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Introduction

Intracranial aneurysms are arterial dilatations of the cere-
bral vasculature and occur at several locations in the Circle 
of Willis.1–3 They are more common in bifurcations, but 
sidewall aneurysms are particularly located in the internal 
carotid artery (ICA). Carotid sidewall aneurysms account 
nearly to 40% of all cases and tend to enlarge and cause 
compression of cranial nerves or brain structures. 
Treatment for these lesions has always been a challenge 
until the advent of the flow-diverting stents (FDSs).4 While 
surgical clipping was associated with severe morbidity and 
perioperative complications, classic endovascular treat-
ment using coils with or without regular intracranial stents 
was associated with high recurrence rates. FDSs were 
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introduced to treat large and giant intracranial aneurysms 
in the anterior circulation. These show superior results 
when compared to any other treatment modality.5–7

Overall, FDS results are encouraging as they have been 
associated with up to 75% complete aneurysm occlusion in 
1 year and 5% morbimortality.8–10 Main complications are 
delayed aneurysm rupture, ischemic lesions as well as 
delayed parent vessel occlusion.11 Some basic research 
using virtual techniques and computational fluid dynamics 
has been used to assess the results of treatment. A simple 
approach was proposed by Lee et al.12 in 2011. The group 
used a porous medium to reproduce the effect of a densely 
braided flow-diverter stent. However, the consideration of 
a two-dimensional, spherical aneurysm model clearly lim-
ited this study. Another method was presented by Bock 
et al.,13 who used finite element analysis to virtually deploy 
a neurovascular stent. They were able to compare different 
stent designs with respect to their aneurysm neck cover-
age. In addition, Ma et  al.14,15 developed an advanced 
deployment tool for cerebral aneurysms and demonstrated 
its reliability using in vitro silicone phantom measure-
ments.16 However, due to extensive computational 
resources and enormous simulation times, the method is so 
far inapplicable in a clinical context.

Cebral et  al.17 used a fast virtual stenting (FVS) tech-
nique to identify an intra-aneurysmal pressure increase due 
to treatment with a flow-diverter. In another study, the same 
method was applied to investigate side branches jailed by 
flow-diverters.18 The authors demonstrated that in rabbit 
models, perforators remain patent and therefore do not seem 
to risk therapy-induced side branch occlusion. Furthermore, 
Xiang et  al.19 virtually investigated the effect of pipeline 
embolization devices for the endovascular treatment of cer-
ebral aneurysms (possessing completely different shapes 
and locations) and replicated three clinical therapies. Based 
on their simulation results, the highest reduction of the 
aneurysmal average velocity, the aneurysm inflow rate, and 
the time-averaged wall shear stress (AWSS) were achieved 
for a case that fully occluded within the first 3 months. The 
other two cases with late (6 months) or incomplete occlusion 
suffered from significantly lower flow reduction rates com-
pared to the first. Recently, Bouillot et  al.20 presented an 
advanced geometrical deployment tool that was validated 
using contrast-enhanced cone beam computed tomography 
(CT) and enables a prediction of the stent struts after poten-
tial flow-diverter oversizing or undersizing.

Overall, several realistic stenting techniques exist 
throughout the literature.21 However, the number of stud-
ies in which these techniques are applied to clinically rel-
evant questions is limited.22–25 The present study addresses 
the aforementioned concerns and focuses on two clinical 
aneurysm cases located at identical sites of the ICA. 
Furthermore, both aneurysms possess a similar phenotype 
leading to the decision to treat each case using a flow-
diverting device. After 3 months, one aneurysm fully 
occluded, while the other required further treatment. Here, 

three more stent layers over a 2-year period of time had to 
be added until a complete thrombosis was obtained. In 
order to understand the occurring phenomena, the treat-
ment procedure is reproduced using a virtual stenting 
approach. In addition, three-dimensional hemodynamic 
simulations are carried out to quantify the efficacy of each 
intervention. Our results help to improve the understand-
ing of this minimally invasive therapy, thus leading to rec-
ommendations toward future clinical procedures.

Methods

Patients and flow-diverter treatment

Two patients harboring an intracranial aneurysm located at 
the ICA were investigated. For the minimally invasive 
treatment, pipeline embolization devices (PED; Covidien 
Neurovascular, Irvine, California, USA) were used. In the 
first patient (Case 1), a PED 4.5 × 20 mm was chosen lead-
ing to complete intra-saccular thrombosis after 3 months. 
The second patient (Case 2) was treated using a PED 
4.0 × 18 mm. Here, the outcome was completely different 
since occlusion was only possible after the addition of 
three further flow-diverter layers. Overall, the treatment 
procedure for Case 2 took approximately 2 years until 
complete occlusion occurred.

The images used for the three-dimensional (3D) recon-
struction of the aneurysm models were obtained from 3D 
rotational angiogram DICOMs acquired by a Philips Allura 
angiography system. Image resolution for the cases was 
0.207 mm3. The 3D segmentation was performed using 
threshold-based segmentation via the XtraVision worksta-
tion (Philips Healthcare, Best, The Netherlands). Surface 
editing and smoothing were performed with AneuFuse 
(B3C Software, Italy). After the segmentation process, 
inlets and outlets were truncated at a suitable distance from 
the aneurysms (see Figure 1, top row). This ensures an 
appropriate development of the flow structures and reduces 
the influence of the applied boundary conditions.

Virtual stent deployment

Based on the segmentation results, a FVS method was 
applied.26 Here, the identical initial parameters for the PEDs 
were chosen in order to account for a high-quality reproduc-
tion of the interventions (Case 1: PED 4.5 × 20 mm, Case 2: 
PED 4.0 × 18 mm). In addition to the segmented aneurysm 
surface models, a vessel centerline was required. For this 
purpose, the Vascular Modeling Toolkit (VMTK) was 
used.27 Since the FVS method is based on the geometric 
deformation of the stent model, virtual stenting results are 
generated within seconds on a standard personal computer. 
As observed in Figure 1 (bottom row), a realistic stenting 
result, including an appropriate vessel wall apposition and 
deployment length, was obtained. This is particularly impor-
tant, since the method considers each individual stent strut 
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(diameter dstrut = 33 µm). Hence, local effects caused by the 
flow-diverter geometry can be evaluated. It is important to 
note that the utilized FVS technique was validated with in 
vivo and in vitro experiments and has been applied to sev-
eral clinically relevant research topics.24,25,28 The virtual 
stenting results for this study were reviewed by an experi-
enced neuroradiologist.

Hemodynamic simulation

To capture the three-dimensional blood flow phenomena 
that occur before and after the deployment of a flow-
diverter, numerical simulations were carried out. In prepa-
ration, both domains of interest were spatially discretized 
using STAR-CCM+11.06 (Siemens Product Lifecycle 
Management Software Inc., Plano, TX, USA). In order to 
resolve the existing velocity gradients, prism as well as 
polyhedral elements were chosen. Here, a global base size 
of 0.1 mm and a cell size of 0.013 mm for the stent struts 
were found to be appropriate according to a previous mesh 
sensitivity analysis.29 This resulted in the following num-
ber of elements (pre/post): Case 1 (3.1 million/8.6 million) 
and Case 2 (3.3 million/9.1 million), see Supplementary 
Figure S1 for a visual impression of the discretized cell 
struts.

After the mesh generation, computational fluid 
dynamics was used to solve the governing equations for 

the conservation of mass and momentum. Again, the 
commercial fluid solver STAR-CCM+ 11.06 was cho-
sen, since it enables a robust simulation environment 
and is strongly parallelizable. Due to unavailable 
patient-specific inflow boundary conditions, realistic 
flow waveforms were adjusted. The time-dependent 
flow curves were acquired in a healthy volunteer using 
7T phase-contrast magnetic resonance imaging.30 The 
aneurysm walls as well as the flow-diverters were 
assumed to be rigid, since no information regarding the 
actual deformation is available and the pulsatility within 
the cerebral vasculature is rather small. Flow-splitting 
was applied at the outlet cross-sections according to the 
corresponding surface areas. This approach is based on 
the principle of minimal work (Murray’s law) and pro-
vides more realistic results compared to the commonly 
used assumption of a constant zero pressure at the out-
lets.31 Blood was treated as an incompressible (with a 
density of ρ = 1055 kg/m3) and Newtonian (with a 
dynamic viscosity of η = 4 mPa s) fluid and a laminar 
flow behavior was assumed. A time step size of Δt = 1e–
3 s was chosen, while for each step residuals of 1e–5 for 
continuity and all velocity components were requested. 
In order to obtain a periodic solution, three cardiac 
cycles (time period T = 1 s) were considered for each 
simulation. Afterward, the first two cycles were dis-
carded and only the last was included in the post-pro-
cessing. Overall, a sufficient simulation environment 
was built to carry out realistic hemodynamic simula-
tions within the cerebral vasculature.

Analysis

To be able to compare the two interventions and their dif-
ferent treatment outcomes, qualitative as well as quantita-
tive analyses of the simulation results were carried out. 
The impact of a flow-diverting device on the correspond-
ing hemodynamic situation was captured using path lines 
as well as iso-surface velocities (0.3 m/s). These properties 
enable a visual impression of the stent-induced blood flow 
modifications.

Furthermore, relevant hemodynamic metrics on the 
aneurysm surface were compared, while the focus was laid 
on AWSS as well as on the oscillatory shear index (OSI). 
The latter expresses how strongly shear stresses change 
their direction within one cardiac cycle. Furthermore, 
important flow values such as the neck inflow rate and the 
inflow concentration index (ICI)32 were considered as 
well.

In addition to the hemodynamic variables, morphologi-
cal parameters were compared. Here, the aneurysms were 
analyzed with respect to not only their size (e.g. volume, 
surface area, aspect ratio33), but also to their shape com-
plexity. For this purpose, advanced metrics were chosen, 
such as the ellipticity index, the non-sphericity index, and 
the undulation index.34,35

Figure 1.  Top row: illustration of the patient-specific 
aneurysms (red) located at the internal carotid artery. 
Both aneurysms are situated at almost identical locations 
and possess a similar phenotype. Bottom row: virtual stent 
deployment (purple) for both cases using identical flow-
diverting devices in the actual clinical treatment (Case 1: PED 
4.5 × 20 mm; Case 2: PED 4 × 18 mm).
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Results

Since the hemodynamic simulations provide detailed 
information regarding the existing flow phenomena, quali-
tative as well as quantitative results are presented.

Qualitative comparison

The analysis of velocity-encoded path lines demonstrates 
that in Case 1, nearly no change in the existing flow struc-
ture occurs (see Figure 2). Only a slight reduction in the 
velocity values is visually present, but the existence of a 
stable vortex remains. In contrast to this observation, 
Case 2 experiences an impact on the flow situation caused 
by the addition of a flow-diverter. The course of the path 
lines changes considerably due to the treatment. In addi-
tion, cycle-averaged velocity iso-surfaces based on a 
threshold value of 0.3 m/s are used for the qualitative 
description. Again, only slight relative reductions are pre-
sent in the successfully treated case (Case 1). However, 
the flow-diverting device in Case 2 leads to a clearly 
stronger velocity decrease.

In addition to the impression of the velocity field, 
Figure 3 shows the effect of the flow on the luminal sur-
faces due to shear stress. The top row illustrates AWSS for 
both patients before and after treatment. Increased values 
are mainly present at the parent artery proximal and distal 
to each aneurysm. Furthermore, the entering inflow jet 
leads to higher values compared to the rest of the aneu-
rysm sac. However, as observed in both cases, the shape of 

the flow-diverter leads to a re-direction of the blood, which 
results in an overall decrease in the AWSS. A similar 
behavior is observed for the oscillating shear. While differ-
ent spots of increased OSI exist before the intervention, 
the placement of the corresponding flow-diverter leads to 
a visual reduction as well as a changed appearance of the 
scalar field (see Figure 3, bottom row).

Quantitative comparison

Beside the qualitative comparison of both cases, Figure 4 
provides a quantitative analysis of the time-dependent 
flow parameters. First, the inflow rate into each aneurysm 
sac was calculated. The presented curves reveal the effi-
cacy of each PED, which leads to a mean decrease of 19% 
and 35% for Case 1 and Case 2, respectively. Second, the 
inflow area was measured within the aneurysm ostium and 
again a decrease of 3.1% and 9.3% (Case 1 and Case 2, 
respectively) was obtained.

However, it must be noted that the absolute values in 
Case 1 are clearly lower compared to those in Case 2. 
Particularly, at every time point of the cardiac cycle, the 
inflow rate of the first patient was lower before treatment 
compared to the values after the intervention in Case 2. 
Hence, a strong relative improvement does not necessarily 
result in a successful aneurysm occlusion.

To further quantify the investigated aneurysms as well 
as their hemodynamic environment, Tables 1 and 2 present 
characteristic morphological and hemodynamic parame-
ters. The comparison of shape values such as aspect ratios, 

Figure 2.  Qualitative results of the hemodynamic simulations pre- and post-virtual flow-diverter placement. Top row: path 
lines color-coded by velocity magnitude. Bottom row: cycle-averaged iso-surface velocity (0.3 m/s) before (red) and after (green) 
treatment is used for Case 1 (left) and Case 2 (right). The device-related blood flow reduction into the aneurysms is clearly 
observed.
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ellipticity, non-sphericity, and undulation confirms the 
physician’s observation that both cases possess a high sim-
ilarity aside from their actual location. However, clear dif-
ferences occur with respect to the actual size. For all 
considered properties (aneurysm volume, aneurysm sur-
face, aneurysm ostium area), Case 2 possesses clearly 
larger values compared to Case 1.

An analysis of Table 2 further confirms the findings 
illustrated in Figure 4. Time- and spatially-averaged wall 
shear stresses on each aneurysm sac were clearly reduced 

due to the flow-diverter therapy. Here, a reduction of more 
than one-third (Case 1) and one-half (Case 2) are achieved. 
However, regarding the oscillatory shear, an interesting 
observation can be made: Although the peak values 
(OSImax) decrease by approximately one-third, the spa-
tially-averaged OSI increases in both cases. Therefore, the 
implantation of a flow-diverting device not only dampens 
the flow, but also leads to higher average oscillations. 
Finally, the analysis of flow parameters such as ICI and Qin 
again demonstrates that even though Case 2 achieves a 

Figure 3.  Hemodynamic results on the luminal surface of both aneurysms pre- and post-virtual stent placement. Top row: time-
averaged wall shear stress (AWSS); bottom row: oscillatory shear index (OSI). Although the treatment leads to a clear reduction of 
the shear stresses along the aneurysm wall, increased oscillation can occur due to the effect of flow-diversion (see Table 2).

Figure 4.  Treatment efficacy for both virtual flow-diverter placements: inflow rate into the aneurysm sac (left) and corresponding 
inflow area (right). Note that for both parameters, the stent efficacy was higher for the unsuccessful intervention (Case 2). 
However, although the relative improvement was smaller, the absolute values of the successful case (Case 1) are on a clearly lower 
plateau.
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higher efficacy (e.g. a flow reduction of over 30%), abso-
lute values in Case 1 are on a clearly lower plateau.

Discussion

Our pilot study demonstrates the hemodynamic changes 
after FDS treatment in two ICA aneurysms. They were 
both located in the paraclinoid segment of the ICA and 
possessed a similar shape. Both patients were treated using 
PED flow-diverters, however, experienced entirely oppo-
site outcomes. One aneurysm was completely occluded 
after 3 months and the second required several extra stent 
layers up to 2 years after the initial treatment. Unsteady 
hemodynamic simulations based on pre- and post-treat-
ment scenarios revealed that for Case 2, a higher stent effi-
cacy with respect to inflow reduction was obtained (35%) 
compared to Case 1 (19%). Furthermore, the analysis of 
other relevant hemodynamic parameters (e.g. AWSS, OSI, 
ICI) confirmed that the treatment of Case 2 had a stronger 
relative effect on the flow situation.

At first, these findings appear to be contradictory to ini-
tial expectations, but indeed they enable an improved 
understanding with respect to flow-diverter therapy of ICA 
aneurysms: (1) A relative performance of an endovascular 
treatment does not necessarily lead to a successful interven-
tion. Even though several hemodynamic parameters were 

clearly reduced, persistence of the aneurysm is still possi-
ble. (2) Reaching an absolute inflow threshold, which 
depends on the type of aneurysm, seems to be required and 
associated with a complete occlusion result in the short 
term. Hence, even if the relative improvement appears to be 
small, it might be sufficient to obtain a successful aneurysm 
occlusion. However, it clearly needs to pointed out that 
other metrics such as blood residence time, modified wall 
shear stress distributions, and also non-flow-related 
changes might lead to a better therapy outcome.

Since this computational study requires several inter-
disciplinary working steps, including various assumptions 
and simplifications, certain limitations exist. First, pre-
processing involves potential sources of error. Since it has 
recently been shown that the choice of the reconstruction 
kernel can already have a substantial impact on the subse-
quent geometries and simulations, careful processing of 
the acquired images is required.36 Second, the FVS method 
contains simplifications with respect to reality. Since it is 
based on geometric deformations, physical interactions 
that occur both during the opening process and the wall 
attachment are not taken into account. Nevertheless, the 
chosen approach is an explicit formulation of the individ-
ual stent struts, was validated using in vivo and in vitro 
experiments, and arbitrary stent diameters, lengths, pore 
angles and strut sizes can be considered.26 Furthermore, 
the stent deployment can be carried out within seconds, 
which makes the approach clinically applicable. Third, the 
hemodynamic simulations underlie clear assumptions with 
respect to boundary conditions as well as the treatment of 
blood. Although patient-specific flow conditions would be 
desirable, Valen-Sendstad et  al.37 emphasized the impor-
tance of a realistic geometry reconstruction. Even though 
blood clearly shows a non-Newtonian behavior in vessels 
of small calibers,38 various studies demonstrated that con-
sidering blood as a Newtonian fluid is reasonable.39,40 
Furthermore, the simulations were performed under iden-
tical conditions, which allows for an appropriate relative 
comparison. Finally, the number of aneurysms considered 
in this study is small. The identification of similar patient-
specific aneurysms with different treatment outcome is 

Table 2.  Hemodynamic comparison of the considered ICA aneurysms including the relative reduction due to treatment.

Parameter Case 1 Case 2

Pre Post Red. % Pre Post Red. %

AWSSmean (Pa) 12.47 8.03 35.6 8.31 3.57 57
OSImean (–) 1.8e–3 3.2e–3 –74.3 4.8e–3 5.7e–3 –19.4
OSImax (–) 0.438 0.293 33.1 0.359 0.263 26.7
ICI (–) 0.31 0.26 16.4 0.23 0.16 28.5
Ain (mm2) 4.52 4.38 3.1 14.56 13.21 9.3
Qin (mL/s) 1.26 1.03 18.6 2.96 1.92 35.1

AWSSmean: spatially- and time-averaged wall shear stress; OSImean: mean oscillatory shear index; OSImax: maximum oscillatory shear index; ICI: inflow 
concentration index; Ain: mean aneurysm inflow area; Qin: mean aneurysm inflow rate; ICA: internal carotid artery.

Table 1.  Morphological comparison of the considered ICA 
aneurysms.

Parameter Case 1 Case 2 Difference

V (mm3) 57.21 230.32 173.11
A (mm2) 73.82 183.67 109.85
Ao (mm2) 7.76 20.25 12.49
AR (–) 1.85 1.61 –0.24
EI (–) 0.276 0.272 –0.004
NSI (–) 0.228 0.215 –0.013
UI (–) 0.075 0.058 –0.017

V: volume; A: aneurysm surface area; Ao: ostium area; AR: aspect ratio; 
EI: ellipticity index; NSI: non-sphericity index; UI: undulation index; 
ICA: internal carotid artery.
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difficult. However, more aneurysms are required to con-
firm the presented hemodynamic observations.

For future studies, our group intends to improve the 
above-mentioned limitations. Particularly, more aneu-
rysms will be studied and the measurements of patient-
specific flow conditions will be used. Furthermore, if 
individual, reliable measurements of wall properties (e.g. 
wall thickness, strength, elasticity) become available, they 
should clearly be integrated into the simulation setup.41

Conclusion

Our pilot study demonstrates that although a better hemody-
namic efficiency was obtained in the unsuccessful case, 
relative improvement does not necessarily lead to better 
aneurysm occlusion. Hence, it is indicated that a patient-
specific absolute flow threshold might be required in order 
to receive a successful therapy outcome. However, other 
metrics such as blood residence times or inflow jet modifi-
cation certainly further influence the treatment result. 
Therefore, further studies with large cohorts of patients will 
be required to validate these results and help to identify 
therapy success measures.
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