.g.,
hemodynamic parameters). In addition to the request to
decide which aneurysm ruptured, participants were asked
to provide a rupture probability ranking of the five IAs.

• Participants submitted an informal abstract (max. 1 page)
containing author names, affiliations, and simulation
details: (1) Mesh resolution, (2) solver, (3) time-step size
(if unsteady), (4) type of in- and outflow boundary condi-
tion, (5) viscosity/density, and (6) reasons for choosing a
particular aneurysm as being the ruptured one (aneurysm
A-E) as well as ranking of rupture probability of each
aneurysm. Further details were optional.

In total, 17 groups from11 different countries followed the
call and submitted an abstract. The groups had the following
origins: Europe (Germany: 2; Hungary, Italy, Norway, Rus-
sia: 1); North America (USA: 5; CAN: 1); Asia (Japan: 2;
India, Hong Kong: 1); Australia (1).

Segmentations

3D rotational angiographies acquired on an Artis Q angiog-
raphy system (Siemens Healthineers AG, Forchheim, Ger-
many)were reconstructed on a SyngoXWorkplace (Siemens
Healthineers AG, Forchheim, Germany) using the kernel
“HU auto” [18]. The details of the segmentation have already
been described in Berg et al. [17].

Hemodynamic simulations

Since each participant had the freedom to choose an arbi-
trary strategy regarding the hemodynamic simulations, the
most important properties are described in the following. An
overview regarding the simulation setups for MATCH is pre-
sented in Table 1 and Fig. 2.

Spatial discretization

Although a variety of meshing strategies related to CFD
exists, the use of unstructured grids with a combination of
either tetrahedral (14 groups) or polyhedral (2 groups) cells
with a few prism layers was most common. Only one group
used an unstructured hexahedral mesh with five additional
prism layers (Group 2). Regardless of the mesh type, an
appropriate spatial resolution is essential to enable the gen-
eration of mesh-independent solutions. Here, reported cell
sizes ranged between 0.1 and 0.3 mm, with a mean value and
standard deviation of 0.17±0.076 mm. Thus, depending on
the size of the considered vessel volume, the total number of
cells per simulation was between 0.5 and 4.1 million.
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Table 1 Each group’s technical details regarding the corresponding hemodynamic simulation and analysis as well as individual selections of the
aneurysm with the highest rupture probability (correct choices are highlighted as bold)

Group Inlet boundary
condition

Blood
treatment

Time
dependency

Outlet boundary
condition

Time
step
size

Parameters No. param. Aneurysm
choice

1 Womersley Newtonian Unsteady Zero pressure 1E−02 Morph/hemo 16 E

2 Plug Non-Newt. Unsteady Zero pressure 1E−03 Morph/hemo 4 A

3 Plug Newtonian Steady Zero pressure – Morph/hemo 2 C

4 Plug Newtonian Steady Murray (d2) – Hemo 1 D

5 Womersley Newtonian Unsteady 0D model 1E−04 Morph/hemo 6 A

6 2D PC-MRI Non-Newt. Unsteady Constant pressure 1E−02 Morph/hemo 3 E

7 Plug Non-Newt. Steady Murray (d2) – Morph/hemo 4 A

8 Womersley Newtonian Unsteady Zero pressure 1E−03 Morph/hemo 4 E

9 Womersley Newtonian Unsteady 0D model 1E−04 Morph/hemo 2 D

10 Plug Newtonian Unsteady Zero pressure 5E−07 Hemo 2 D

11 Parabolic Newtonian Steady Murray (d3) – Morph/hemo 2 A

12 Plug Newtonian Unsteady Pressure waveform 5E−03 Hemo 3 C

13 Plug Newtonian Unsteady Murray (d2) 1E−03 Morph/hemo 3 C

14 Plug Newtonian Unsteady Zero pressure 5E−04 Morph/hemo 4 A

15 Parabolic Newtonian Unsteady Zero pressure 7E−03 Hemo 5 E

16 Plug Newtonian Steady Zero pressure – Hemo 5 C

17 Plug Newtonian Unsteady Pressure waveform 1E−03 Morph/hemo 6 A

The following criteria are presented: (1) type of inlet boundary condition: constant (plug), parabolic, Womersley or phase-contrast magnetic
resonance imaging (PC-MRI) profile, (2) blood treatment, assuming Newtonian or Non-Newtonian behavior, (3) time dependency: steady-state
or time-varying simulations, (4) type of parameters for rupture risk assessment: morphologic and/or hemodynamic, (5) number of considered
parameters, (6) selected aneurysm with the highest rupture probability

Solver selection

To solve the equation for mass and momentum conserva-
tion, an appropriate and validated fluid dynamics solver is
required. Here, most groups (11) decided to use a commer-
cially available software package, which was either from
ANSYS (Fluent or CFX, Canonsburg, Pennsylvania, USA)
or from Siemens PLM (STAR CCM + , Plano, Texas, USA).
Approximately one-third of the participants (five groups)
applied open-source tools (e.g., OpenFOAM or Oasis). Only
one group used an in-house fluid dynamics solver.

Boundary conditions

Since only the image data were provided to the MATCH
participants, patient-specific boundary conditions were not
available. This represents a situation commonly encountered
by research groups; as for the patient in this study with a
subarachnoid hemorrhage, the acquisition of individual flow
curves would mean an additional, unrequired intervention.
Hence, participants were free to choose arbitrary boundary
conditions.

Regarding the resolution of temporal effects, five groups
(29%) performed steady-state simulations, while twelve
groups (71%) considered unsteady flow with the simulation
of two or more cardiac cycles. Interestingly, clear differences
with respect to the time step size occurred, which ranged
between 5E−7 s and 1E−2 s (mean 3E−3±3.9E−3 s). Fur-
thermore, variability regarding the type of inflow boundary
condition was present. While 60% of the groups applied a
constant plug profile for either velocity or flow rate, one quar-
ter defined aWomersley equation profile, which describes the
pulsatile character of the velocity profile. A parabolic flow
was assumed by two groups and one group applied velocity
profiles of the left internal carotid and vertebral artery from
2D phase-contrast MRI measurements of a healthy volun-
teer.

To characterize the entire computational system, outlet
boundary conditions needed to be defined. Due to the lack
of knowledge regarding pressure distributions in the distal
vessels, eleven groups (65%) used either constant values or
predefined pressure waves. The remaining six groups applied
flow-splitting models, which were either based on in-house
0Dmodels (twogroups) [19], area-dependentweighting (two
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Fig. 2 Distribution of methodological details regarding the variability
of hemodynamic simulations: a type of the fluid flow solver, b type of
inflow boundary condition (BC), c concept of blood treatment, d type of
outflow boundary condition (d2 and d3 relate to the power coefficient of
Murray’s law, 0D indicated the application of a reduced splittingmodel)

groups), or the cube of the corresponding vessel diameter
(two groups) [20].

Finally, all groups assumed rigid vessel wall conditions
and no participant carried out fluid–structure interaction sim-
ulations to account for vessel movement or occurring wall
stresses.

Bloodmodeling

The treatment of blood with respect to its material
properties was relatively consistent among the groups.
Since blood is an incompressible fluid, the assumption
of a constant density is well-accepted and values ranging
between 1000 and 1100 kg/m3 were applied (median �
1056 kg/m3).

Regarding the choice of viscosity, no clear consen-
sus exists. While some studies claim that non-Newtonian
effects influence the simulation results [21, 22], others
have found no significant impact of available models on
the flow fields [23, 24]. Nevertheless, researchers agree

that the choice of blood treatment has rather secondary
effects compared to primary influences, e.g., geometry
and inflow conditions. Within MATCH, 14 groups (82%)
assumed aNewtonian fluid with amean dynamic viscosity of
3.65±0.21 mPa s. The remaining three groups applied non-
Newtonian models (either power law models or the Carreau
model).

Results

As a summary of the challenge, Table 1 contains the group-
specific settings for their numerical investigation as well as
their choice regarding the ruptured aneurysm.

Rupture risk assessment

In the context of MATCH, the assessment of aneurysm rup-
ture risk was mostly carried out using morphological in
combination with hemodynamics parameters. For instance,
only four groups considered patient information such as the
aneurysm site. In this regard, it must be noted that only the
DICOM dataset was provided to the participants to assess
the ability of biomedical engineering related analysis. Hence,
clinically relevant factors such as age, sex, smoking, hyper-
tension were not disclosed.

Only three morphological parameters were chosen more
than once (aspect ratio, size ratio and undulation index),
while the following parameters were chosen only once:
aneurysm neck area, aneurysm width, height-to-width ratio,
bulge location, parent vessel diameter, volume-to-ostium
ratio, non-sphericity index, aneurysm surface curvature, ratio
between each aneurysm’s volume, and volume of each
aneurysm’s least bounding sphere.

Besides the morphological analyses, participants applied
hemodynamics parameters to assess the rupture probability
of each aneurysm. By far the most often used parame-
ter was WSS (in different variants), which was calculated
by 13 groups. The second most applied variable was the
oscillatory shear index (OSI, 9) followed by pressure (5),
maximum velocity, velocity fluctuation, and relative resi-
dence time (each 2). The following parameters were used
only once: inflow concentration index, energy loss, vorticity,
helicity, low shear area, kinetic energy, and spectral power
index.

Table 2 contains the rupture risk assessment strategies
of all participants and reveals the basis for the individ-
ual decisions. Furthermore, it provides an overview of the
usage of morphological and hemodynamic parameters by
each group. One should notice that only five groups applied
hemodynamic parameters exclusively to assess the rupture
probability.
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Table 2 Overview of the participants rupture risk assessment strategies
containing the number of considered morphologic as well as hemody-
namic parameters (correct choices are highlighted as bold)

Group Rupture risk assessment strategy Parameters

Morph Hemo

1 Logistic regression models (based on
CFD simulations of 1920 aneurysms)
[7]

9 7

2 Rupture resemblance score (based on
CFD simulations of 542 aneurysms) [25]

2 2

3 Aneurysm size and energy loss [26] 1 1

4 WSS difference between the maximum
and minimum flow condition

0 1

5 Combination of size, irregularity, low
aspect ratio and low WSS, high OSI,
high-frequency WSS instabilities [27]

3 3

6 Location, diameter, WSS 2 1

7 Location, size, ratio of volume and
volume of least bounding sphere,
streamlines, and WSS

3 1

8 Internal scoring system based on
dome/neck ratio, blebs, TAWSS,
change in instantaneous WSS, OSI on
daughter blebs

2 3

9 Visual inspection of morphology
(non-spherical shape) and flow
instability (turbulent-like flow)

1 1

10 Pressure and WSS ratios 0 2

11 Size and low WSS 1 1

12 WSS, TAWSS, OSI 0 3

13 Rupture resemblance score (based on
CFD simulations of 542 aneurysms) [25]

1 2

14 Aspect ratio, pressure difference, OSI,
rupture risk parameter based on WSS
and averaged velocity

1 4

15 TAWSS, OSI, RRT, pressure
distribution, stagnation points

0 5

16 Relative changes of WSS, velocity,
pressure, vorticity, helicity

0 5

17 Size, aspect ratio, WSS, OSI, RRT, ICI 2 4

With (TA)WSS (time-averaged) wall shear stress, OSI oscillatory shear
index, RRT relative residence time, ICI inflow concentration index

Selections by the challenge participants

Participating groups selected the following aneurysms as
being the ruptured one: Most groups (7/41%) selected
aneurysm A as the most probable candidate, which is the
largest one. It can be observed that five of these groups used
low WSS in combination with increased OSI as indicators
for aneurysm rupture.

Four groups (24%) correctly selected aneurysmE as being
the ruptured one. While one group combined clinically rele-
vant information (e.g., aneurysmsite)with simulation results,

two groups applied rupture risk assessment models. These
include multiple morphological as well as hemodynamic
parameters that were associated with rupture in previous
studies. Furthermore, it must be mentioned that one of the
successful groups, focusing on hemodynamics exclusively,
analyzed not only surface parameters, but also the flow
behavior within the aneurysm (e.g., inflow jet, presence of
multiple vortices).

Aneurysms C and D were selected by three groups each
(18%). The selections by these groups were based on single
hemodynamic parameters or visual inspection of morphol-
ogy and flow instability. Finally, no group selected aneurysm
B, which was the smallest one.

The rupture probability ranking revealed that aneurysm
E was correctly selected by four groups (23.5%). Fur-
thermore, the rupture probability of aneurysm E was
ranked second by three groups (17.5%), third by four
groups (23.5%), and fourth by two groups (12%).
Finally, another four groups (23.5%) judged aneurysm
E as being the least prone to rupture. Thus, a strong
variability regarding the calculated rupture probabil-
ity of the actual ruptured aneurysm exists. Table 3
contains the rupture risk probability rankings of all
groups.

Table 3 Rupture probability ranking provided by each MATCH par-
ticipant based on the individual segmentations and hemodynamic
simulations

Group Rupture probability ranking

1st 2nd 3rd 4th 5th

1 E D A C B

2 A C D E B

3 C D E B A

4 D E A B C

5 A E C D B

6 E A C D B

7 A E C D B

8 E C D A B

9 D C A E B

10 D A E C B

11 A C E D B

12 C B D A E

13 C A D B E

14 A C D B E

15 E D C A B

16 C A B D E

17 A C E D B

The ruptured aneurysm (E) is highlighted in bold. Notice the strong
variability with an exception for the smallest aneurysm B as being the
least endangered
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Discussion

MATCH focused on the comparison of segmentation and
simulation algorithms to assess the rupture risk probability
of IAs. While it was demonstrated in the first phase that
clear variations regarding the aneurysm surface represen-
tation exist [17], the second phase presents the real-world
variability of rupture risk assessment.

The role of hemodynamic simulations

It can be observed in the literature that an increasing num-
ber of blood flow simulations is being performed to improve
the knowledge on patient-individual flow characteristics of
IAs. While some studies focused on detailed hemodynamic
descriptions for a limited number of cases [28, 29], others
investigated blood flow variables in larger cohorts [4, 30, 31].
In this regard, significant differences between unruptured and
ruptured IAs were identified. However, only snapshots of the
disease state are considered and longitudinal studies are in a
clear minority [32, 33].

In the frame of the secondMATCH phase, it was observed
that most groups applied not only hemodynamic, but also
morphological parameters for their evaluation of the rupture
probability (Table 2). This emphasizes the fact that at least
with regard to the present knowledge, flow simulations can-
not provide all necessary information to reliably assess IA
rupture risk. Instead, a multivariate analysis by combining
clinically relevant metadata with advanced morphological
and hemodynamic quantification appears to be more promis-
ing.

Additionally, it is important to mention that certain min-
imum requirements with respect to the simulation setup are
needed in the future to ensure plausible numerical results.
These include appropriate segmentations, the generation of
a sufficient volume mesh, the choice of justifiable bound-
ary conditions, the selection of a verified fluid flow solver
and a realistic modeling of blood. Apart from the first cri-
terion, which has primary impact on the simulation results,
no strong variations were present among the participating
groups. However, clear differences regarding the subsequent
data evaluation occurred as described in the following sec-
tion.

Rupture risk assessment

In contrast to earlier aneurysm challenges, which predefined
the simulation domains or boundary conditions [13, 15],
MATCH was designed to give all participants the chance
to completely apply their own strategies. A realistic sce-
nario was created, in which researchers were confronted
with clinical image data and aneurysm risk quantification is
requested by the attending physicians. In this regard, it was

noted that groups created individualized workflows to obtain
segmentation and simulation results. Furthermore, the sub-
sequent analyses revealed clear differences with respect to
extent. While some groups only applied one or two param-
eters, other included up to sixteen in well-trained models.
Specifically, several groups used low WSS in combination
with high OSI to identify the ruptured aneurysm (e.g., all
successful groups). However, aneurysm rupture does not
necessarily take place in regions of lowest WSS and high-
est OSI, respectively [14]. Additionally, the sophisticated,
model-based selections were related to strong clinical, as
well as bioengineering experience. These models include
either multiple morphological and hemodynamic parameters
as well as the aneurysm’s location [7], or advanced scoring
systems with a particular focus on blebs and flow features.

Future studies require a systematic uncertainty quantifi-
cation to assess the robustness of the applied models. In this
regard, initial investigations in the context of MATCH are
carried out [34] and existing examples from cardiovascular
research could be transferred to cerebrovascular questions
[35–37].

Recommendations

The investigation of five IAs in a single patient certainly
does not enable the derivation of generalizable rules regard-
ing the future assessment of aneurysm rupture probabilities.
However, certain recommendations canbe formulated,which
arise from observations during this international challenge:

1. MATCH emphasizes the importance of appropriate seg-
mentation and should motivate groups to put highest
efforts in this presimulation step. It was shown that one
group, which reconstructed the neck of the ruptured
aneurysm with the highest accuracy in MATCH Phase
I [17], was also among the successful groups in Phase II.
Further, the other three successful groups submitted no
outlying segmentation results.

2. To obtain plausible blood flow results, a minimum spatial
resolution of the discretized domain is needed to avoid
influences due to mesh-dependence (e.g., most groups
applied a base size of approximately 0.1 mm).

3. Since none of the groups that assumed steady-state flow
conditions chose the correct aneurysm, time-dependent
blood flow simulation should be carried out. This enables
the prediction of complex transient flow phenomena,
which were associated with rupture [38–40]. Further, as
computational resources continue to improve, simulation
times should not be a problem in the future. Neverthe-
less, as presented in Table 1, the type of inflow condition
as well as the choice of blood description appear to be
rather of secondary importance [16].

123



International Journal of Computer Assisted Radiology and Surgery

4. Regarding the outlet boundary condition, it is well known
that with an increasing number of outflow cross sections,
the influence on the flow fields rises. Thus, although the
majority of groups used constant pressure conditions, it
should be avoided by applying advanced flow-splitting
methods. Furthermore, additional quantification studies
are required in order to be able to simulate larger domains
of the cerebral vasculature.

5. To identify relevant rupture risk assessment parame-
ters in the future, they must be consistently compared
in future studies. Within the challenge, neither single
nor few morphological and hemodynamic parameters
alone were sufficient for a robust and reliable rup-
ture risk evaluation of IAs. Instead, the application of
advanced and validated prediction models was success-
ful, which include a variety of independent factors [7].
These consist of clinically important information from
the patient as well as individual shape and flow parame-
ters.

Limitations

It must be noted that certain limitations exist regarding this
challenge. First, only one patient was included in this study,
although harboring five aneurysms. Thus, no generalizable
conclusions are possible, and investigationswith an increased
number of cases are desirable. However, the inclusion of
more cases would likely have led to a decreased number of
participants and therefore to a limited comparability among
real-world approaches.

Second, since no patient-specific wall information was
provided in the frame of the study, all hemodynamic sim-
ulations were carried out based on the assumption of rigid
vessels. Hence, the role of aneurysm vessel walls regarding
aneurysm rupture remains unclear. Nevertheless, if reliable
and accuratewall information is available, it is recommended
to include it in future studies [41, 42].

Third, due to a lack of measured data, no patient-specific
boundary conditions were provided. This, however, is a com-
mon situation in clinical practice. Especially in patients with
SAH, flow measurements would mean an additional exam-
ination, which is inappropriate in emergency situations. In
addition, such a measurement would not necessarily reflect
the hemodynamic situation that was present during the rup-
ture. In patients with innocent aneurysms, patient-specific
flow conditions can be determined more easily, but even
then, it would only be a snapshot in a physical state of rest
that cannot reflect the fluctuations caused by different daily
activities.

Fourth, the experience of each participantwas not queried,
as was done in previous challenges [16]. On the one hand, it
certainly would have been interesting to correlate experience
with rupture risk assessment outcome. However, “experi-

ence” is difficult to measure since neither the (active or
passive) duration nor the number of simulated cases is an
objectivemetric. Furthermore,multiple disciplines come into
play (e.g., biomedical engineers, physicians, computer sci-
entists), with personnel who possess different backgrounds
and skills. Also, verified and validated techniques should be
successful even with minor experience. Therefore, the chal-
lenge organizers decided against the inclusion of experience
into the study.

Finally, it should be stated that MATCHwas not designed
to determine whether or not CFD is able to predict aneurysm
rupture in general. It should rather be seen as an instrument
that reveals potentials but also limitations of existing meth-
ods that include hemodynamics, but also emphasizes where
further improvements are required toward clinical support.
Hence, from the perspective of the challenge organizers, the
aim of the study was not to end up with as many success-
ful predictions as possible. Rather, the real value becomes
visible in the separation between successful and unsuccess-
ful choices and the associated methodologies. Therefore,
MATCH should encourage groups with correct predictions
to further improve their models and communicate them
accordingly. Additionally, groups with incorrect aneurysm
selection can re-evaluate their workflows for image-based
blood flow simulations and integrate more advanced tech-
niques to improve their methods.

Conclusions

To demonstrate and compare existing blood flow simu-
lation techniques for the rupture risk assessment of IAs,
an international challenge was announced. Participants
were given 3D imaging data containing five intracranial
aneurysms from one patient and were asked to assess
which aneurysm ruptured. Overall, 17 groups from 11 coun-
tries participated, and 4 groups correctly identified the
ruptured aneurysm. Although this is only a 24% group suc-
cess rate, successful selections were based on clinical data
as well as advanced probability models. Thus, the chal-
lenge highlights the importance of multivariate analyses
that combine clinically relevant metadata with advanced
morphological and hemodynamic quantification. Further-
more, it is essential to work together to drive consensus
on approach and best practices for hemodynamics simula-
tions.
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