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ABSTRACT

Time series analysis and modeling are essential tools for the transfer of
knowledge across time, also called forecasting. This often involves the
task of identifying the least number of features that are most useful for
building a model that accurately forecasts a target without suffering from
dimensionality issues. This is challenging, because time series involve
many different characteristics that need to be captured by a model. Tra-
ditional wrapper approaches are bound to the actual learning algorithm
that builds the model, which requires computational effort and limits
their range of application. Filter methods are independent of the future
model, but mostly take the form of a black box algorithm, which does not
allow analysts to monitor and interactively guide the feature selection. In
this thesis, the filter concept for multivariate time series is advanced by
making use of the human perception and interpretation abilities for inde-
pendent evaluation of a feature subset’s quality.

To ensure independence, we derive a quality criterion from a general as-
sumption about the relationship between input and output in a valid
model. An overview visualization enables analysts to visually assess its
validity and to steer the analysis towards regions of interest, where the
feature subset’s quality is not sufficient. Critical regions can be analyzed
in detail using the surrounding system of linked views. Findings con-
tribute to an interactive refinement of the feature subset, which might
also include the analyst’s expertise. We evaluate the proposed method by
applying it to real-world sensor data and an artificial time-oriented data
set. The analyst was able to quickly distinguish well-explained regions
from critical parts of the feature space, for which the identification of an
additional explanatory feature could be tackled straight-away. Due to vi-
sualization constraints, the approach can handle only two-dimensional
feature subsets, which are taken as input to perform one feature selection
iteration. Still, it might be an inspiring step in the direction of universal
dimension reduction that involves the human strengths.
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INTRODUCTION

A time series is a set of data points indexed in temporal order. Multivari-
ate time series arise in application areas ranging from the economic sector
over meteorological and public health research to engineering. Time se-
ries analysis and modeling play a fundamental role for understanding
and describing the relationships within a data set. A popular example of
use is time series prediction, where future values of a target feature are
forecast based on knowledge about the investigated system.

Knowledge manifests in relationships, which indicate explanatory power.
A common statistical modeling approach that characterizes such relation-
ships is regression analysis. We deal with data that is not only time-
oriented, but also multivariate. Modeling therefore takes the form of mul-
tiple, univariate regression. Considering all available features might re-
sult in an unnecessarily complex model suffering from dimensionality
issues like overfitting. For this reason, only truly relevant features, i.e. fea-
tures that contain information about the target, should be included in the
model, while redundancy is to be minimized. Feature selection aims at
finding the minimal descriptive subset of features that together are most
useful for explanation of the target. In this way, it contributes to more
simplified and generalized models, cost-effective model building, and an
increased model accuracy.

A time series might involve different characteristics like trends, seasonal
patterns, or level shifts. All those characteristics need to be captured by a
model, while keeping it as simple as possible. Selecting the most useful
features to approximate the data generating process poses a challenge.
Feature selection methods can be classified into two categories. Wrapper
approaches require an execution of the actual model building algorithm,
e.g. learning a classifier, to measure the quality of a feature subset. In con-
trast, filter methods are not tuned to the actual model generation. They
filter out irrelevant features based on general relationships and are in-
dependent of the type and generating process of the future model. The
approach developed in this thesis should not require the specification of
a statistical model, which limits the feature selection to filter methods.



INTRODUCTION

The aim of this thesis is to enhance the filter concept by combining it with
visualization techniques that allow the analyst to monitor and steer the
feature selection. To the best of our knowledge, relevant filter methods
either include Interactive Visual Analysis techniques, but do not address
time-oriented data, or they consider time series, but are implemented as
automatic algorithms. We provide an interactive filter approach for nu-
merical time-dependent data, which makes use of the analyst’s visual
perception for evaluation of a feature subset’s quality. As the method
does not rely on future model characteristics, it can be applied to regres-
sion problems, for which the model class is not known yet. This allows
analysts to postpone the choice of the model class until the actual model
fitting (not covered in this work). However, the model-free restriction lim-
its the choice of quality measures.

We derive a quality measure from the general assumption that a valid
model outputs the same predictions based on equal inputs. Given a fea-
ture subset, this assumption can be verified by comparing the target be-
haviors (predictions) that are associated with equal value combinations
(inputs) in a set of training data. Interactive Visual Analysis enhances this
comparison by enabling analysts to make use of their visual and inter-
pretative abilities. The target behaviors are presented as a set of curves,
whose variance provides information on the uncertainty of the feature
subset. Domain knowledge can be efficiently included in the decision as
to whether the feature subset might be adequate for prediction of the tar-
get. If it is not sufficient, the analyst can interactively steer the analysis
towards critical regions. Information Visualization techniques then sup-
port an exploration of how the current uncertainty can be associated with
other features, which might serve as a starting point for refinement.

This thesis addresses the following contributions regarding visual feature
selection for multivariate, time-oriented data:

¢ Evaluate the quality of a given feature subset independent of the
specification of an analytical model or model building algorithm.

e For this purpose, transfer concepts from event-based analysis of
health records to numerical time series and regression modeling.

* Enable analysts to interact with the presented data to apply domain
knowledge, identify critical regions, and refine the feature subset.

* Apply the method to one real-world and one artificial time-oriented
data set to examine its benefits and limitations.
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Figure 1: The thesis’ core topic addresses the intersection of three research areas.

The topic of this thesis primarily intersects with three research areas (Fig-
ure 1): (1) the problem definition is taken from statistical modeling, (2)
the time-oriented nature of the underlying data set requires appropriate
methods, and (3) the presented approach relates to the field of Interactive
Visual Analysis of high-dimensional data.

Chapter 2 and 3 give an overview of scientific work performed in the con-
text of the named research fields. Chapter 2 covers fundamental concepts
and challenges related to statistical modeling. Chapter 3 presents related
work regarding Interactive Visual Analysis, focusing on time-oriented
data, relationships in high-dimensional data, and feature selection.

Chapter 4 summarizes the contributions of this work.

Chapter 5 presents the visual feature selection approach. It is independent
of the model class and generating process. Evaluation of a feature subset
involves general assumptions about the modeling problem and concepts
adapted from the health care domain. The main visualization is linked to
other views that allow for an analysis from different perspectives.

Chapter 6 and Chapter 7 provide an informal evaluation of the proposed
approach. They present a case study from the domain of vehicle dynam-
ics as well as an exploratory analysis of an artificial data set.

Chapter 8 and Chapter 9 give a summary of the presented work and
outline remaining challenges to be addressed in the future.






STATISTICAL BACKGROUND

2.1 FUNDAMENTALS OF PREDICTION

On a basic level, a prediction is nothing but a statement about an event
that might happen in the future. Predictions come in different shapes
that range from weather forecasts and the risk of developing a disease
to the prognosis of a stock’s future value or the outcome of a sporting
event. Predictions are associated with uncertainty [17]. This is reflected in
confidence intervals that are computed to assess the certainty in predict-
ing a continuous variable or in probability values that are computed for
outcomes of a discrete variable. Still, predictions can be useful for plan-
ning and decision-making in a wide range of applications, whether it be
in physics [79], economics [62], politics [68] or the healthcare sector [27].

A predictive statement is often derived from knowledge about the under-
lying data. For example, in health care applications, conclusions about
associations between elevated laboratory values and death rate in patient
cohorts are drawn, based on which the mortality risk is predicted [27].
There are various ways, in which knowledge can be inferred, but most
empirical methods lead back to predictive modeling. Methods for knowl-
edge discovery evolve from diverse research areas like machine learning,
neural networks, pattern recognition, or statistics [43].

In the context of this work, prediction can be viewed as a part of inferential
statistics. Statistical inference uses patterns in observed data to draw con-
clusions about the more general population, from which the sample was
drawn [10, 17]. Let us consider the relationship between father’s height
and son’s height. We would expect taller fathers to have taller sons and
shorter fathers to have shorter sons. Obviously, we cannot investigate the
entire population to test this hypothesis. Inferential statistics allows for a
statement about the unobserved population based on an observed sample
of father—son pairs. The sample needs to accurately represent the popu-
lation of interest. Not only the statement itself is associated with uncer-
tainty, but also the underlying data. For some father-son pairs fatherhood
might not be guaranteed, leading to outliers that can distort the inference.
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Figure 2: Two types of relationships: a functional relationship is an exact rela-
tionship (left). A statistical relationship includes scatter and represents
a tendency between two features (right).

As the example suggests, we focus on inferences in the form of statistical
relationships among involved features. A relationship is given between a
dependent feature Y, i.e. the feature to be predicted, and one or more in-
dependent features Xj, on which the values of the dependent feature are
hypothesized to depend. Unlike a functional relationship (Figure 2, left),
e.g. the conversion between temperature in degrees Celsius and degrees
Fahrenheit, a statistical relationship represents a discernible, but not nec-
essarily exact relation between two features (Figure 2, right). If the charac-
teristics of a relationship are known, unobserved values of the dependent
feature can be predicted based on the values of the independent features.

When dealing with the field of statistical modeling, one will come across
the terms relationship, dependence, association, and correlation. These
terms also have their use in other research areas and even in everyday
language. The difficulty with these terms is that (1) the same terms are
used for different concepts and (2) different terms are used interchange-
ably. Their meaning highly depends on the usage context. For these rea-
sons, we provide individual definitions, which apply within the context
of this thesis. They are inspired by the terms’ common usage throughout
literature. The majority of descriptions in literature puts association on a
level with dependence [52], which in turn is used interchangeably with
relationship. Therefore, we only define the terms statistical relationship
and correlation.

Definition o.1 (Statistical Relationship) A symmetric — but not necessarily
causal — relation, where two or more features are statistically dependent, i.e. in-
formation about one feature are relevant for the assessment of another feature.
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A formal definition of the term independence between two features X
and Y is: “X is independent of Y, if the distribution of X given Y =y does
not depend on the value y of Y” [47]. We define a statistical relationship
as a condition, where the mathematical property of independence is not
satisfied. Consequently, when two features are statistically related, one
feature contains information about the other feature. The value of one
feature is in some way connected to the value of the other feature.

Definition o.2 (Correlation) A measure that quantifies the strength and direc-
tion of a statistical relationship.

This definition follows the common usage of correlation as a measure
of the strength and direction of a relationship, which are not known for
a statistical relationship. The majority of publications in statistics define
correlation as a measure of linear dependence [20, 46, 50], rather than also
considering non-linear relationships [84].

Investigating the behavior of a dependent feature Y based on changes of
the independent features X; can provide useful information about how
their relationship can be characterized. Table 1 illustrates all four possible
combinations of changes in Y and X; with binary assignment yes or no. If
Y depends on X;, we would expect Y to change as the X; are varied (Q1).
The same holds for the diagonally opposite combination, where Y does
not change as a result of the X; being constant (Qg4). If Y stays the same,
although the X; change (Q2), this is unexpected behavior, as opposed to
Q1. Again, assuming that Y depends on the X;, we would expect that
changes in X; affect Y and cause it to change. Consequently, if this is not
the case (i.e. Y stays constant as for Qz2), this indicates that the depen-
dence assumption does not hold. Another kind of unexpected behavior
arises, when the X; do not change, but Y changes (Q3). This case does
not provide any indication concerning the assumption’s correctness, but
simply states that the X; not sufficiently explain the dependent feature Y.

Y Changed
Yes No

Yes  Expected (Q1)  Unexpected (Q2)

X; Varied
No Unexpected (Q3)  Expected (Q4)

Table 1: Expected and unexpected behavior under the assumption that the de-
pendent feature Y in some way depends on the predictors X;.
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The characterization of correlation is based on the statistical model that
describes the given data set. As mentioned in Chapter 1, we intend to
postpone the choice of a specific statistical model for as long as possible.
Therefore, in this work, we provide a model-free approach to the identifi-
cation of relationships between features. For our objective of determining
a set of features with a high predictive power, it is sufficient to identify
and compare dependences. This only applies to the determination of fea-
tures, not for the prediction step itself. For the feature selection, we do
not need to quantify the strength of relationships or the predictive power,
because the actual prediction accuracy does not play a role before opti-
mizing the statistical model.

2.2 PREDICTION OF TIME-ORIENTED DATA

When it comes to data that is related to time, statistical methods that are
not designed to consider temporality might reach their limits. Prediction
in the sense of transferring knowledge about a data sample to the entire
population is not necessarily the same as transferring knowledge across
time. The latter, i.e. prediction in the context of time-oriented data, is
called forecasting [17]. Most commonly this involves the analysis of trends.

Based on the model types involved, Makridakis and colleagues have di-
vided quantitative forecasting methods into two categories: (1) extrapola-
tive forecasting, and (2) causal forecasting [53]. Extrapolative forecasting
methods predict future values as a direct function of historical data pat-
tern. Taking the time series itself as a model, a feature’s value is estimated
beyond its observation range, assuming that the trend will continue with-
out distortion. Causal forecasting methods take factors into account that
are assumed to influence the feature to be forecast. Consequently, they
are based on relationships between independent features and the target.

There are different scenarios, in which data related to time might be pre-
dicted. A scenario can be characterized by the number of independent
features, the number of considered past time points, and the number of
values to be predicted (Table 2). Based on a data table where the columns
are features and the rows store time points, Figure 3 highlights the data
table components that are involved in the different prediction scenarios.
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Time . L.
Features . Predictions
points

Extrapolative one man one A/\/ 2, / A
Forecasting y MV

/‘ :

\ [\

\ / \
/o

\/\/ \\
N\

Regression many one one \ / \/\/

Time Series man man man M ? \/M
Prediction y y y W

Table 2: Different scenarios involving the prediction of time-related values.
Items colored in blue indicate input and output of the prediction. Grey,
dashed lines represent the underlying temporal developments of inde-
pendent (left) and dependent (right) features for reference.

Features Features Features

[ 10

Time
Time
Time

[]

(a) Extrapolative Forecasting (b) Regression (c) Time Series Prediction

Figure 3: Schematic representation of the data table components involved in the
different scenarios shown in Table 2. Extrapolative forecasting involves
one feature (a), regression is based on one time point (b), and time
series prediction considers both multiple features and time points (c).
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SCENARIO 1 — EXTRAPOLATIVE FORECASTING

In most application areas, forecasting describes the process of predicting
the value of a feature at some specified future date based on its past val-
ues. As an example, a stock’s value might be predicted for the following
day based on its development in the past 30 days. Therefore, one future
value (i.e. at the following day) of one feature (i.e. the stock) is predicted
based on its values at multiple past time points (i.e. the past 30 days).
This is schematically displayed in Table 2, first row. As shown in Figure
3a, one column (i.e. feature) of the data table is considered along multiple
rows (i.e. time points) to predict an additional row of the same column.

SCENARIO 2 — CAUSAL FORECASTING: REGRESSION

In epidemiology, a population is repeatedly observed to investigate the
relation between an exposure to potential risk factors and the risk of ac-
tually developing a disease [81]. When taking only a cross section, i.e. a
snapshot of the population at one point in time, one target value (e.g.
the risk of developing a disease) is predicted based on multiple features
(such as socio-demographic factors, genetic conditions, and medical sta-
tus) at the same point in time. We already refer to this scenario as regres-
sion (which is introduced in Section 2.3), because it represents the same
idea: exploring the relationship between a dependent feature and multi-
ple independent features. The scenario is schematically depicted in Table
2, second row. Figure 3b shows that it corresponds to considering one
data table row (i.e. one time point) over multiple columns (i.e. features)
to predict another column in the same row.

SCENARIO 3 — CAUSAL FORECASTING: TIME SERIES PREDICTION
The problem statement as addressed in this work refers to the prediction
of an entire time series, rather than a value at a specific point in time.
Given are various independent features, e.g. different sensors, each of
which measures its quantity over time. From this set of time series (i.e.
one per sensor), the temporal development of a target feature is to be pre-
dicted. This case represents a mixed form of the two scenarios presented
above: the target feature is predicted based on multiple past time points
as realized in Scenario 1, but also based on multiple features as in Sce-
nario 2. The schema in Table 2, third row depicts this scenario. In Figure
3¢, we can see that this intuitively corresponds to extending the regression
scenario (Figure 3b) along the data rows. However, simply extending this
scenario would mean to consider the rows independently, i.e. the target
values for each row are obtained by repeatedly applying Scenario 2.
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Figure 4: The regression pipeline. Grey components are not mandatory.

In contrast to that, this scenario takes the features” time-dependency into
account: the value Y(t) of the target feature Y at time t might not only be
determined by the values X;(t) of the independent features at the same
time t, but also by their values X;(t — 1), X;(t —2) etc. at previous time
points. The most general form of a model can be described as follows:

Y(t) = F(Xi1 (t)/ Y Xik (t)l X{] (t)/ Y X{I (t)/ Yl(t)/ t)

Xi, (1), ..., Xi, (t) are the independent features whose values at time t in-
fluence the target value, while Xj, (t), ..., Xj, (t) are the features whose val-
ues at previous time points play a role. This is captured by considering

their first-order derivatives, which becomes obvious when considering
Xi(t)—Xi(t—At)

the backward difference quotient X{(t) = AL

2.3 REGRESSION ANALYSIS

Regression analysis is a commonly used statistical modeling technique for
characterizing the relationships among quantitative features [15]. It helps
to understand how a dependent feature Y changes when the independent
features X; are varied. In this sense, it can be used for forecasting based
on knowledge that takes the form of correlation [10]. The main result of
regression analysis is an explicit function of the independent features that
models the relationship (Figure 4a). Note that the function class of the re-
gression function has to be initially specified (Figure 4b), while it can still
depend on unknown parameters. These regression parameters are then
determined in a way that optimizes the fit of the regression function to
the data (Figure 4c). The function can then be used to predict values of
the dependent feature. This works best when a small number of features
is considered together with large amounts of valid data [5].

11
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Depending on the complexity of the given problem, the regression analy-
sis process is not necessarily as straight-forward as described above. Ad-
ditional steps, such as selecting an appropriate item or feature subset
(Figure 4d) or a refinement according to the model validation results (Fig-
ure 4e), might be necessary to properly model the relationships contained
in the data. The regression analysis process becomes even more complex,
because these steps are highly inter-dependent. When a feature is added
to the current feature subset, this might imply that the item subset needs
to be adjusted as well (Figure 4f). On the other hand, if it becomes obvi-
ous that the regression type (e.g. linear) does not fit to the data set, the
feature and item subsets might also need to be modified (Figure 4g).

2.3.1  Causality

In the context of this work, we are primarily interested in whether re-
lationships can be identified at all, without considering their nature, i.e.
whether they are causal or not. However, the concept of causality is an im-
portant aspect when dealing with statistical relationships. For complete-
ness, we provide a brief overview of the potential and difficulties of inte-
grating the concept of causality into regression analysis.

Cox and Wermuth suggest three broad notions of causality [18]. In this
context, they state that a feature C is a cause of another feature R, when
their relationship is not affected by considering additional sources of de-
pendence in the form of other features that are explanatory to C. We refer
to this definition of causality throughout this thesis. Depending on the
feature composition, regression analysis is to different degrees helpful to
assess a causal relationship [18]. The absence of causality for relations in-
volving a common explanatory feature (Figure 5, left) can be identified.
Such relationships are called symptomatic, because the seeming causality
is induced by a common explanatory feature. In contrast, regression anal-
ysis does not allow for conclusions about the causality of relationships
containing intermediate features (Figure 5, right).

The general problem with regression analysis failing to assess causality is
the fact that correlation does not imply causation. When two features are cor-
related, it is all too intuitive to assume that one feature causes the other
one. Many examples have been presented that raise awareness for such
logical fallacy [31, 51, 80, 82]. Different works raise awareness for circum-
stances, under which experts tend to overestimate the predictability [5,
72]. Daniel Kahneman relates such overestimation to the underestimation
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“ /ﬁ 0 006

Figure 5: Different notions of causality. C is not a cause of R, because the only
dependence is that induced by their both depending on B (left). Using
I as an explanatory feature of R might not detect the indirect path of
C causing 1 and 1 being a cause of R (right).

of randomness [39]. Logical fallacies do not mean that correlation is not
at all related to causation. Tufte suggests the following statement: “Cor-
relation is not causation but it sure is a hint.” [75]. Therefore, correlation
must be carefully interpreted within the given context [61].

Assessing the spectrum from correlation to causation for time-related
data poses an extra challenge. If two features exhibit similar autocorrela-
tion structures, a regression analysis might result in a strong relationship
although no explanatory power is given [64]. Another complication orig-
inates from the fact that an effect does not necessarily follow the cause
immediately. Two characteristics occurring closely in time are a strong
hint for causality, but in general an event might be related to other events
occurring after any time period. Not to be aware of this issue might lead
to misunderstandings, if the role of time is not correctly understood [64].

2.3.2  Curse of Dimensionality

As many other approaches from various domains, regression analysis
is affected by the curse of dimensionality. This term was introduced by
Richard E. Bellman [8] and refers to different phenomena in the context
of analyzing high-dimensional’ data. Regardless of the application do-
main, the common problem is the rapidly increasing volume of the fea-
ture space as the number of features increases. This results in the density
of data samples decreasing exponentially. With a very large number of
features, each data point can be considered an outlier. For any method
that requires statistics, this might lead to severe problems, as the amount
of data needed to support a statistical evaluation drastically increases.

We refer to high-dimensional data when hundreds or even thousands of dimensions are
available.

13
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In particular, multiple regression suffers from this phenomenon. Consid-
ering many independent features favors multi-collinearity. This refers to
two or more independent features being strongly correlated. As one in-
dependent feature can be linearly predicted from the other(s), collinear
features are exchangeable within the model. As a consequence, the regres-
sion coefficients should not be interpreted as the contribution of individ-
ual features to the overall explanatory power of the model. Furthermore,
a regression model involving multi-collinearity is not stable, i.e. small
changes in the training data lead to large changes in the regression coeffi-
cients [9]. Including collinear features in regression analysis can also lead
to relevant features being masked by less relevant features [56].

When a large number of dimensions is considered, the risk of overfitting
the regression model emerges. When the number of features is too high,
the regression model consists of too many terms for the number of ob-
servations [6]. At some point, the predictive power reduces as the dimen-
sionality increases. This is known as the Hughes phenomenon [34]. The
model then becomes tailored to fit the unique quirks of the training sam-
ple rather than reflecting the relationships within the population. Conse-
quently, the model is not generalizable.

Obviously, the solution to these problems is to reduce the dimensionality
of a given problem. This is called dimension reduction. In this context, two
questions arise: (1) What is the optimal number of features to be included
in the regression analysis? and (2) Which features should be included?
One class of approaches to dimension reduction are feature selection meth-
ods, which aim at selecting an optimal descriptive subset of the original
features rather than generating synthetic features.

2.4 FEATURE SELECTION

This is the primary task associated with the objective of statistical mod-
eling for time-oriented data. When performing a regression analysis in
high-dimensional data space, not all features are actually important for
the result. Feature selection uses the presence of redundant or irrelevant
features to reduce the number of features in the data set without losing
too much information. It is performed prior to modeling in order to avoid
the consequences of the curse of dimensionality as described above, aim-
ing at a simplification of regression models.
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Focusing on the most promising features for prediction allows for a bet-
ter generalization of the model, because less model parameters have to
be estimated from the given data points [11]. In the end, feature selection
means to find the least number of those features that are most useful for
prediction, i.e. that most contribute to prediction accuracy. Note that rele-
vance (e.g. according to some correlation coefficient) does not necessarily
imply usefulness [26]. As an example, selecting the most relevant features
might not be useful when many of them are redundant.

Different decisions have to be made during feature selection. Let us again
take a look at Table 1. The combinations classified as unexpected behav-
ior (i.e. Q2 and Q3) indicate that the chosen independent features X; are
not sufficient to entirely explain Y. This can arise in two different forms.
Either the X; are not at all suitable for prediction of Y, because there is
no relationship. In this case, one or multiple X; should be removed from
the feature subset. On the other hand, the X; might contain relevant in-
formation about Y, but there is some variance in Y that cannot be solely
explained by the current X;. Then, one or more additional features should
be considered to predict Y.

John and colleagues proposed two classes to characterize existing fea-
ture selection approaches, namely the filter and wrapper methods [38].
The classes differ in the way in which the quality of a feature subset
is measured. Filter methods are based on general measures, such as the
relationship with the dependent feature to be predicted. In contrast to
that, wrapper and embedded methods contain a feedback loop between
feature selection and actual induction. Induction means predictive mod-
eling in this context, e.g. by learning a decision tree or neural network.

We aim at developing a feature selection approach that does not at all
depend on the function family used for the following model building
step (not covered in this work). Filter methods evaluate features with-
out considering the impact that the resulting subset has on the perfor-
mance of the induction algorithm. For this reason, they are the feature
selection class of our choice, although wrapper methods are in general
recommended over filter methods [44].
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2.4.1 Filter Methods

With filter methods, the feature selection can be viewed as a preprocessing
step prior to the model building step. It explores general patterns in the
given data set to filter out irrelevant features. Filter methods are based on
quality measures that characterize the relationship between the features
and the target. Features that are the least interesting are eliminated. The
remaining features form the feature subset for induction. Taking a look at
different approaches, the challenges with filter methods become evident.

The FOCUS algorithm proposed by Almuallim and Dietterich [3] selects
the minimal subset of features that perfectly discriminates among the
available classes. This might lead to generalization problems, i.e. when
an ID feature is contained in the selected subset. Kira and Rendell pre-
sented the RELIEF algorithm [42], which evaluates a feature based on its
correlation to the target feature. This evaluation does not consider the
relationships between the selected features and thus tends to result in a
subset containing redundant features. Quality measures have also been
advanced to consider such redundancy [12]. Cardie used a decision tree
approach for feature selection [14], where features that did not appear
as splitting attributes in the tree are removed from the subset. However,
features that are relevant for decision tree induction are not necessarily
useful if another induction algorithm is chosen.

The separation of feature selection and induction also offers advantages.
It is effective in terms of computation time, because the evaluation of
a candidate subset does not require an execution of the induction. It is
also relatively robust with regard to overfitting. For our work, the major
advantage of separating feature selection and actual induction is the in-
dependence towards the induction algorithm. This allows filter methods
to be combined with any kind of induction algorithm, whether it be a
naive Bayes classifiers or a Bayesian network. Even more important, it en-
ables us to develop an approach that is totally independent of the chosen
regression model. Thus, the choice of a model class can be postponed.
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In Chapter 2, we have introduced fundamental principles of statistics as a
background for the problem definition. The following chapter addresses
the visualization context necessary for the method that is proposed in this
thesis. We first give a short introduction into the concept of Interactive Vi-
sual Analysis, followed by issues to be considered when visualizing time-
oriented data. To conclude this chapter, we put interactive visualizations
into the context of relationship discovery and feature selection.

3.1 CONCEPT OF INTERACTIVE VISUAL ANALYSIS

In view of rapidly increasing amounts of data that are automatically
recorded via sensors and monitoring systems, extracting valuable infor-
mation is difficult [40]. Not being able to adequately explore the sheer
amounts being generated, the data becomes useless for hypothesis gen-
eration and decision-making. Automatic filtering and data analyses yield
reliable results when used for well-defined problems. However, for hy-
pothesis generation or in-depth interpretation of analysis results, the abil-
ity to understand the procedure from data to results is crucial [41]. When
dealing with complex data, combining the strengths of human and auto-
matic data processing allows for analyzing data in a most effective way
[40]. This is realized in Interactive Visual Analysis (IVA), a concept estab-
lished by Helwig Hauser. It involves a step-wise analysis procedure: from
descriptive statistics for each feature, over the presentation of correlations
between multiple features to more advanced investigations if required.

The challenge with large and often high-dimensional data is to present
them in a visual form that supports analysts in gaining insights and
reduces the cognitive load. Information Visualization (IV) techniques are
commonly used for the identification of patterns, trends, or correlations
among features in multivariate data [19]. Interactive exploration benefits
from simultaneously investigating different visual representations. Such
methodology is supported by Coordinated Multiple Views (CMV), which
are employed for various types of information [22, 54, 60]. For more de-
tailed information on CMYV, see the survey provided by Roberts [67].
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CMV are commonly used to implement an overview and detail strategy, fol-
lowing Shneiderman’s information-seeking mantra “Overview first, zoom
and filter, then details on-demand” [71]. This strategy enables analysts to
concretely analyze patterns in detail, which were observed in an overview.
When viewing overview and detail representations side by side, analysts
can consider multiple scenarios, compare different perspectives, and go
back and forth between different exploration paths [67].

As Keim and colleagues state in their work, the user should be the su-
pervising authority steering the analysis procedure according to his task
[41]. Interaction techniques enable analysts to adjust the visual represen-
tations to his needs by filtering or selecting elements. Linking between
multiple visualizations is performed via brushing, where all views update
their content according to the selection of a data subset. Different brush-
ing techniques are summarized by Roberts [67].

Brushing as an interaction technique is closely related to the Focus and
Context (F+C) approach that has been developed in the IV domain, where
it originally made use of different enlargement factors for different parts
of the data. In combination, both brushing and F+C are used to draw the
analyst’s attention to a subset of data that is promising and thus should
be analyzed in more detail. F+C techniques allow the analyst to investi-
gate details on a subset of data, while still viewing a general overview
as context for orientation within the same view. To distinguish between
data in focus and context information, Hauser describes different visual
characteristics, such as space, opacity, color, and frequency [28].

3.2 VISUALIZING MULTIVARIATE, TIME-ORIENTED DATA

Time, together with the three spatial dimensions, characterizes the four-
dimensional space of the world we live in [2]. Every measurement is in
one way or the other related to time and might only be meaningful in its
temporal context. A deep understanding of temporal relations allows to
learn from past developments and predict the future. There is no formal
definition, but the majority of attempts to define time orientation include
the idea that temporal aspects of the data are of central importance. Time-
oriented data arises in various domains: from industry over meteorology
and the finance sector to medicine. Typical tasks range from analyzing
trends and repetitive patterns over identifying correlations to predicting
future behavior [83]. Accordingly, a large number of visualization meth-
ods for time-oriented data in different applications have been published.
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3.2.1 Categorization of Time Representations

To address the diversity of proposed visualizations for time-oriented data,
Aigner and colleagues have developed a categorization scheme covering
the key characteristics of visualization methods [1]. Following this cat-
egorization scheme, we will introduce the fundamental settings of our
approach by classifying it. Basically, the authors propose three categoriza-
tion criteria (for a detailed description see [1]):

1. Time Axis

¢ Primitives: time points vs. time intervals

e Structure: linear vs. cyclic

2. Data
* Frame of reference: non-spatial vs. spatial
¢ Data type: quantitative vs. qualitative

¢ Number of features: univariate vs. multivariate

3. Representation
¢ Time dependency: static vs. dynamic

¢ Dimensionality: 2D vs. 3D

Now that we have introduced the idea of time and its role for data
analysis, we will describe different approaches for visualization of time-
oriented data. Because time-oriented data involves so many different as-
pects, we will focus on a number of selected techniques, whose catego-
rizations are similar to that of our approach.

3.2.2 Time Series Plot and Extended Variants

As Tufte states, “the time-series plot is the most frequently used form of
graphic design” [74]. A time series plot displays the change of a variable’s
values, while keeping the temporal ordering. In other words: observations
of a variable are plotted against time. The oldest known example to rep-
resenting changing values graphically dates from the tenth or eleventh
century [21]. Once the numbers recorded at different time points are put
into a graphical representation, trends and patterns can be identified. A
time series plot is intuitive to interpret, because it addresses the natural
perception of time as a linearly proceeding dimension.
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Figure 6: Different visualization techniques showing the same time series [37].

The time series plot has been extended to multivariate data, yielding a
number of variants addressing different tasks. Javed and colleagues give
an overview of different ways to display multiple time series [37]. Plotting
multiple time series with a common baseline is the most straight-forward
way to compare different variables (Figure 6a). To reduce visual clutter,
labels and axis ticks are omitted, resulting in what Tufte calls sparklines
[76]. The time series can also be displayed one below the other, which
additionally allows to color the area below the line to simplify the identi-
fication of individual graphs (Figure 6b). To save vertical space, the small
multiples can also be stacked, such that each time series uses the value
of its predecessor as a baseline (Figure 6c). However, the limited visual
clutter of such stacked graphs comes at the expense of a more demand-
ing comparison across time series. Another visualization, which keeps
the visual clutter and space allocation low, are horizon graphs [66]. The
approaches presented by Javed et al. [37] can be of use for perceiving si-
multaneous occurrences of certain features, e.g. peaks, across a number of
variables. Such occurrences might indicate a relationship, where changes
in one variable trigger changes in another variable. Instead of arranging
time series plots in a vertical layout, they can also be set out in a radial
layout, resulting in a visualization called MultiComb [73].

3.2.3 Exploring Patterns of Evolution

Time series plots as such depict the values of features at different time
points. The change in individual features needs to be read from the gra-
dient of the corresponding curve, which requires cognitive effort. Havre
and colleagues present ThemeRiver [30] to visualize changes of theme oc-
currences in speeches, interviews, or articles over time. One theme is rep-
resented by a colored ribbon flowing horizontally with time. For each
time point, the ribbon’s width is mapped to the relative strength of the
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Figure 7: ThemeRiver: a technique to visualize theme changes over time [30].

theme at that time. Thus, changes in the strength of themes are perceiv-
able with little effort by observing the varying width of the ribbons. To
display multivariate data, the ribbons are stacked (Figure 7). ThemeRiver
is highly useful for an investigation of general trends. It could also be
used to depict simultaneous changes in the independent features and
the target. A simultaneous widening and narrowing of multiple ribbons
might indicate a relationship between the corresponding features. Inter-
active re-ordering of the ribbons enables the analyst to compare features
without distortions, e.g. for investigation of a hypothesized relationship.

Another approach that is closely related to our method is proposed by
Bach et al., who call it Time Curves [7]. Time Curves result from folding a
time-line visualization into itself, such that similar time points are placed
close together, while preserving the temporal order (Figure 8). Originally,
Time Curves were used for exploring patterns of evolution, like slow pro-
gression, sudden changes, or reversal to a previous state, in temporal
data originating from document histories. The authors claim that this
metaphor can be applied to any data set where a similarity metric be-
tween time points can be specified. We use a special case of this metaphor

1—0—© GQ-G > 0 \ /-erje

Figure 8: Folding time: the time-line (left), where similar colors indicate sim-
ilar time points, and the resulting time curve (right), where spatial
proximity indicates similarity. Image adapted from [7].
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for our synchronization approach. We define the similarity between two
time points t; and t; as the Euclidean distance of the corresponding data
points in a feature space Xj x X, of independent features. Folding the
time-line then equals plotting the data points in a scatter plot with Xj
and X; on the axes and connecting them according to their temporal or-
der. For a detailed description of its application see Section 5.4.3.

In the following, we will turn towards one of the main objectives of this
work: the identification of relationships for the purpose of selecting a de-
scriptive feature set. We present several approaches to a visual assessment
of relationships, most of them are targeted at time-oriented data. Never-
theless, we also include methods that do not deal with time-oriented data,
but are related to our work from a conceptual point of view.

3.3 VISUALLY SUPPORTING RELATIONSHIP DISCOVERY

As for many other analysis tasks, visualization can be used to identify
relationships within data sets, whether it be for choosing the right pa-
rameters or predicting the outcome of a variable. The most basic multi-
variate visualization techniques that address the identification of multi-
dimensional relationships are scatter plots and scatter plot matrices [16]
as well as parallel coordinates [36]. Amar and Stasko discuss the role of
Information Visualization for higher-level tasks beyond the representa-
tion of data, such as decision-making [4]. They argue that IV techniques
often lack the potential to overcome the gap between the perception of
a relationship and building up confidence in the relationship by assess-
ing its usefulness. They claim that systems should be built to support
decision-making rather than leaving it to the experience of users.

3.3.1 Relationship Exploration in Time-Independent Data

Various approaches have been proposed for the discovery of patterns in
large, multivariate data sets, where the temporal context does not play a
role. Most of them were developed to support the identification of mean-
ingful features for further analysis tasks, such as model building.

EXPLORING RELATIONSHIPS FOR DIMENSION REDUCTION

Krause and colleagues developed SeekAView, a Visual Analytics system
that guides analysts in interactively building and refining subspaces out
of high-dimensional data [49]. Analysts can either start the analysis by
investigating system-generated subspace suggestions or by interactively
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exploring relationships between dimensions themselves. The system can
be asked for support on further steps whenever needed. SeekAView fo-
cuses on linear relationships, which contradicts our intention of building
a system that does not rely on a selected class of regression functions.

A similar framework for dimensionality reduction and analysis, Dim-
Stiller, is provided by Ingram and colleagues [35]. It combines variance or
correlation measures with visualizations like scatter plots to emphasize
the underlying dimensions and their relationships. In this sense, it aims
at answering questions concerning the meaningfulness of dimensions, the
relationships between dimensions, and the validation of clustering with
a given input dimensionality.

Although both systems cover the discovery of correlation patterns, they
were primarily built for dimension reduction in all its many aspects. They
focus on reducing the dimensionality of a data set using automated algo-
rithms like Multidimensional Scaling, Principal Components Analysis, or
Subspace Clustering rather than visually assessing a subspace’s explana-
tory power for a target dimension. Subspace suggestions are not limited
to original dimensions, but also include newly generated ones. In this
sense, both frameworks focus on exploring relationships for the purpose
of feature extraction rather than feature selection. In contrast to that, we
only select dimensions from the features available in the data set.

FEATURE AND ITEM SUBSET SELECTION

In this sense, the Rank-by-Feature Framework provided by Seo and Shnei-
derman [70] is more closely related to our work, because it solely focuses
on subsets of the original dimensions. The framework provides guidance
for a systematic visual exploration of dimensions and their relationships
for the purpose of discovering important dimensions for further analy-
sis. The analysis work flow includes both information visualization tech-
niques as well as statistical measures. The latter can be used to rank (pairs
of) dimensions in order to rapidly identify the most important dimen-
sions or the strongest relationships according to the specified measure.
Independent of the choice of interestingness measures, the ranking con-
cept can be beneficial for feature selection, as it supports users in deter-
mining which of the remaining features to add next to the current feature
subset. The framework is limited to the discovery of global characteristics,
i.e. all visualizations and statistical measures refer to the entire data set.
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Figure 9: The Partition-Based Framework for regression model building [57].

Piringer and colleagues extend the framework to local characteristics,
where univariate and bivariate statistical moments for ranking are com-
puted with respect to a subset of the data. Data subsets can result from
clustering or outlier removal. A more flexible way of defining them are
brushes, which also enable a comparison of one subset to other subsets or
the whole data set [65]. All views are linked, such that all visualizations
and computations update, whenever a subset changes.

Regarding the objective of identifying meaningful dimensions as a start-
ing point for tasks like model building, both approaches are closely re-
lated to our work. However, they are not designed to support regression-
related tasks, which build upon relationships focusing on a target dimen-
sion. This makes it difficult to directly apply these methods to our task.

FEATURE AND ITEM SUBSETS FOR REGRESSION MODEL BUILDING
Guo et al. propose a visualization system for identifying linear trends be-
tween a dependent feature and independent features with the objective of
interactively building explanation models [25]. Furthermore, the system
supports users in navigating the model space and extracting data subsets
fitting a given trend. It was also used to assess the uncertainty associated
with a model. In contrast, our problem definition is taken from a stage
prior to the model building step of the regression pipeline, where the
model class and potential predictors are not known yet.
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Miihlbacher and Piringer developed the Partition-Based Framework, which
addresses different tasks related to building regression models [57]. In
large parts, this involves the visual exploration of relationships between
independent features and a quantitative target feature. For this purpose,
the authors provide an overview of individual (1D) features and relation-
ships for pairs of features (2D) (Figure 9). A ranking of relationships is
employed for quantification. The Partition-Based Framework is closely re-
lated to our work, in that it addresses the exploration of relationships for
use in regression analysis. By partitioning the feature space into data sub-
sets, they even address the influence of item subset selection on the rela-
tionships between features. We also partition the feature space to achieve
an overview visualization at an intermediate detail level, but do not con-
sider particular item subsets for our analysis work flow. The key chal-
lenge that distinguishes our objective from that of the Partition-Based
Framework is the time-dependency associated with our data, which is
not addressed by Miihlbacher and Piringer. Another difference lies in
their consideration of item subsets, which we do not provide.

3.3.2 Relationship Exploration in Time-Oriented Data

Adding time-dependency as a data characteristic to the task of exploring
relationships in multivariate data for the purpose of forecasting poses an
extra challenge. Approaches for time-oriented data range from general
identification of relationships over simple extrapolative forecasting to ef-
fective sense-making using multiple features.

RELATING A TARGET TIME SERIES TO OTHER TIME SERIES

Zhao and colleagues provide a technique called ChronoLenses that allows
for on-the-fly transformation of time series sections within a region of in-
terest [83]. The relationship between time series can be investigated using
the cross-correlation lens (Figure 10). However, a correlation within its
focus area does not mean that the overall relationship is stable. By drag-
ging the lens and therefore changing its focus area, the analyst can assess
whether the correlation varies or exhibits a stable trend. We encounter a
similar problem, because relationships can only be investigated for a part
of the feature space. If a relationship was identified, it does not necessar-
ily hold for the remaining feature space. Instead of employing interaction
like dragging a lens, we arrange individual components to an overview
visualization that depicts a relationship across the entire feature space.
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Figure 10: ChronoLenses: analyzing the correlation between time series [83].
Lenses can be dragged along time to assess the correlation variation.

Hochheiser and Shneiderman provide an interface called Similarity-Based
Forecasting, which enables data-driven forecasting based on similar his-
torical time series of the same feature [13]. For example, it can be used
to forecast the closing price of an auction based on the price curves of
past auctions selling the same object. For this purpose, they introduce the
River Plot, an aggregation visualization depicting summary statistics of
the past time series values. Its median is the forecast, while the remaining
summary statistics indicate the forecast uncertainty. Similar to the River
Plot, our approach also includes a visualization of time series associated
with the target feature, whose variance characterizes the uncertainty of
the forecast, i.e. the explanatory power of the considered feature subset.
However, we visually assess the variance rather than quantifying it by a
statistical measure.

Konyha and colleagues present a system for the interactive visual anal-
ysis of relationships in function graph ensembles [45]. A function graph
f(x,t) is a time series that depends on a set of scalar independent features
x. It arises as output of a simulation run, where x is a set of control pa-
rameter values that it receives as input. An ensemble of function graphs
then results from multiple simulation runs with varying control param-
eters. The objective that they address is two-fold: (1) determine how the
shape of a function graph is related to combinations of scalar indepen-
dent features (Figure 11, left) and (2) identify correlations between sets of
function graphs (Figure 11, right), where a set results from multiple runs
simulating the same feature. Both of these goals seem to correspond to
our problem definition. However, in our case, (1) the independent features
are function graphs themselves, which poses an additional challenge, and
(2) we investigate the relationship between a target feature and multiple
time-dependent features as two sets of function graphs, while their sets
are equally sized and represent one feature each. Consequently, their tech-
niques need strong adaptation to be applicable to our data set.

s <« L1 remove mmn_} = -'i-. : wra 4—{L5 TEMOVE Mean ) e
R 1 ] ty B (B8
Al m #,H‘-‘ )| «—(L3 1st derivative) :_ R 3 (L6 Istderivative .
.Lfl i ! J kb M Iif T | \_  cross-correlation (L3)
el heeh A 1 )" it
L i S N e [ LY ..r . "L L —— B
. = = __._,..._‘_ ;:.._-H_L“ :I.'II-‘



3.3 VISUALLY SUPPORTING RELATIONSHIP DISCOVERY

i
u
|

]

Z

|

W -« *
;: * 3 o O <o <o > 3 K 3
™,
A o~ N e
-~ 1 0 0 N N N o i ° | AR ¢ o
: i ° o ity 008 I C I K oo o S
Y\V\/-w A e,
WA e
° ¥ s o o o °
5 o ¢ oo [0 3
‘<: WVNWM [
55 A T e

(T

f{ k3 K o
] > ¢ & 6 O

23303 740008 0656055 0 0008
Viclose Neede_lift(t) e

Js8622°0

Figure 11: Analysis of relations be- Figure 12: CareCruiser: effects of a
tween control parameters (left) and  clinical action compared by vertical
time series (right) [45]. The sets of time  alignment [23]. A delayed drop of the
series are correlated. parameter is revealed.

CAUSE-AND-EFFECT RELATIONSHIPS

The identification of relationships between time series might involve the
search for items with a certain behavior, e.g. a strong increase, or event
that anticipate changes in other time series within the data set. From such
a finding, one might hypothesize that one feature triggers changes in an-
other feature, thus indicating a relationship.

Gschwandtner and colleagues developed CareCruiser [23], a visualization
prototype that supports analysts in exploring the effects of clinical treat-
ment plans on a patient’s condition. One of their objectives is the analysis
of changes in a parameter curve, e.g. oxygen saturation, that might be
caused by a clinical action, e.g. oxygen supply (Figure 12). This refers to
cause-and-effect relationships between clinical actions and the temporal
development of a patient’s parameters. Immediate effects of applied clin-
ical actions can be identified, which are a strong hint for causality due
to the small time delay. The system also supports an alignment of ac-
tions below each other to enable a comparison of multiple patients based
on the same clinical action. This is closely related to our synchroniza-
tion approach, where we align time points exhibiting similar states (cor-
responding to a clinical action) to compare the behavior of a target feature
(corresponding to the parameter curves). Our method differs from the de-
scribed approach in that we do not deal with event-based, but continuous
data. We need to assess whether a change in one time series might be re-
lated to or even causing any change in another time series.
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Figure 13: Identifying items with similar trends at different times. Leaders are
specified by a query (top). Laggards are identified by shifting the
rectangles (bottom). Image adapted from [33].

Hochheiser and Shneiderman address cause-and-effect relationships by a
concept called leaders and laggards [33]. The leaders exhibiting the trend of
interest are specified using selection rectangles (Figure 13, left). Laggards
are then identified by the same number of selection rectangles, which
are offset by one time period from their original counterpart (Figure 13,
right). They only support the detection of laggards undergoing similar
transitions to those of the leader, but at a later time. This does not cover
the general hypothesis of a leader causing any change in its laggards.

3.4 FEATURE SELECTION USING INTERACTIVE VISUAL ANALYSIS

Feature selection is about finding a minimal subset of features, which is
most useful for building a predictor [26]. Numbers primarily quantify the
relevance of a feature or feature subset. However, relevance does not nec-
essarily equal usefulness. Gathering together features with good individ-
ual predictive power does not mean that their combined predictive power
is as high. As the search space of all feature subset candidates might be
huge, Guo states that automated analytical processes are needed [24]. At
the same time, such processes need to be tightly coupled with the human
expertise in interpreting and evaluating patterns to guide the procedure.

3.4.1 Interacting With Feature Selection Mechanisms

Guo proposes an interactive feature selection method [24] that is based on
a visualization of the relationships between 2D feature sets. A correlation
matrix depicts a correlation measure for all 2D subspaces of the origi-
nal feature space. For a better perception of interesting subspaces, the
features are sorted such that correlated features are placed close to each
other in the ordering. Subspaces that likely contain significant patterns
are then visible as blocks of low correlation values and can be interac-
tively selected from the matrix view.
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Figure 14: SmartStripes interface for monitoring and steering feature selection
[56]. The heat map depicts dependences between a selected (leftmost
column) and remaining features. Dependence measures are parti-
tioned w.r.t. entity subsets (rows).

The coupling of data mining and visualization can also be realized by al-
lowing direct interaction with a given feature selection algorithm through
visualizations. May and colleagues present SmartStripes, a visual analytics
system that enables the user to step into the feature selection process and
retrace the interdependencies between feature and entity subsets [55, 56].
In this way, SmartStripes supports the monitoring of automatic methods
and enables an interactive construction of feature subsets with a focus
on entity subsets. In particular, the system was designed to be used with
filter algorithms, which relates to the work presented in this thesis. In
each iteration of the feature selection algorithm, the user can observe the
quality measures computed for each feature. A heat map display shows
the relation between a selected target feature and the remaining features
in the data set (Figure 14). The rows of the heat map represent entity sub-
sets. By investigating the subsets” individual contributions to the features’
quality measures, the user can explore the interdependencies between
feature and item subsets. If desired, the user can then directly steer the
algorithm by choosing the next feature to be added according to the qual-
ity measures computed during the iteration. Item subsets that might skew
the results of automatic feature selection techniques can be excluded from
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the analysis. In this way, domain knowledge can be incorporated into the
selection process. Scalability is addressed by sorting the features accord-
ing to their quality as a candidate and displaying the most important
features on the screen. The remaining features can be viewed by scrolling.

The SmartStripes approach is closely related to our work. Their similar-
ity manifests in both approaches being independent of the actual feature
selection algorithm and not being influenced by specific types of data or
relations. Both also do not take the dependence of arbitrary features into
account, but focus on relations between one dependent feature and the
remaining independent features. In contrast to SmartStripes, we do not
focus on the interdependencies between feature and entity subset selec-
tion, but instead aim at incorporating our features” time-dependence into
the feature selection method.

Inspired by SmartStripes, Miihlbacher and Piringer allow for an investiga-
tion of local patterns when exploring the relationships between a target
feature and a number of independent features [57]. Local relationship
structures are made visible by partitioning the domain of involved fea-
tures, which is also integrated into their interactive feature subset selec-
tion mechanism. The work flow consists of iteratively adding features,
while ensuring that the resulting feature subset is valid in terms of redun-
dant features and domain knowledge. Each iteration aims at reducing the
remaining variance of the prediction, which is given by the deviation of
the predicted values from the values of the training data. Generally, the
described work flow matches the feature selection procedure considered
in this work. However, it differs from our intentions in that it requires
an evaluable regression model to determine the remaining variance. We
also use our available data as training data to evaluate the current fea-
ture subset, but we characterize the remaining variance without the need
of a model being given. The user solely visually determines whether the
remaining variance is acceptable and, if not, selects an additional feature
that is assumed to reduce this variance. Instead of building an initial
model based on automatically determined features, we initialize our fea-
ture selection using a pair of features that is assumed to be useful based
on domain knowledge. To conclude, this approach is highly similar to our
work, except for the fact that feature subsets are evaluated using concrete
regression models, which we do not want to presume.
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Method Model-free ftem Domain Featgre transforma- Time
subsets  knowledge  ranking tions dependence

Interactive Feature

. v X v X X X
Selection [24]
INFUSE [48] X X v v/ X X
SmartStripes [56] v v v v X X
Partition-Based X v Y v v X
Framework [57]
Our approach v X v X X 4

Table 3: An overview of reviewed approaches to interactive feature selection.
None of them addresses time-oriented data (rightmost column,).

CONTRIBUTIONS OF THE THESIS

In this chapter, we briefly summarize the contributions of this thesis. Ta-
ble 3 presents an overview of the selected approaches reviewed in the
previous section. General functionalities like domain knowledge are sup-
ported by most of them, while aspects like feature transformations or
item subsets are less commonly addressed. The last column reveals that
none of the reviewed approaches explicitly deals with time-oriented data.

Contribution o.1 (Time Dependence) A concept that explicitly considers the
time-dependence of the data for the purpose of feature selection.

Our approach does not only address the challenges originating from the
time-oriented data, but actually leverages the information contained in
the time-dependency for the purpose of feature selection. This contri-
bution is opposed to considering all time points as independent. Our
method is tuned to continuous and non-cyclic time-dependent data.

Contribution o.2 (Transfer of Concepts) An application of concepts from an
event-based analysis of electronic health records to any numerical data.

We transfer well-established concepts from the medical domain, where
time-oriented data are often event-based, to numerical data from any do-
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main. In particular, the idea of aligning temporal data of multiple patients
according to a clinical action (e.g. oxygen supply) or the outbreak of a dis-
ease (e.g. a cardiac infarction) has been adapted.

Contribution 0.3 (Model-Free) A methodology that does not require the spec-
ification of an analytical model of the predictor in advance.

Our approach does not make assumptions about the type of relationships
(e.g. linear, quadratic). It is independent of the future model and can
be applied to regression problems where the model class has not been
determined yet. This restriction limits the choice of quality measures for
candidate feature subsets to generic statistical measures.

Contribution 0.4 (Feature Subset Evaluation) A synchronization approach
to evaluate the explanatory power of a feature subset with respect to a target.

The target’s dependence on individual configurations of the subset is eval-
uated by aligning the different target behaviors that arose prior to and
after a configuration. To evaluate the entire feature subset’s explanatory
power, we provide an overview visualization, which enables analysts to
assess the synchronization results across the entire feature space. To date,
this overview is only capable of depicting 2D feature subsets.

Contribution 0.5 (Interactive Visual Analysis System) A system of coor-
dinated views and brushing tools for exploration of high-dimensional data.

The system allows for an efficient exploration of different perspectives,
steered by analysis tasks and the current findings in the Synchronization
Grid. It can be used to identify a third influencing feature that improves
the predictive power when added to the feature subset.

Contribution 0.6 (Domain Knowledge) The possibility to integrate the ana-
lyst’s expertise into the analysis process.

Analysts are given the authority to choose the initial features based on
their domain knowledge. This could be features that are only influenced
by factors outside of the investigated system. Analysts are also guided in
deciding on further features to be added based on their analysis findings.

Contribution 0.7 (Evaluation) An application of the approach in the context
of vehicle dynamics as well as an analysis of an artificial data set.

The benefits and limitations of our approach are examined by applying
it to real-world time-oriented sensor data, where domain knowledge can
be considered, as well as to an artificial data set, where findings can be
compared to intentionally included relationships as a ground truth.
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The overall objective is the modeling of a time-dependent target feature
Y(t) using time-dependent predictors X (t), ..., X (t), where n < m and
m is the number of features available in the given data set. The analysis
task to be solved is the following: a combination of which time series
Xj(t), ..., Xn(t) can replace the information of Y? In other words, we have
to find those independent features that make up the minimal descriptive
feature subset with sufficient explanatory power.

Presenting relationships between independent features and a target in a
visual form can support analysts in evaluating the explanatory power of
both individual features and feature subsets. Allowing analysts to interact
with the visual representations furthermore enables them to assess the
influence of individual features on a feature subset’s explanatory power.
In this sense, Interactive Visual Analysis can help to derive the best-suited
feature subset out of the 2™ — 1 possible candidates.

5.1 FEATURE SELECTION WORK FLOW

As an introduction, we will describe a general analysis work flow, which
we derived from our understanding of feature selection in the context of
time-oriented data. We are not concerned with presenting a full-featured
list of steps that should be completed one after the other. The analysis
of relationships is often exploratory and cannot be squeezed into a one-
branched work flow. Instead, we intend to convey an impression of which
aspects need to be addressed on the way. From this overview of a poten-
tial work flow, we will derive a number of more concrete requirements.

1. Choose a target feature.

The target is the time series to be modeled. A task involving multi-
ple targets can be reduced to subproblems with only one target.

2. Choose a number of independent features as initial feature subset.

All features that are entirely independent of the investigated system
must be included in the feature subset, as they capture any target
characteristics that cannot be explained by features from the system.
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3. Investigate the relationship between Y(t) and {X;(t),X2(t)} independent

of time. Are X1 (t) and X3 (t) sufficient to predict Y(t)?

In general, we distinguish between (1) a relationship affecting the
values of Y(t) at a particular time point and (2) a relationship affect-
ing the behavior of Y(t), i.e. from a certain point in time onwards.

Before explicitly considering the time-related nature of the data, the
experts start by evaluating whether the values of Y(tp) at a certain
point to in time depend on the values of features X (to) and X, (to)
at the same time point. The temporal order of the given data items
is ignored and the data items are regarded as independent.

In the following, we will present some of the questions that might
arise at this stage and clarify their meaning for the analysis.

(I) Question: What does the distribution of the target Y(t) w.r.t.
Xj(t) and X;(t) look like? Can the parameter space Xj(t) x
Xz(t), be divided into regions of similar values for Y(t)?

Explanation: If yes, this might indicate a relationship. Xj(t)
and X;(t) could already be sufficient for explaining the target.
If this hypothesis is verified, feature selection can be finished.

If the distribution of target values does not exhibit patterns
indicating a relationship, there might be additional features
influencing Y(t). The analysis could be continued with step 5.

(II) Question: Can the relevance of Xj(t) and X;(t) be quantified?

Explanation: If statistical measures indicate that both features
contain enough information about the target, the expert might
conclude that X; (t) and X;(t) explain Y sufficiently well. Such
a conclusion should be tested for statistical significance.

(II) Question: Does Y(t) contain values considered as outliers?

Explanation: Outliers might not represent the major character-
istics of data and thus distort the regression model. Issues re-
lated to outliers are, however, beyond the scope of this thesis.

(IV) Question: Is the distribution of the target feature continuous
with respect to the parameter space X (t) x Xz(t)?

Explanation: We call a distribution continuous, when the func-
tion values do not change arbitrarily within a neighborhood.
For example, a high gear engaged in a car is usually associated
with high velocity. If those two quantities were independent,
engaging the next gear could result in an arbitrary change of
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the car’s velocity. As there actually is a relationship between
those two, slight changes in one quantity result in only slight
changes in the other one. To conclude, if the distribution of
the target feature is not continuous, this might indicate that
Y(t) does not depend on X; (t) and/or X;(t).

(V) Question: Are there value combinations that do not exist?

Explanation: Value combinations that are not available, e.g. due
to physical constraints or because they were not caught during
sampling, might be special cases to be treated accordingly.

4. Examine the time-dependence of Y(t). How do the values of Y(t) develop
over time based on a particular value combination of X1 (t) and X;(t)?

One objective is to determine whether a combination (X1 (to), X2(to))
at some time point to is a useful predictor for the behavior of Y(t)
in a time interval [to, ti] of reasonable length 1 = t; — to.

(I) Question: How do the values of the target evolve over time?

Explanation: Recurring patterns or trends are worth analyzing
in more detail. They are in particular interesting when reveal-
ing a relationship to the independent features X; (t) and X, (t).

(II) Question: Do similar value combinations of X;(t) and X;(t)
yield similar behavior of the target within the time interval?

Explanation: Regardless of the model class, we assume that any
valid model outputs similar target behavior when being given
the same value combinations of X (t) and X;(t) as input.

If the target behaves similarly from those time points onwards,
where X;(t) and X, (t) exhibit particular values, this is a nec-
essary, but not sufficient, criterion for them to explain Y(t)
for these specific values. To validate the target behavior for the
remaining parameter space, the analyst continues with step 6.

The temporal development of the target values might also be
different based on the same values for X;(t) and X;(t). In this
case, the analyst concludes that there must be an additional
feature relating to these differences in the target behavior.

5. Analyze how differences in the target behavior manifest in other features to
identify an additional predictor to be added to the current feature subset.

If the data items characterizing the differences can be associated
with coherent parts of an independent feature’s domain, this feature
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might be the searched predictor. If it does not introduce any redun-
dancy to the current feature subset, it can be added to improve the
subset’s predictive power. A reverse-check should be performed to
confirm this hypothesis. Continue the analysis with step 3.

6. Validate the target behavior for the entire parameter space X1 (t) x Xz(t).

The expert might have optimized the feature subset locally: it only
explains the target for particular values sufficiently well. The analy-
sis can only be finished, when the target behavior differences have
been reduced to a tolerable amount for the entire parameter space.

7. Repeat steps 3 to 6 with the current feature subset.

5.1.1 Derived Requirements

From the work flow described previously, a number of general require-
ments relating to the extent of the developed approach can be derived.

Requirement 0.1 (Domain Knowledge) Analysts should be able to incorpo-
rate their domain knowledge at any step of the feature selection process.

The work flow starts with an initial feature subset, which results from the
analyst’s domain knowledge about features that are entirely independent
of the investigated system (step 2). In many cases, such features can be
taken from the control parameters of a system. In the end, it should be
possible to derive an initial subset based on a starting analysis of distri-
butions and patterns in the given data set. We will not consider such an
initialization step for now, but it is performed during evaluation of the
proposed approach (see Section 7.1). Aside from choosing the start fea-
tures, domain knowledge can be useful for various other tasks, e.g. when
deciding whether to actually add a feature identified as promising.

Requirement 0.2 (Time-Dependence) The time-dependent nature of the data
should be considered explicitly.

This refers to step 4, where the temporal development of both target fea-
ture and independent features does play a role, as opposed to step 3,
where data items are regarded as entirely independent with no tempo-
ral order. Considering the time-dependence is important to get hold of
scenarios where the target’s values are determined by developments (of
both the target and independent features) that happened at previous time
points. As an example, this could be an event, e.g. a peak, in one of the
independent features leading to a delayed effect in the target feature.
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Requirement 0.3 (Relationship Assessment) Analysts should be enabled to
identify correlations between independent and dependent features.

Feature selection thrives on the analysis of relationships to identify those
features that contain valuable information about the target feature. There-
fore, a primary requirement is the possibility to identify correlations and,
in an ideal case, even cause-and-effect relationships. For this purpose,
the analyst needs to be able to distinguish between independent and de-
pendent features as well as to assess the relationships between different
combinations of those features.

Requirement 0.4 (Overview and Detail) Analysts should be offered both
overview and detail visualizations to address the complexity of the data.

A visual exploration of relationship structures and remaining variance
benefits from simultaneously investigating different perspectives on the
data. An overview and detail strategy allows for an efficient drill down to
interesting relations and for their examination. F+C techniques can also
prove useful, in particular for comparing how the target’s variance man-
ifests in different independent features (step 5). An IVA system should
consequently implement appropriate techniques.

Requirement 0.5 (Abstraction and Scalability) The system should provide
a trade-off between scalability and meaningful data representation.

To enable analysts to focus on the interpretation of depicted patterns,
data should be represented with minimal abstraction and information
loss where possible. Complex visualizations requiring a high cognitive
effort to be interpreted, e.g. projections, should be avoided. Nevertheless,
the scalability aspect should not be ignored. Scalability refers to the num-
ber of investigated time points as well as the number of features. This
relates to the issue of statistical significance. A certain number of data
items is necessary to support a relationship hypothesis, otherwise we
cannot know whether it simply originated from coincidence. To conclude,
aggregations and data abstractions should be used where needed, but
kept to a minimum.

Requirement 0.6 (Model-Free) The approach should not prefer certain types
of data or relations.

Not preferring or deferring patterns keeps the approach receptive to all
opportunities that might generate a subset with the best quality. To meet
this requirement, the approach should not rely on a particular class of the
analytical model. This restriction requires the statistical measures that are
used to quantify relationships to be highly generic.
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5.2 THE SYNCHRONIZATION APPROACH

In this section, we describe our synchronization approach to visual as-
sessment of a feature subset’s explanatory power. We are not concerned
with a conventional regression problem, where the value of the target fea-
ture at a time point ty is modeled by the values of independent features
at the same time point. Instead, we search for independent features con-
taining information about the behavior of the target feature, i.e. we do
consider the target’s behavior within a time interval [to, ti]. This means
to explicitly make use of information that can be gained from the time-
dependence of the data. Synchronization is needed to investigate how
certain values of the independent features, which might arise at different
time points, relate to the target feature’s behavior.

5.2.1 lllustrative Example from the Health Care Domain

The idea is to synchronize multiple time series, which represent the same
target feature, towards a certain event. This synchronization creates the
basis for comparing the time series with regard to what happened before
and after the event. In this way, the analyst can figure out whether the
investigated event can be associated with a certain target behavior. For
sequences of temporal events, such a procedure is commonly performed
in the health care domain to gain insights about potential precursors and
consequences of disease outbreaks. As an illustrative example, consider
multiple patients (time series) that are compared regarding how a medical
parameter (target) developed shortly before they suffered from a heart at-
tack (event). If, for all patients, the medical parameter strongly increased
prior to the heart attack, this indicates a relationship between the medical
parameter and the heart attack.

We adapt this event-based concept to numerical time series. An event
is then characterized by a value combination of the independent fea-
tures contained in the current feature subset. The previously considered
heart attack as event is replaced by a combination like {blood oxygen =
80%, heart rate = 60 bpm}. Instead of multiple patients, we now con-
sider only one patient, for whom we investigate whether the event can be
related to the target feature blood pressure. The event {blood oxygen =
80%, heart rate = 60 bpm} can arise at multiple time points through-
out the captured time interval. The time series to be synchronized are
then actually sections of the patient’s blood pressure development. These
time series sections are chosen in such a way that the center of the cov-
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ered time interval is one of the time points, at which the investigated
event occurred. In this way, we can compare the blood pressure be-
haviors that the same patient exhibited each time the event occurred.
If the behavior exhibits large differences based on the same event, we
can conclude that there is no explicit relationship, thus indicating that
blood oxygen and heart rate do not contain sufficient information to ex-
plain blood pressure. This kind of synchronization is similar to compar-
ing the target behavior starting every Monday (event), when considering
a cyclic time series containing daily values per week.

5.2.2 Fundamentals

The feature selection is the first step of statistical modeling and entirely
independent on the following model building step. No explicit regression
model — in terms of model type or parameters — is given at any stage of
the procedure. Therefore, we treat the model associated with a candidate
feature subset as a black box model, which is solely observed in terms of
its inputs and outputs. For this reason, we put the explanatory power of
the underlying feature subset on a level with the quality of the black box
model, which are both to be optimized. In each iteration of the feature
selection procedure, there are two main questions: (1) Is the explanatory
power of the feature subset sufficient to explain the target feature? (2) If
not, which feature do I need to add to increase the explanatory power?

A black box model makes it challenging to quantify its quality — and there-
fore the explanatory power of the underlying feature subset —, because we
cannot simply compute a model error. But even without a concrete speci-
fication of the model, general assumptions about the regression problem
can be made, which are useful for an evaluation of a feature subset’s
explanatory power and thus the quality of a future model.

Assumption o.1 (Prediction) If we consider any valid regression model, we
can assume that it outputs equal predictions based on the same input, indepen-
dent of the input’s time of occurrence.

This assumption is derived from the fact that a regression model is noth-
ing more than a function f with domain X, for which the following ap-
plies: Va,b € X: a =b = f(a) = f(b). It refers back to step 4 of
the feature selection work flow. The negation of this implication can be
described by: Va,b € X : f(a)! = f(b) = a! = b. This, in turn, implies:
if f(a)! = f(b) /A a = b, then f is incomplete. Thus, looking at assumption
0.1 the opposite way, we get the following statement:
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Assumption 0.2 (Remaining Variance) If the model outputs different predic-
tions for the same input, this means that the underlying feature subset is not
sufficient to explain the target feature.

This conclusion is the fundamental argument, upon which the entire syn-
chronization approach is built.

5.2.3 The Leading Idea

How can these assumptions about a regression problem help us to de-
termine the explanatory power of a feature subset? A feature subset suf-
ficiently explains the target feature, if the associated black box model
predicts the target values for new data with the property specified in as-
sumption o.1. With the derived assumption 0.2 in mind, we relate the
explanatory power of a feature subset to the differences in predicted tar-
get values. Following the statistical definition of variance as a measure of
a data set’s spread, we refer to these differences as target variance. Con-
sequently, the target variance is a measure for how much the predicted
target values differ when the model receives the same input. According
to assumption 0.2, it is an indicator for those portions of the target feature
that a feature subset cannot explain.

Assumption 0.3 (Explanatory Power) A feature subset has a high explana-
tory power, if the target variance is low, i.e. if the target behaves similarly starting
from the same input configurations.

To evaluate a feature subset, training data is required. Equal inputs are
defined as data items that exhibit the same values for those features con-
tained in the feature subset. We refer to this as a configuration. As an exam-
ple, a configuration could be {velocity = 50 km/h, road curvature = 0.3}.
The corresponding values of the target feature are referred to as the pre-
dictions. As we deal with time-oriented data, we intend to explicitly make
use of the data’s time-dependence to achieve more stable and meaningful
results. For this reason, we do not consider scalar values as predictions,
but investigate whether the input relates to a certain target behavior that
arises temporally close to the occurrence of the input configuration.

SIMPLIFIED ILLUSTRATIVE EXAMPLE
How does the visual assessment of the target variance for a given feature
subset work? That is, how can we determine whether it is indicating an
acceptable explanatory power of the feature subset? To explain the work-
ing principle of our synchronization approach, we consider a simplified
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Figure 15: A fictional time series depicting blood pressure (BP) as a func-
tion of time. Considering another feature heart rate (HR), we in-
vestigate whether BP depends on HR rather than on t alone. We
compare the behavior of BP from synchronization points ti with
HR(ti) = 100 bpm onwards, within a certain interval (rectangles).

illustrative example. Given a feature subset containing only one feature
heart rate, we specify a value of 100 bpm as initial configuration. This
value can arise at multiple points t; throughout the captured time range.
We are now interested in whether blood pressure behaves similarly each
time the heart rate reaches 100 bpm or if the configuration is followed
by different behaviors. According to assumption 0.3, this allows us to de-
termine whether heart rate might be a useful predictor for the behavior
of blood pressure in a time interval [t;, ti 1] (see step 4 of the work flow).

For this purpose, we compare the developments of blood pressure val-
ues from each t; onwards (Figure 15). The t; are called synchronization
points. By exhibiting the same configuration heart rate = 100 bpm, they
mark the common baseline for comparison. We investigate the behavior
of blood pressure within a synchronization interval starting from each t;
(Figure 15, rectangles). In an ordinary time series plot like in Figure 15, the
synchronization points are distributed along the time axis. Consequently,
comparing the corresponding time series sections within the synchroniza-
tion intervals is challenging and requires a lot of cognitive effort, because
a common baseline is missing. This prevents analysts from efficiently per-
ceiving differences among the curve sections and does not support an
evaluation of the target variance.
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Figure 16: Synchronization of target behavior towards identical configurations:
the synchronization points are used as split points for the target time
series (a). The resulting curve sections are cropped to synchronization
interval length 1 (b) and shifted along the time axis (c).

SYNCHRONIZATION OF TIME SERIES SECTIONS

To simplify the comparison, we suggest to horizontally align the synchro-
nization points t;, together with the time series sections bound to them.
We call the temporal alignment of identical configurations synchronization,
because it allows the analyst to directly compare the different temporal
developments originating from the same configuration. This synchroniza-
tion is performed in three steps: (1) the original target time series is split
at the synchronization points, (2) the resulting curve sections are cropped
to a certain interval length, and (3) are shifted along the x-axis, such that
the associated synchronization points share the same x-coordinate — the
zero line, to be more precise. These three steps are shown in Figure 16.
As a result, all curve sections have a joint reference point (i.e. the syn-
chronization points) as well as equally long observation periods (i.e. the
synchronization intervals) and can be compared directly.

After synchronization, analysts can directly compare the temporal devel-
opments of blood pressure that originate from the same configuration
heart rate = 100 bpm with little cognitive effort. Using their visual per-
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ception and human sense of curve similarity, they can efficiently evalu-
ate the presence of target variance by simply “seeing” how widely the
time series sections are spread. This frees them from the need of defining
similarity as a measure at this early stage, which would require the spec-
ification of a model. If the curves exhibit similar shapes, the variance is
low, as opposed to curves that clearly diverge. Following assumption 0.3,
low variance indicates a relation between heart rate = 100 bpm and the
development of blood pressure shortly afterwards. In contrast to that, di-
verging curves raise the question of one or more additional features that
influence blood pressure to behave either this or that way.

Uncertainty emerges from the naive assumption that the heart rate of
100 bpm does not change within the synchronization interval. If the val-
ues of blood pressure change, although heart rate is assumed to stay the
same, this is unexpected behavior according to Q3 in Table 1 and can be
explained by additional influencing factors. However, in general, we can-
not assure that the heart rate stays the same throughout the synchroniza-
tion interval. This makes it challenging to distinguish between changes
in blood pressure that are related to additional influencing factors and
changes that are caused by (unexpected) changes in heart rate and thus
can be categorized as expected behavior according to Q1 in Table 1.

5.2.4 Synchronization Line Plot

The visualization depicting the results of a synchronization is called Syn-
chronization Line Plot (Figure 16¢). Each curve is associated with exactly
one synchronization point, from which onwards it depicts the target’s
temporal development within a certain time interval. Contrary to the
traditional Time Series Plot, the x-axis does not represent absolute time
values. Instead, it represents the number of seconds that have passed
since the respective synchronization point was reached. The mapping
between the absolute time t,ps and the relative time t,; is defined as
tabs = ti + trer, Where t; is the synchronization point.

Up to now, we only consider the time points that follow the synchroniza-
tion point. However, there might be cases, where it is beneficial to ex-
amine how the target values evolved towards the synchronization point.
This requires to additionally display the time points preceding the synchro-
nization point. Different appearances of the Synchronization Line Plot are
shown in Figure 17. Observing the target behavior both before and after
the synchronization point might provide additional insights, for exam-
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Figure 17: Synchronization Line Plots depicting the target behavior around 26-
35 synchronization points ti: no target variance (a), low target vari-
ance (b), high target variance (c), and high variance arising mainly
before the synchronization point (d).

ple when a certain variance can be observed before the synchronization
point, but the curves behave similarly afterwards. However, the meaning
of such a pattern for the relationship between independent features and
the target is still to be investigated.

Visually assessing the target variance works well for a reasonable num-
ber of displayed curves in the Synchronization Line Plot. However, there
might be cases where the same configuration arises at a large number of
time points, resulting in a correspondingly large number of curves. In this
case, visual clutter might prevent the analyst from deriving reasonable
conclusions. Semi-transparent curves, which add up to more saturated
colors at overlaps, have already been proposed to provide insight into the
individual course of curves, even though many of them are depicted at
once [58]. We apply a non-linear, strictly decreasing transformation func-
tion, which maps the number of curves to an opacity value in [0, 1].

time
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5.3 THE SYNCHRONIZATION GRID

In the previous sections, we described how synchronization can be used
to perceive and analyze the target variance, when being given a configu-
ration like heart rate = 100 bpm. Note that all conclusions, which were
drawn up to now, are based on this particular configuration. They do not
provide any information about the target variance when considering an-
other configuration like heart rate = 60 bpm. Consequently, a conclusion
about the explanatory power of a feature subset cannot be confirmed or
rejected, until the target variance has been assessed for the entire feature
space. We need to check the target variance for each possible configuration.

As our approach is not tuned to medical data sets, but targeted at mul-
tivariate time-oriented data in general, we will abstract the illustrative
example in the following. Let us consider two independent features X (t)
and X;(t) with configurations {x1,x2}. A configuration corresponds to
one single point in the two-dimensional feature space X7 (t) x X3 (t). Aim-
ing at an analysis of the entire feature space, we run into a scalability
problem: the number of available configurations for two numerical fea-
tures might be huge, because two data items are unlikely to exhibit ex-
actly the same decimal numbers. When no two data items are equal, the
number of required Synchronization Line Plots (one per configuration)
equals the number of data items. Viewing and analyzing ten thousands of
plots to cover the entire feature space is infeasible. Another problem lies
in one configuration being associated with exactly one time point, which
results in each plot containing only one curve. Intuitively, this makes it
impossible to determine the target variance.

5.3.1 Grouping of Configurations

To start an analysis with a space-efficient overview of the target variance
across the entire feature space, we systematically group the available con-
figurations, instead of investigating each configuration individually. Each
group is then visualized by one Synchronization Line Plot, thus reducing
the number of required plots and increasing the number of curves per
plot at the same time. Grouping softens the conditions in our assump-
tions 0.1 to 0.3 from considering the same inputs to similar inputs. Thus,
configurations in the same group should be highly similar in terms of
their distance in the feature space. Each group might be represented by a
representative configuration, similar to the centroid in k-means clustering.
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Figure 18: Grouping of configurations: a scatter plot depicts the configuration
space (left). A grid overlay indicates the grouping strategy: configu-
rations in the same cell belong to one group (right).
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Let’s stay with the example of two independent features X; (t) and X3 (t).
The configurations {x1,x,} within the feature space can be depicted as
points in a scatter plot (Figure 18, left). The most straightforward solu-
tion to grouping these configurations is a binning strategy that is applied
to both features and divides the two-dimensional feature space into a
number of cells. This can be imagined as an axis-aligned grid that is laid
on top of the scatter plot (Figure 18, right). The resolution in both dimen-
sions can be arbitrarily chosen to meet the analyst’s needs. Consequences
of choosing different resolutions are discussed in Section 5.4.

As a result of binning, a cell is defined by two intervals: Iy for the X; (t)
and I, for the X;(t) dimension. Each configuration can then be assigned
to a cell, such that its values x; for X;(t) and x;, for X,(t) are contained
in the cell’s respective intervals I; and I,. Some cells might stay empty
during the assignment of configurations. They originate from empty re-
gions in the configuration space, where the corresponding configurations
do not exist in the data set. This might be due to physical constraints,
e.g. high road curvature and high velocity are unlikely to occur as a
configuration. The result of grouping is a grid representing the feature
space, where configurations in the same cell belong to one group. Each
non-empty group of configurations can be seen as a set of similar inputs
— approximated by a representative configuration —, for which the target
variance is visualized using a Synchronization Line Plot (Figure 18, right).
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5.3.2 Qverview Visualization

In Section 5.2.4, we have introduced the Synchronization Line Plot as a
visualization depicting the target variance emerging from one specific
configuration. Section 5.3.1 addresses an overview of the configuration
space that consists of cells, each of which holds a number of configura-
tions. To achieve an overview visualization depicting the target variance
across the entire feature space, we put these two techniques together.

We perform the synchronization for each configuration group using the
time points that are associated with its members. The resulting time se-
ries sections depict the temporal development of the target feature based
on the group’s representative configuration. We then visualize the curves
belonging to each group using a Synchronization Line Plot. The individ-
ual Synchronization Line Plots representing each group of configurations
are combined to an overview visualization. To ease the interpretation of
the overview visualization, the spatial relation between a Synchroniza-
tion Line Plot and the depicted portion of the feature space should be
obvious from the arrangement of plots. It is therefore intuitive to again
apply the grid layout, which was already used for grouping (Figure 19).
Consequently, we name the resulting visualization Synchronization Grid.

Xy

Xz

Figure 19: Synchronization Grid: visualizing the target variance across the en-
tire feature space X1 (t) x Xz(t). Synchronization Line Plots depict
the variance for groups of similar configurations (cells). An enlarged
focus plot allows for detailed investigation and interaction (top right).
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The resolution of the grid and therefore the maximum space for one cell
determine the size of the Synchronization Line Plots. When the screen
space is allocated to a large number of plots, it is important to fully use
the available space of an individual plot. As we do not aim at a quantifi-
cation of the target variance, but simply rely on a visual assessment, it is
sufficient to observe the spread of the curves relative to each other. To re-
duce visual clutter to a minimum, we omit axes and labels and use Small
Multiples as a visualization technique to display the synchronized curves.

Arranging the Synchronization Line Plots side by side allows for a direct
comparison of the target variances for different representative configura-
tions. Being able to view the target variance across the entire feature space
at once, the analyst can efficiently evaluate the explanatory power of the
feature subset. Critical cells exhibiting a large target variance, which is
not desired, can be identified with little effort. The identification of crit-
ical parts is not restricted to individual cells: analysts are also enabled
to observe where large target variance spreads across larger parts of the
feature space. This leads back to the inter-dependencies between feature
subset and item subset, whose investigation is not part of this thesis.

5.3.3 Focus Plot

In case the Synchronization Grid reveals critical cells, the next step to-
wards feature subset refinement is to carefully examine the correspond-
ing target variance in more detail. To steer the analysis towards regions of
interest, we realize a Focus + Context approach: hovering one of the Syn-
chronization Line Plots moves it to focus, while keeping the remaining
plots, which depict the variance for the entire feature space, as context.
Moving a plot to focus means to enlarge it for a detailed analysis of the
depicted curves. Axes and labels are added to provide an orientation for
the assessment of interval length (time axis) and actual value range of
the plotted target feature (y-axis). Standard interaction techniques like
zooming and panning enable the analyst to take a closer look at subsets
and subsections of curves, which is especially useful when examining a
large number of curves. Such an exploration might result in a subset of
curves that the analyst intends to further investigate. Taking advantage of
the concept of Coordinated Multiple Views, the analyst can brush these
curves in the Focus Plot to analyze their equivalents in other views. Brush-
ing and linking within the Synchronization Grid as well as the linking to
other visualizations are addressed in detail in Section 5.5.
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Enlarging a plot at its position would occlude the neighboring plots and
therefore a part of the context visualization. We need to adjust the place-
ment of the Focus Plot, such that it does not impair the perception of the
context. In an ideal case, the focus plot can be integrated into the Synchro-
nization Grid to allow a simultaneous analysis of focus and context infor-
mation that does not require interaction like switching windows. Depend-
ing on the distribution of configurations within the feature space, empty
cells might cover a larger contiguous area. Those cells occupy space in
the Synchronization Grid, although they do not convey any information.
We can use this unexploited space to display the enlarged Focus Plot. For
this purpose, we solve a simplified variant of the maximum-area empty
rectangle problem [59] to identify the largest, axis-aligned, horizontally
oriented rectangular block of empty cells in the grid (Figure 19, top right).

5.4 DESIGN DECISIONS

Along the way of building up the Synchronization Grid, several design
decisions have to be made. Those with the largest impact on the visual-
ization and interpretation of the data are discussed here: (1) the length of
the synchronization interval, (2) the resolution of the grid that is used for
grouping, and (3) those configurations of each cell that are actually taken
for synchronization. We will see in the following that all of these aspects
are actually inter-dependent.

5.4.1 Length of Synchronization Interval

The synchronization interval is the time interval, in which the target
behaviors are compared to determine the variance. It contains the syn-
chronization time point, either at its left border or center, depending on
whether the behaviors are investigated from the synchronization point on-
wards or both before and after this point. The question is: which length
is reasonable for a synchronization interval?

CONSTANT OR ADAPTIVE INTERVAL LENGTH?

Before thinking about the interval length, we need to decide whether
it should be constant or adaptive. A constant length means that the same
number of time points preceding and following the synchronization point
is considered. As opposed to that, one could take only time points around
the synchronization point, for which the values of the initial features
change within a certain tolerance. We refer to this as adaptive length.
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With a constant length, the synchronization interval might cover changes
in the initial features. In this case, the naive assumption of unaffected in-
dependent features does not hold. As a consequence, we cannot not know
whether target variance arises due to an additional influence measure or
simply as an expected result of changes in the initial features (see Table
1, Q1). The advantage of covering such changes lies in the possibility to
investigate the derivatives of initial features as potential predictors. When
deciding for an adaptive interval length, the opposite holds: it has no in-
terference with changing initial features, but does not include derivatives.

For the decision for a constant or adaptive interval, we also need to con-
sider another fundamental issue: the comparability of time series sections.
It can be approached at two levels: (1) within the same Synchronization
Line Plot and (2) within the Synchronization Grid. The subject of the first
is whether all curves referring to the same group of configurations are
depicted over the same range on the time axis. The second refers to how
comparability could be preserved across multiple Synchronization Line
Plots by sharing interval lengths, e.g. along a column of the grid.

The assessment of the target variance entirely builds upon the perceived
similarity of curves. To be able to define a notion of similarity, it is highly
important that those curves are comparable. Where the lengths of curves
are varying, i.e. for non-constant interval lengths, some curve sections do
not have a counterpart for comparison. Thus, information necessary for
similarity assessment are missing. For this reason, we decide for a constant
interval length within one Synchronization Line Plot, such that all curves
are depicted across the same time period. Regarding the Synchroniza-
tion Grid, comparability between cells is difficult to achieve, because the
curves are depicted in varying contexts, i.e. regarding different represen-
tative configurations. Independent of the interval length being constant or
not, curves from different cells are thus not comparable. Nevertheless, for
the purpose of consistency, we choose the same constant interval length
for the entire Synchronization Grid.

CHOOSING THE ACTUAL CONSTANT INTERVAL LENGTH

The next step is to specify the actual length for the synchronization inter-
val. If the interval is too small, patterns in the target’s temporal behavior
do not have time to evolve. In an extreme case, the interval does not con-
tain enough time points to reliably consider the temporal development
of values for analysis, which leaves us with an approximation of the re-
lationship between feature values at the same time point (step 3). On the
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Figure 20: Undesired replication of curve sections as a result of the interval
length 1 being larger than the distance d between synchronization
points. Such redundancy does not convey valuable information.

other hand, if we choose the length too large, the informative value of
existing target variance decreases, because we likely include a time point,
at which the synchronized curves behave different. However, such dissim-
ilarity is not meaningful. A large interval might also disprove the naive
assumption of an unvarying configuration within the entire interval, as
the configuration has more time to change.

The choice of a suitable interval length 1 also depends on the distance d of
the synchronization time points. If 1 is significantly larger than d, the tail
end of the interval overlaps the beginning of the following synchroniza-
tion point’s interval (Figure 20, left). In the Synchronization Line Plot, the
curve section contained in the overlap appears as a replication, because it
is covered by both intervals (Figure 20, right). Due to their redundancy,
a comparison of the replicated curves corresponding to the two synchro-
nization points does not provide valuable information.

5.4.2 Resolution of Aggregation Grid

Before we can perform the actual synchronization, we need to define the
grid’s resolution. An individual cell represents a configuration with a cer-
tain tolerance. An imaginary representation of this representative config-
uration could be the center of the cell. The grid resolution has an impact
on different quantities: (1) the size of the Synchronization Line Plots, (2)
the scope of a configuration represented by a cell, and (3) the level of de-
tail that is conveyed by the visualization.
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The vagueness of the representative configuration associated with a cell
increases with decreasing resolution: the larger a cell, the larger the spread
of the configurations describing the representative configuration. At the
same time, larger cells tend to contain a larger number of configurations,
resulting in more curves being depicted in the Synchronization Line Plot.
This increases the statistical significance of derived conclusions. However,
the number of synchronization points cannot be increased arbitrarily to
achieve statistical significance due to issues like the replication problem.

PARTITIONING STRATEGY

For subdividing the feature space into a number of cells, we make use
of a domain-uniform partitioning: space represents uniform partitions of
the domains between the respective minimum and maximum values for
both features. For further information, Miihlbacher and Piringer provide
a discussion of different combinations of domain-uniform and frequency-
uniform layouts [57]. The maximal grid resolution is determined by the
screen space and the minimum size of a Synchronization Line Plot. Al-
though a plot’s content is reduced to the most relevant elements, a min-
imum size is needed to ensure that analysts can effectively perceive the
depicted curves. We empirically determined this minimum size to be 8o
pixels for both width and height. Consequently, the grid is not arbitrar-
ily scalable with respect to the number of cells. However, the missing
scalability is acceptable at this point, because the Synchronization Grid
itself is only thought of as an overview visualization, whose purpose is to
present adequate portions of the feature space as a starting point for drill-
down. To ease the interpretation of the overview, we start with the same
resolution for both directions, such that the initial binning of the feature
space is not be skewed. As a grid resolution that balances all of the three
aspects named above (plot size, configuration scope, level of detail), we
determined a subdivision into 10 cells in each direction. As the analysis
proceeds, this resolution can be adjusted to the analysts needs.

5.4.3 Selecting Configurations for Synchronization

MANUAL SELECTION LEADING TO SYNCHRONIZATION GRID

The original idea that led the way to the Synchronization Grid was to
let the analyst manually choose interesting configurations towards which
the target time series is synchronized. When depicting two-dimensional
configurations in a scatter plot, manually choosing a configuration simply
means to select a scatter plot item. The remaining items representing the
entire configuration space can be viewed as a context during selection.
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Figure 21: Configuration trajectory: configurations being assigned to cells (left)
one by one in temporal order leave a trace through the feature space
(center). This assignment is mapped to the target time series (right).
Configurations within the same cell are often successive in time.

We will not again discuss the significance problems arising from each
configuration being likely to appear only once in the data set (see Section
5.3). Manually selecting and investigating individual configurations one
by one does not support an overview of the synchronization results for
different configurations.

To enable the analyst to explore the synchronization results for the entire
feature space, a lens-based approach is conceivable. A lens could be im-
plemented as a rectangular area that is moved across the scatter plot and
displays the Synchronization Line Plot for the currently covered configu-
ration. However, using such a lens, users can only investigate one plot at
a time, while viewing the remaining configuration space in the form of
scatter plot items as context. This prevents the analyst from comparing
the synchronization results for different configurations and gaining an
overview of the configuration space. These problems led us to the idea of
statically arranging a number of Synchronization Line Plots next to each
other, such that they cover the entire feature space.

AUTOMATED FILTERING OF SYNCHRONIZATION POINTS

From the thoughts described above, we developed the Synchronization
Grid consisting of Synchronization Line Plots, each of which depicts the
target behaviors that resulted from synchronization towards a group of
similar configurations. However, the configuration groups as resulted
from grouping cannot be used for synchronization right away. During
grouping, the configurations are assigned to the cells one by one in the
temporal order of their occurrence. In doing so, they leave an imaginary
trace in the feature space (Figure 21, center), which we call configuration
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Figure 22: A more complex configuration trajectory of 114 points (left). It enters
the middle cell four times, resulting in four trajectory sections (right).

trajectory. As each configuration — and therefore its assigned cell — is as-
sociated with a time point, we can map the cell assignment to the target
time series (Figure 21, right). As large sections of the time series are actu-
ally of the same color, many of the configurations assigned to the same
cell are actually directly successive in time. This is due to the state of a
stable system not changing arbitrarily, but rather smoothly, over time. If
we perform a synchronization using all these successive time points in a
cell, this will result in a large number of replicated curves. A comparison
then does not provide any information concerning the relation between
the target and the independent features.

To avoid such replications, we need to select a subset of the configura-
tions in each cell prior to synchronization. We will discuss different ap-
proaches to this selection. Most of them are based on the configuration
trajectory that builds up in the feature space during grouping (Figure 22,
left). When moving forward in time, this trajectory might cross an individ-
ual cell multiple times, resulting in a number of trajectory sections (Figure
22, right). We will describe and discuss the selection of synchronization
points by an example of one single cell. Basically, we search for a subset of
synchronization points that (1) represent the cell’s representative configu-
ration well, (2) produce a reasonable number of synchronized curves, and
(3) are not too close to each other with respect to time. Synchronization
points can be chosen for each cell in three different ways:
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re 23: Filtering of configurations: different approaches applied to the same
configuration trajectory. Orange points mark selected configurations,
while those depicted in blue are not considered for synchronization.

Regular Sampling: Consider the time points assigned to the cell in
their temporal order. Starting at the first time point, sample the
points with a sampling interval of size d (Figure 23a).

. Beginnings of Trajectory Sections: Consider the trajectory sections that

cross a cell. From each section, take the first time point (Figure 23b).

. Closest to Reference Point: Again, consider the trajectory sections. Ad-

ditionally, let’s define a point within the cell, e.g. its center ¢ =
(x1,%x2), as the representative configuration, which serves as a refer-
ence point. From each section crossing the cell, now take the time
point that is closest (in terms of Euclidean distance in the feature
space) to that reference point (Figure 23c).

Table 4 shows a comparison of their benefits and drawbacks. The main
advantage of a regular sampling is that multiple synchronization points
are taken per trajectory section, such that long sections are exploited. This
results in a better coverage of the feature subspace within the cell, which
gives more emphasis to conclusions drawn from the synchronization re-
sults. However, an undesired replication of patterns is more likely than
for the other two approaches, where only one synchronization point is
taken per trajectory section. Apart from replication being less likely, tak-
ing the starting points of the trajectory sections does not provide any
further advantage, except for the little effort needed for implementation.

(c) Closest to Reference Point
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1: Regular Sampling

2: Beginnings of
Trajectory Sections

3: Closest to
Reference Point

Evenly distributed syn-
chronization points
Long trajectory sections
are exploited

Replication is less likely

Straight-forward to im-
plement

Replication is less likely

Actual  configurations
closest to intended
configuration

Investigated configura-
tion specified flexibly by
reference point

Patterns might be repli-
cated — no valuable in-
formation

Sample interval needs to
be chosen

Long sections are only
represented by one syn-
chronization point

Synchronization points
are distributed irregu-
larly

Long sections are only
represented by one syn-
chronization point

Synchronization points
are distributed irregu-
larly

Reference point has to
be chosen

Table 4: Benefits and drawbacks for different approaches to the filtering of syn-
chronization points. Approach 3 provides the best trade-off for the gen-
eration and interpretation of Synchronization Line Plots.

The third approach offers strong additional benefits. Remember that the
configurations contained in a cell are viewed as variants of the same rep-
resentative configuration, which we suggest to imagine as the cell’s center.
However, by choosing the reference point, the investigated configuration
can be flexibly adjusted. The configurations selected from each trajectory
section are then the most similar to the representative configuration, thus
providing an accurate approximation. The approach might actually be
combined with regular sampling to adequately make use of very long
trajectory sections. In this case, also points with only locally minimal dis-
tances to the reference point are selected from a section. At the same time,
the drawbacks of this approach weigh relatively little and might be solv-
able with little effort. For example, the choice of an initial reference point
can be intuitively solved by selecting the cell’s center. As a conclusion, we
decide for the Closest to Reference Point approach, because it offers benefits
that cannot be achieved otherwise.



5.5 LINKING TO OTHER VIEWS

5.4.4 Summary

Several design decisions had to be made on the way to building our
overview visualization. As a result of our examination, we have proposed
(1) to use a constant interval length, (2) to apply an initial grid resolution
of ten cells in each direction, and (3) to choose the synchronization points
according to their distance to a reference point within the cell.

All three visualization parameters need to be specified: the grid resolu-
tion, the interval length, and the reference point. Guiding the analyst by
providing reasonable initial choices allows her to concentrate on the ac-
tual analysis and achieve first results, rather than figuring out suitable
parameter values. Currently, naive choices are made by the system, but
allowing the user to adjust these values in the future might offer an ad-
ditional benefit. The main issue with constant interval length and the
reference point approach is that a target variance within a Synchroniza-
tion Line Plot’s can arise from both varying initial features as well as an
additional influence measure. Consequently, the analyst has to make an
additional effort to distinguish both cases.

At the same time, the constant synchronization interval length does not
exclude the possibility to consider changes of the independent features,
i.e. first-order derivatives, as potential predictors in the future. Filtering
the synchronization points with respect to the reference point ensures
that replicated curve sections are less likely to arise, because each tra-
jectory section is only represented by one synchronization point, which
favors sufficiently large distances between synchronization points. Most
important for an analysis of the target variance is the comparability of
curves within a Synchronization Line Plot, which is ensured by the con-
stant interval length, because all curves in a plot are of equal length.

5.5 LINKING TO OTHER VIEWS

Different perspectives on the data have to be considered to reveal hidden
relationships and patterns. Being able to connect multiple perspectives
might offer better insights than considering the visualizations indepen-
dently [40]. We achieve this by linking the Synchronization Grid to other
available views in the system. This concept also serves the overview and
detail strategy [71], which has proven useful in various applications.
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First of all, the components of the Synchronization grid are connected
with one another. User interaction in the Focus Plot leads to an update of
the Small Multiples representing the entire feature space as context. This
enables the user to assess how patterns propagate through the feature
space. The concrete realization is described in Section 5.5.1. As a second
step, the Synchronization Grid as a whole is linked to standard visualiza-
tion techniques like a Time Series Plot, a Dot Plot, and a Histogram. This
serves multiple purposes: getting an idea where synchronized curves are
located within the global time range and which time points were actually
used for synchronization (Section 5.5.2), identifying additional features
that influence the target (Section 5.5.3), or investigating details for indi-
vidual data items where needed (Section 5.5.4).

5.5.1 Brushing in Synchronization Grid

In general, brushing is nothing more than a selection of data items, which
a user performs by interacting with the available visual representations of
data. In most cases, such selections are used for drill-down. In this sense,
the analysis is steered towards regions of interest, which are defined by
analysts based on their visual impressions. Steering works particularly
well when composite brushing is supported, where brushes can be com-
bined using Boolean operations, similar to a database query. As brushing
is a widespread technique in Information Visualization, various kinds of
brushes have been proposed in literature. In the following, we will dis-
cuss some brushing mechanisms concerning their suitability for curves
as the underlying visual representation.

Brushing primarily serves the purpose of analyzing the target variance in
individual cells of the Synchronization Grid. If a cell exhibiting a certain
variance is identified, the analyst wants to further investigate the varying
curves in the corresponding Synchronization Line Plot. Target variance
can arise in different forms, from individual curves strongly deviating
from the remaining set over different groups of curves diverging to curves
being distributed all over the co-domain. Using her visual sense, the an-
alyst can determine a number of curves that incorporate the majority of
the target variance. This subset of curves is brushed as the region of inter-
est for further analysis, which often involves the search for an additional
feature relating to the incorporated variance.



5.5 LINKING TO OTHER VIEWS

Atarget Atarget Atarget

>
time

(a) (b) (c)

»

—>
time

Figure 24: Selecting the blue curves in a dense area (a) is not possible with a
rectangular brush. It either selects too few or too many curves (b).
The line brush is superior in this case (c).

BRUSHING MECHANISMS

Brushing is carried out in the Focus Plot of the Synchronization Grid. The
most common kinds of brushes are line brush, rectangular brush, angular
brush, and the query-by-example brush. Angular brushes [29] and brush-
ing by a specified target function [33] are not meaningful in our case. Both
are based on assumptions about the slope or even shape of the elements
to be brushed. In contrast, we need an efficient way of specifying a subset
of curves based on the analyst’s visual perception of their developments.

The most common technique for selecting an area in various applications
is the selection rectangle. It can be found as a tool in most software pro-
grams, be it a text editor, an image-editing program, or high-level admin-
istration software. As it is often used in daily practice, analysts are highly
familiar with this technique. Hochheiser and Shneiderman propose time
boxes, rectangular query regions for specifying queries on time series plots
[32]. They act as filters, i.e. time series that exhibit values in the time box’
y-range during the time period of interest are selected. Time boxes can
also be combined using the Boolean AND operator to formulate more
specific queries. Rectangular selection is the brushing mode of our choice
when it comes to selecting a subset of curves from a Synchronization
Plot. Nevertheless, we realized a limitation of the rectangular brush, in
particular in areas where curves are plotted densely: the restriction to
an axis-aligned orientation and the rectangle’s bounding-box-like charac-
teristics make it highly cumbersome to select exactly the desired set of
curves in some situations (Figure 24a and 24b).
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This limitation could be overcome by a line brush [45]. Due to its arbitrary
orientation and smaller extent, it is more flexible for brushing compared
to a selection rectangle. Consequently, it allows to precisely select the de-
sired set of curves, even in dense areas, where a selection rectangle might
fail (Figure 24c). A line brush can also simplify the perception of curve
progression, where a distinction of the courses of individual curves is
challenging due to visual clutter. Crossing a curve by a line brush results
in the entire curve being highlighted and consequently catching the an-
alyst’s eye. Still, the line brush also has a limitation: due to its nature,
curves can only be selected as a whole. Compared to the selection rectan-
gle, there is no possibility to select individual curve sections, which might
be helpful for some tasks.

As both brushing mechanisms complement each other in a beneficial way,
we implement both modes in our system. During analysis, users can flex-
ibly choose the mode that is most suitable for their analysis task.

INTERPRETATION OF BRUSHES

The atomic data unit, on which all views and interactions rely at the most
basic level, are time points. A time point corresponds to a data table row,
which contains all values measured at that time point. To appropriately
reflect a brush in other visualizations, the drawn line or rectangle needs
to be transformed into the atomic data unit. However, there is no bijective
association between a graphical element, e.g. a curve, and a time point;
unlike a scatter plot, where a circle corresponds to exactly one data point.

Consequently, specifying the transformation of a brush to the atomic data
unit can be viewed as determining a set of time points that most mean-
ingfully represent the selected (sections of) curves. Remember that the
overall purpose of brushing and linking is to relate the brushed curves
to patterns and distributions in other views. Independent of the chosen
brushing mode, we come up with three interpretations of a brush:

1. Synchronization Point: a brushed curve is represented by the synchro-
nization point that is associated with it.

This approach is supported by both brush modes. A curve might
be made up of hundreds of time points. Selecting one of them to
represent the entire curve might not be meaningful, when aiming at
an exploration of patterns in other views. In this sense, the brushed
curve is not adequately represented with this approach.
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2. Entire Curve: a brushed curve is represented by all time points, of
which it is made up.

This approach can also be used with both brush modes and proba-
bly meets the analyst’s expectations concerning the representation
of a brush in a most intuitive way. The number of selected time
points that result from brushing a set of curves might become very
large. In this case, it is to be evaluated if corresponding clusters and
patterns can be revealed in other views or if they are masked by the
sheer number of highlighted data items.

3. Curve Section: a brushed curve is represented by those time points
that are actually contained in the selection rectangle.

Obviously, this approach only works for rectangular brushes. It al-
lows the analyst to focus only on that part of the curve that actually
incorporates the variance and thus is most interesting to the ana-
lyst. No additional, potentially irrelevant time points, which might
introduce visual clutter, are considered. Consequently, all further
analysis is tailored to the most promising time series parts.

To summarize, the Synchronization Point approach is not suitable for our
purpose. The Curve Section approach seems most promising to us, due to
its possibility of focusing on exactly those parts of the curves that incorpo-
rate the target variance. This interpretation can only be realized together
with a rectangular brush. As the line brush provides more flexibility and
enhances the perception of curve progression, we offer both brush modes
in our system. Depending on the brush mode, the time points marked as
selected originate from the entire brushed curves (Figure 25a) or from the
curve sections contained in the selection rectangle (Figure 25b).

REFLECTING A BRUSH IN THE SYNCHRONIZATION GRID CELLS
Brushing a region of interest in the Focus Plot defines a number of time
points, on which further analysis is focused. For each brushed curve sec-
tion, the corresponding time points are stored successively in the data
set. As such, the sequence can be viewed in the global target time series
for reference (Figure 26, bottom). Before updating the remaining views in
the system accordingly, the brush is handled locally, i.e. within the Syn-
chronization Grid. If a brushed sequence — or part of it — also appears as
a curve section in the remaining cells of the Synchronization Grid, this
curve section is highlighted in the respective cell (Figure 26, top).
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Figure 25: Depending on the mode, different sets of time points are considered
as selected. The line brush selects the entire curve (a). In contrast, the
rectangular brush selects the curve sections within the rectangle (b).
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Figure 26: The selected curve sections in the Focus Plot correspond to sections
of the global time series (bottom). The brush is handled locally within
the Synchronization Grid (top) before updating the remaining views.
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In this way, a linking between the details in the Focus Plot and the cells
providing an overview of the feature space is realized. It helps to deter-
mine whether the target variance in one cell, which is currently investi-
gated in the Focus Plot, is associated with the variance in other regions
of the feature space. When the cells that depict the same brushed curve
sections reveal patterns throughout the feature space, this might provide
insights with regard to changing initial features. To consider a row (col-
umn) of the Synchronization Grid means to observe changes in X;(t)
(X2(t)), while the other feature is fixed to the respective interval deter-
mined by the row (column). With this in mind, the internal brushing and
linking approach could help analysts to get an impression of whether
feature derivations might actually turn out relevant for prediction.

5.5.2  Temporal Context of Synchronization Results

The curves displayed in each Synchronization Line Plot are actually sec-
tions of one continuous target time series. This parent time series repre-
sents the development of target values over the entire time interval that
is covered by the underlying data. Synchronization Line Plots only depict
time points in relation to the synchronization points. Thus, the temporal
context is not given. The translation of any (relative) point in the Synchro-
nization Line Plot into a point on the parent time series is challenging.
Consequently, it requires a large cognitive effort for the analyst to build
up a mental image of how all curves of a Synchronization Line Plot are
actually part of the same time series. This is, however, important to relate
regions of interests and findings to the overall feature and time space.

To support analysts in perceiving this relation, we provide a common
Time Series Plot to display the parent time series, which is linked to the
Focus Plot of the Synchronization Grid. The linking is realized with re-
spect to (1) the synchronization points and (2) the actual curve sections.
For the first part, so-called tracers are placed on the parent time series
and indicate the positions of the synchronization points as taken from
the Focus Plot (Figure 27, circles). However, to fully establish a link be-
tween a Synchronization Line Plot and the Time Series Plot, the analyst
must also be able to make a connection between curve sections from both
plots. Brushing parts of the synchronized curves in the Focus Plot results
in the corresponding curve sections being highlighted in the Time Series
Plot (Figure 27, lens). This supports analysts in efficiently locating curve
sections from the Focus Plot within the parent time series.
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Figure 27: Locating a curve that is brushed in the Focus Plot (left) within the
global target time series that covers the entire time range (right).
Tracers indicate the positions of synchronization points (circles).

This connection between synchronized curve sections and the parent time
series contributes to an analysis in different ways. Using the Time Series
Plot, analysts can get a feeling for patterns in the target behavior that
re-occur throughout the global time range. In particular, they can assess
how the synchronized curves from a Synchronization Line Plot get in
line with such patterns. Secondly, the distribution of a plot’s synchro-
nization points across the global time range can be assessed. Analysts
can see whether they are equidistant, located close to each other, and
whether they cover the entire time range or only certain parts of it. Us-
ing brushing, the analyst can also compare the synchronization interval
length to the overall time range and to the distance of synchronization
points. Being able to evaluate those influence factors highly increases the
interpretability of a Synchronization Line Plot, because they raise aware-
ness for characteristics that might otherwise be misinterpreted. Further-
more, the analyst is enabled to notice when the interval length or the
synchronization points were chosen badly by the system.

Finally, the Time Series Plot alone also supports an investigation of mul-
tiple features at the same time. They are plotted as multiple time series
with a common baseline. When used together with highlighting the cur-
rent synchronization interval via brushing, this functionality is highly use-
ful for evaluating the naive assumption that the configuration does not
change during the synchronization interval. By simultaneously plotting
the involved features, the development of their values within the syn-
chronization interval can be observed, allowing for an evaluation of the
degree, to which the assumption holds.
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5.5.3 Searching for Additional Features

Our core assumption is that a valid model, i.e. which is based on a valid
set of predictors, outputs the same prediction when being given the same
input. This characteristic is associated with a low variance of the curves
in a Synchronization Line Plot. If the Synchronization Grid contains cells,
which contradict this characteristic, this indicates that the underlying fea-
ture subset might not be sufficient for explanation of the target feature.

When such a contradicting cell is identified, the analyst wants to find
the cause of the varying curves in the corresponding Synchronization
Line Plot. One such cause might be another feature being missing in the
current model, but which influences the values of the target feature in
addition to the considered predictors. In Section 5.5.1, we already intro-
duced the region of interest in a Synchronization Line Plot as the subset
of curves that represent the majority of the target variance. Investigating
how this region relates to other features can provide valuable hints about
the suitability of another independent feature as potential predictor.

RELATION BETWEEN VARIANCE AND REMAINING FEATURES

Let us investigate the relation between the region of interest and an inde-
pendent feature X3, which might be considered as an additional predictor.
We refer to the value range of X3 as its domain. We compare the region of
interest to a context, which is defined as the entirety of curves within the
plot. In the following, a data item refers to a time point. We observe two
distributions with regard to X3: (1) the distribution resulting from data
items representing the region of interest and (2) the overall distribution,
i.e. the distribution corresponding to all data items contained in the plot.

Let us assume the selected cell contains 200 data items in total, of which
half of them are brushed as the region of interest. Under the assumption of
independence between region of interest and independent feature X3, the
distribution of the brushed items should follow the overall distribution.
This is given when the number of brushed items corresponds to the ex-
pected number of items for each part of the discretized domain, e.g. bin
of a histogram. In general, the expected number E(i) for a bin i can be
determined as E(1) = w x #; with #; as the total number of items in
the bin and #p,ushea as the number of brushed items and #4141 as the
total number of items. In our simple case, the expected number for each
part is exactly half of the total number of items falling in this bin.
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Figure 28: Comparing a region of interest to all curves to assess the relation
between predictor candidate X3 and target variance. Independence is
given when both distributions are similar (a). A relation exists when
the brush distribution deviates from the context distribution (b).

If the distribution associated with the region of interest follows that of the
context (Figure 28a), the hypothesis of independence is confirmed. No
particular relation between the region of interest representing the target
variance and the independent feature X3 exists. In this case, the indepen-
dent feature is not assumed to provide valuable information about the
target feature and thus is excluded from the set of predictor candidates.

However, if the distribution of brushed items highly differs from the ex-
pected distribution (Figure 28b), we reject the hypothesis of independence
between target variance and feature X3. If the distribution corresponding
to the region of interest even corresponds to a small, coherent part of the
domain of X3, this is another strong hint for the target variance being
dependent on X3. Including the independent feature X3 into the model
might lead to a better discrimination of data items and consequently to a
desired less target variance in the newly generated feature space.

HISTOGRAM

To support analysts in investigating how a region of interest manifests in
different independent features, we link the Focus Plot to a histogram. As
we already saw above, it offers a highly intuitive way of assessing the dis-
tribution of values over a feature domain. How can a standard histogram
be used to view how the target variance manifests in other features? We
answer this question with respect to one independent feature to be inves-
tigated. However, an exploratory investigation of multiple features can be
performed by iteratively checking individual features.
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Figure 29: Checking the hypothesis of independence between target variance and
two independent features. Histograms (left) are used to compare the
brushed curves (right) to all curves as context w.r.t. the distribution
of values. The independence hypothesis can be confirmed for the upper
feature, while it should be rejected for the lower one.

Brushing a subset of curves in a Synchronization Line Plot results in the
corresponding time points being marked as selected. Each of these se-
lected time points is associated with a certain value for the investigated
feature. Based on this value distribution and the binning of the context
histogram, we compute frequencies. These frequencies are then visual-
ized within the context histogram by highlighting a segment of each bar.
The segments’ lengths are proportional to the number of brushed time
points that fall into the corresponding bins. Large time-oriented data sets
usually contain ten thousands of time points. However, the number of
brushed time points per bin is small compared to the total number of
time points contained in that bin. Applying a linear scale to the lengths
of segments results in those representing the current brush being hardly
visible, because they have a width of only a few pixels. For this reason,
we implement a logarithmic scale, which enhances the perception of the
small brush segments.
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Remember that the brushed curves represent the majority of target vari-
ance in the Synchronization Line Plot. By observing their value distribu-
tion, the analyst can verify the independence hypothesis by determining
(1) which parts of the investigated feature’s domain are actually related to
the variance and (2) to what extent the brush distribution differs from the
context distribution. Figure 29 depicts a brush (right) with its equivalents
in the histograms of two different features (left). The differences in the
brush manifestations for both features are clearly visible. For the upper
feature, no clear mapping between the values corresponding to the brush
(dark gray) and parts of the domain can be established. Furthermore, the
distribution of the brush in large parts follows the distribution of the con-
text (light gray). This conveys the impression that the feature does not
contain useful information about the target. In contrast to that, for the
lower feature, the brushed data items only exhibit values in a small range.
The variance can be related to this particular part of the feature domain.
Also, the distribution of brushed items clearly differs from the overall dis-
tribution. This leads to the conclusion that the variance can be reduced
by including the feature in the feature subset.

5.5.4 Details on Demand

Visual representations originate from a mapping of the underlying data.
Thus, the analyst perceives only a transformation, which depends on the
chosen mapping approach and does not present the data in their original
form. It therefore denies access to the raw data. To round off the analy-
sis and to verify findings, the analyst might request details on the exact
values that a feature takes on in a specific scenario. For example, after
having identified an influencing feature that relates to the variance in
a Synchronization Line Plot, one might want to check the feature’s exact
values for the subset of curves representing this variance. A mechanism is
needed, which enables analysts to derive raw data as intermediate results.

The Time Series Plot provides details on demand for displayed features.
As a result of its linking to the Focus Plot of the Synchronization Grid, it
might contain markers on the displayed time series, which indicate the
Focus Plot’s synchronization points. As it might be difficult for analysts
to read the exact time point associated with a marker from the x-axis, a
tooltip is provided, which displays a marker’s exact time value when it
is hovered. However, the user interaction is limited to requesting exact
values for synchronization time points and depicted features.
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Figure 30: Data Table View: providing original records for selected rows. Details
are requested via interface or by a brush in another view (dark gray).

More information can be read from the Data Table View, which displays
full data table records for selected time points (Figure 30). Time points can
be selected either (1) by using the interface, where the analyst can specify
a range of rows to be displayed, or (2) by brushing a set of time points in
another view (e.g. curve sections in the Synchronization Grid). Requested
items are appended to the list of displayed records. If a requested record
is already contained, it is highlighted to draw the analyst’s attention to it.
If needed for a better overview, records can be sorted, resulting in succes-
sive time points being displayed below each other. By being able to record
data items that they consider worth analyzing, analysts are supported in
keeping track of regions of interest throughout the analysis.

56 IMPLEMENTATION AND SYSTEM INTEGRATION

The proposed Interactive Visual Analysis approach has been implemented
as part of a Coordinated Multiple Views system called TableVis. It pro-
vides both automated data analysis methods as well as interactive visual-
izations to support analysis tasks in the context of feature selection. The
system is made up of a number of modules, each of which is responsible
for one specific task related to handling or visualizing data. The visualiza-
tion modules include standard multivariate techniques like histogram or
scatter plot, but also advanced views that are specifically tailored to the
demands of feature selection. All modules are gathered together in the so-
called context, which takes charge of scheduling and passing on relevant
information between them. Information between modules are communi-
cated in the form of attributes, which store a set of data values and are
mostly associated with features of the underlying data. An attribute can
be taken as input and modified by a module. All other modules, which
take the same attribute as input, are then notified about the changes and
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update accordingly. The data, on which the modules operate, are made
available in the form of samples. If a module only processes a subset of
the available data records, a sample is generated by randomly sampling
the underlying data. This might lead to problems when linking two views,
because it might not be guaranteed that an item, which is brushed in one
view, also exists in another view. For this reason, we introduce a global
sample, such that all views operate on the same data base.

The system was implemented using C++ together with the application
framework Qt' for developing the graphical user interface. The modules
are initially positioned inside a main window, but can be re-arranged,
resized, docked, and un-docked at any time. The user interface is thus
entirely customizable and can be flexibly adjusted to the user’s needs.
Graphical items are rendered using Qt’s built-in Graphics View Frame-
work?” or its QPainter? API. Multi-threading accelerates the processing of
expensive operations and contributes to the application’s responsiveness.

We use the existing software architecture as described above as a start-
ing point for the development of the techniques presented in this thesis.
With the exception of the histogram and scatter plot, the visualizations de-
scribed in the previous sections were implemented as new modules. The
available standard views for multivariate analysis were extended by the
Time Series Plot and the Data Table View. The histogram was adjusted to
our needs. The core visualization, the Synchronization Grid, consists of
several classes that handle the different components. The line plots that
are used in the Time Series Plot and in the Synchronization Grid were im-
plemented using a free Qt C++ plotting widget called QCustomPlot*. This
library was chosen, because it offers a wide range of data visualization
and interaction functionalities. The appearance of axes, graph lines, grid
lines, and other graphical items can be customized with little effort and
functions for processing the manipulation of ranges and plottables are
also contained. In particular, the provided selection mechanisms that al-
low the user to interact with the visual representations were of great help.
When it comes to processing user interaction in general, we make exten-
sive use of Qt’s Signals and Slots> concept. Brushing is realized using a
binary attribute to store the resulting selection. This selection attribute
can be treated like any other attribute in the system.

1 Qt 4.8: www.qt.io

2 Graphics View Framework: https://doc.qt.io/qt-5/graphicsview.html
3 QPainter Class: https://doc.qt.io/qt-5/qpainter.html

4 QCustomPlot: www.qcustomplot.com

5 Qt Signals and Slots: https://doc.qt.io/qt-5/signalsandslots.html
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CASE STUDY USING REAL-WORLD SENSOR DATA

6.1 MOTIVATION

Vehicle dynamics deal with the motion of a road vehicle under the influ-
ence of torques and forces. The development of motor vehicles including
driving safety, comfort, and assistance systems highly benefits from vehi-
cle dynamics simulation [69]. Because it enables a deeper understanding
of the physics of driving, simulation is extensively used to predict the
behavior of new vehicles. By enabling an efficient analysis of maneuvers
under varying conditions, simulations also reduce tests with real proto-
types, allowing for shorter product cycles and lower development costs.

Numerical simulation is based on mathematical models that describe a ve-
hicle’s driving behavior. This behavior is influenced by various factors, e.g.
the wheel suspensions affect the vehicle stability while changing lanes.
Therefore, multi-body models consisting of force elements and rigid el-
ements are commonly used. Research and industry need models that
represent the real-world dynamics as accurately as possible. To be able
to integrate the simulated systems in various vehicle categories, models
should also be able to represent different vehicle classes [78].

The technical background and dataset in this case study are based on the
work by Unterreiner, who addresses the precision of multi-body models
in representing the input-/output-behavior of a real-world vehicle [77]. A
model involves different degrees of freedom (DOF) describing the vehicle
components, e.g. orientation of the body or rotational velocities. The tran-
sition between such states is given by kinematic equations, which define
how the components move in relation to each other. A simulation takes
the accelerator pedal position and the steering wheel angle as input. The
environment is integrated via predefined conditions, such as side wind
or road characteristics [69]. When the simulation has finished, the out-
put quantities characterizing the simulated vehicle’s driving behavior are
computed from the final system state.

As described above, a generated model should represent real-world driv-
ing behavior. Some of the model parameters are already determined by
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Figure 31: Parameter optimization: the model parameters are iteratively varied
such that the simulated vehicle dynamics correspond to the reference
behavior from real-world data. Image adjusted from [77].

specifications for the future vehicle, e.g. the desired engine power. The re-
maining parameters are determined in an optimization step (Figure 31),
where the simulated behavior is adjusted to real-world driving behavior.
The reference to reality is given by a reference model, whose driving be-
havior is recorded by means of various sensors during a test drive.

To yield meaningful results from the parameter optimization, the descrip-
tion of the real-world driving behavior should be as accurate as possible.
Missing data within the reference model, i.e. due to a quantity not be-
ing properly recorded, poses a problem. During the test drive, the sensor
recording the vehicle’s slip angle over time did not provide a sufficient
measurement quality. As a consequence, this quantity cannot be consid-
ered for characterization of the real-world driving behavior [77, p. 93].

Experts consider possible solutions: (1) to install a more accurate, optical
sensor or (2) to obtain the missing information from knowledge gained
from the remaining sensors. An optical sensor is highly expensive and its
quality depends on the visibility conditions (e.g. lighting conditions and
weather). Thus, instead of installing another sensor, the slip angle values
are to be predicted based on existing data. For this purpose, a regression
model is needed, which describes the missing quantity as a function of
time and of the remaining sensors’ temporal development. This involves
the task of identifying a minimal subset of sensors, which together are
able to sufficiently well predict the missing slip angle measure.
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6.2 DATA SET

Figure 32: A test car equipped with more than Figure 33: The test track
100 sensors. in Germany.

6.2 DATA SET

The sensor data for this case study have been acquired in the context of
building a reference model from real-world measurements as described
in the previous section. These measurements are registered by means of
sensors during a test drive. A car was equipped with more than 100
sensors (Figure 32) and a driver performed a four-lap test drive on the
Handling Track (HAK) in Papenburg, Germany (Figure 33). The laps were
completed in a little more than 6 : 07 minutes and the sensor data were
acquired every 5ms, which equals a frequency of 200Hz. We therefore
deal with continuous time data, which was discretely sampled. The sen-
sors were already active when the driver passed the leveling area leading
towards the actual track. Because these measurements are not represen-
tative for the test drive, we exclude the corresponding records from the
data set. The resulting data set contains 73,426 items with time stamps
covering the range from 0Os to 367.125s. Measured quantities include car
position, slip angle, rotational speed of the motor, car velocity, yaw rate,
and many others. One data item holds the values for all sensors at a
specific time (Figure 34).
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Figure 34: 10 items of the data table depicting the sensor data. One item is
associated with one time point and holds values for all sensors.
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63 FEATURE SELECTION FOR TIME-DEPENDENT SENSOR DATA

In the previous section, we already explained that the slip angle sensor
does not provide the required measurement quality. Its values should
therefore be predicted based on the existing sensor data. As a conse-
quence, slip angle will be the target feature throughout our analysis. By
exploring the described multivariate, time-dependent data set, we then
search for a minimal descriptive subset of the remaining sensors, on
which regression modeling is promising for prediction.

6.3.1 Target Feature: Slip Angle

In vehicle dynamics, the slip angle refers to the angle between the direc-
tion that the vehicle is actually traveling (i.e. towards which the tires are
pointing) and the direction that the vehicle body is pointing [63]. This
situation is depicted in Figure 35. A non-zero slip angle mainly occurs
during cornering. It results in a force perpendicular to the tire’s direction
of travel. When this force is larger than the tire’s friction resistance, the
tire will start to move sideways. The ratio between the front and rear slip
angles determines the driving behavior of a vehicle during a curve. If the
slip in the front wheel is greater than the rear slip, the vehicle will under-
steer [17]. As a consequence, the vehicle will steer less than the amount
intended by the driver and potentially leave the road (Figure 36). If the
rear slip is greater than the slip in the front wheel, the behavior will
be characterized by oversteering. This results in the vehicle turning more
sharply than commanded (Figure 37).
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Figure 38: Starting point: gaining an overview of the target feature. A histogram
depicts the shape of its value distribution (top). Temporal context is
added by depicting the value development as a time series (bottom).

OVERVIEW OF ITS DISTRIBUTION

Before dealing with particular analysis tasks and performing a target-
oriented exploration of the time-dependent features, the analysis starts
by gaining an overview of the target feature. First of all, we are interested
in the overall distribution of its values. At this stage, we do not care about
the points in time, at which the values arose. Instead, we simply want to
get an impression of which values the target feature takes on at all.

A well-known visualization that allows for an intuitive perception of the
main characteristics of a distribution is the box plot. It summarizes large
data sets using five measures: the minimum, lower quartile, median, up-
per quartile, and maximum. As such, it is particularly suited for com-
paring multiple distributions. However, at this stage, we are particularly
interested in the distribution of one single feature — the target. In this con-
text, the five-number summary of a box plot provides an intuitive first
impression, but rather little detail. In contrast to that, a histogram better
addresses the visual sense by approximating the actual shape of the distri-
bution. The slip angle is measured relative to the direction of the vehicle
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body. Negative values denote that the wheels are steered to the right and
vice versa. In Figure 38, top, we can see that the distribution is unsurpris-
ingly symmetric and not skewed. It is approximately bell-shaped, but still
reveals five local peaks: one on either end of the value range, the global
maximum in the center, and one on either side of the maximum. Due to
the slip angle’s symmetric value range, the global maximum frequency
arising at a value of approximately zero seems legit. It can be related to
straight sections of the test track, of which there are more than curved sec-
tions, which are related to a non-zero slip angle. However, the histogram
only depicts aggregated frequencies and does not convey statistical val-
ues like minimum and maximum of the target distribution.

OVERVIEW OF ITS TEMPORAL DEVELOPMENT

Until now, we investigated the target feature from the perspective of its
values, independent of when those values arose in time. However, a thor-
ough overview also includes the temporal perspective. For this purpose,
we employ the well-known Time Series Plot (Figure 38, bottom). The at-
tribute values are normalized to [0, 1] to retain the possibility of depicting
and comparing multiple time series. As we characterized the target dis-
tribution as a rather symmetric one centered around a slip angle of zero
from the histogram and Dash Plot, we can now mentally map the zero
slip angle to a normalized value of 0.5. The Time Series Plot shows rather
stable time series sections around y = 0.5 in between sharp peaks. The
former can be related to straight sections in the test track, while the lat-
ter might correspond to curves. The four laps that have been performed
on the test track can be clearly identified as a re-occurring pattern. Dur-
ing the initial phase (i.e. the first minute), this pattern is rather unsteady,
before it becomes stable from the second lap onwards.

6.3.2 Initial Features: Yaw Rate and Vehicle Velocity

The overall analysis task is to find features that contain valuable informa-
tion about the slip angle, which make them suitable predictors. Besides
analyzing individual features independently, we therefore have to investi-
gate the relationships between the target and the remaining features. The
slip angle is the difference between the heading direction of the vehicle
body and the direction, in which the tires are pointing. It is therefore
reasonable to assume that the slip angle is related to the yaw rotation,
i.e. the change of the direction towards which the vehicle body is point-
ing. It is captured with a sensor measuring the yaw rate of the car. When
comparing the time series of both slip angle and yaw rate (Figure 39), we
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Figure 39: Investigating potential predictors: yaw rate (red) is assumed to be
related to slip angle (blue). Simultaneously occurring characteristics
in the Time Series Plot strengthen this hypothesis.

notice that peaks and uniform sections in both time series occur simulta-
neously, i.e. without latency. The majority of these characteristics in the
target time series can thus be associated with a counterpart in the yaw
rate time series. Still, although both features seem to be strongly related,
simply horizontally mirroring the yaw rate time series does not yield a
precise description of the slip angle’s temporal development.

As a consequence, we search for an additional feature that might pro-
vide information for the slip angle prediction. From our knowledge in
the domain of vehicle dynamics, we conclude that the vehicle’s velocity
also influences the slip angle, as speed also contributes to the emergence
of forces applying in directions other than the traveling direction. In ad-
dition, both the yaw rate and the velocity of a vehicle are features that
do not depend on other measures within the investigated system, but are
solely determined by an external factor, i.e. the driver turning the steering
wheel and specifying the accelerator position. Such features are a good
starting point for the identification of a minimal descriptive set of predic-
tors, because they cover characteristics of the target feature that no other
sensor can explain. Furthermore, we can assure that their relations to the
target are not an artifact of a common cause.

6.3.3 Explanatory Power of the Initial Feature Subset

As a start, we have gained a first impression of the target feature and used
our domain knowledge to determine an initial set of potential predictors.
In the following analysis, we aim at an estimation of the feature set’s
meaningfulness for the prediction of the target feature.
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Figure 40: Overview of the initial feature space determined by domain knowl-
egde. Physically unlikely value combinations are not present (left).
The Synchronization Grid conveys a first impression of the feature
subset’s explanatory power (right).

OVERVIEW OF THE FEATURE SPACE
Using a scatter plot, we first take a look at the distribution of data points
within the feature space, which is spanned by yaw rate and velocity (Fig-
ure 40, left). Note the empty areas, where the corresponding value com-
binations are not present. For example, the empty regions in the lower
corners indicate that high velocity does not occur together with a high ab-
solute value of yaw rate. This can be explained by physical constraints, as
a vehicle would leave the road when taking a turn with too high velocity.
Accordingly, the highest velocities only show up together with a yaw rate
close to zero, indicating straight sections of the test track, which allow for
high speed extension. Such conclusions can be intuitively drawn based
on physical understanding, but visualizing the feature space as a scatter
plot is still helpful for building up a mental model, to which analysts can
go back whenever they examine more abstract visualizations.

Such a complex visualization is the Synchronization Grid, which we take
into account to get an idea of the explanatory power of the feature sub-
set {yawrate, velocity}. We start with a grid resolution of five cells in
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Figure 41: Plotting slip angle against vehicle velocity confirms the hypothesis of
velocity being a suitable predictor for specific parts of the data. The
scatter plot reveals an almost functional relationship for items with
rather low or high velocity (rectangles).

both directions. Such a low resolution does not provide much detail, as
a large number of data points within each cell is aggregated to a repre-
sentative configuration. Still, it conveys a notion of how the target feature
develops around those configurations (Figure 40, right). Remember that
a valid model would predict similar target developments based on sim-
ilar configurations, i.e. those configurations summarized within one cell.
The first and last rows of the Synchronization Grid show Synchronization
Line Plots, where all curves are nearly equal. From this, we can conclude
that the vehicle’s velocity is a suitable predictor for the slip angle for these
portions of the feature space, i.e. when considering only data records with
very low and very high velocity values. Plotting the slip angle against the
velocity in a scatter plot confirms this hypothesis, as a relation is clearly
visible from the arrangement of the data points. In fact, it reveals a strong
linear correlation for a subset of data records (Figure 41).

REGION OF INTEREST

The vehicle velocity is only helpful to predict a part of the data. Thus,
we re-consider the Synchronization Grid as an overview of the velocity
together with the yaw rate for further analysis. As we can locate cells,
for which the curves exhibit highly varying shapes, this indicates that the
two features are not descriptive enough to cover all characteristics of the
target feature. To identify critical regions of interest for a more detailed
analysis, we first need to narrow the feature space to areas with an un-
desired target variance. For this purpose, we double the resolution of the
Synchronization Grid (Figure 42). The resulting detailed representation
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Figure 42: Increasing the grid resolution for details. We focus on cells exhibiting
undesired variance (black rectangle). The critical region of interest are
those cells, where the curves are perceived as most varying after the
synchronization point (i.e. for x > 0) (blue rectangle). One cell is
selected for further analysis (red rectangle).

of the feature space reveals that the valid model assumption is not ful-
filled for nearly one third of the feature space (Figure 42, black rectangle).
Many cells within this region of interest exhibit a significant target vari-
ance, although each of them also contains a number of curves behaving
similarly. In the cells of the Synchronization Grid overview, these subsets
of similar curves are visible as dark horizontal strokes, which result from
the semi-transparent curves adding up to black.

As a next step, we intend to identify the cell with the least quality, i.e.
the largest target variance. An in-depth analysis of this cell is the most
straight-forward way to clarify the circumstances, under which such high
target variance arises. It can also be the starting point for searching the
actual cause of the variance, which might be an additional feature, on
which the target depends. However, the target variance arises in different
forms and the decision for the one cell with the highest variance might
be an unclear task. In the Synchronization Grid, we can distinguish be-
tween cells, where (1) the variance occurs everywhere, but its spread is

{1
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Figure 43: Different forms of variance: curves only spread within a small y-
range (a), differing behavior becomes consistent after the synchro-
nization point (b), or each curve takes a different course (c). Even
cells with large variance contain a set of similar curves (d).

limited (Figure 43a), (2) the variance occurs mainly before the synchro-
nization point (i.e. where x < 0) and then evens out (Figure 43b), and (3)
the curves occupying large parts of the target range (Figure 43c). Cells
where each curve takes a highly different course can be said to have a
lower quality than those with an acceptable spread or where curves de-
velop towards a consistent behavior. With this ranking in mind, we can
narrow the critical region of the feature space to those cells marked with
blue rectangles in Figure 42. The presence of such a critical region indi-
cates that the overall explanatory power of the underlying feature set is
not sufficient for prediction. Consequently, we select one of the most crit-
ical cells for a more detailed analysis (Figure 42, red rectangle). Detailed
analysis is performed by exploring and interacting with the correspond-
ing Synchronization Line Plot as a Focus Plot. It involves the search for
an additional feature that is related to the target variance and thus would
increase the explanatory power when added to the feature subset.

6.3.4 Searching for Another Influencing Factor

Based on the feature subset {yawrate, velocity}, we aim at identifying the
next feature to add, such that the overall explanatory power is increased.
For this purpose, we investigate that region of the feature space, for which
the prediction is most unstable, i.e. the cell selected in the previous step.
Our goal at this stage of the analysis is to explicitly identify a feature,
to which the variance in this region relates. Adding this feature to the
feature subset might result in an improved model, which explains more
characteristics of slip angle as the target than could be described by yaw
rate and velocity alone. However, there might exist (1) inter-dependencies
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Figure 44: The decision which feature to add next focuses on those relating to
the remaining target variance. We start by brushing the curves repre-
senting the majority of variance (a). Their locations within the global
target time series are depicted for reference (b).

between the identified third feature and the features already contained or
(2) a relationship between the variance and changes in the initial features.
In both cases, adding the identified feature to the feature subset might not
yield the expected improvement of the explanatory power. For this reason,
we have to carefully examine the true impact that adding the feature has
on the distribution of the target variance.

REGION OF INTEREST

The key question that needs to be answered when deciding for the next
feature to be added is the following: how do those curves incorporating
the target variance within the cell —i.e. the region of interest according to
Section 5.5.1 — manifest in other features?

We first define the region of interest in the corresponding Focus Plot via
brushing. In our case, the plot exhibits three curves in the upper half of
the plot, a number of curves behaving as desired around y = 0, and a
number of highly varying curves in the lower half of the plot. Previous
analysis of the three upper curves using brushing and linking together
with the Time Series Plot revealed that these curves actually originate
from replication. Thus, they contain redundant information and are not
of interest to us. Consequently, the set of curves occupying the lower
half of the Synchronization Line Plot is brushed as the region of interest
(Figure 44a). Its placement within the global temporal context is depicted
in Figure 44b. To identify a potential influencing factor, we now analyze
the remaining features in the dataset with regard to whether they relate
to the region of interest.
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Figure 45: Evaluating four potential predictors regarding their influence on the
target variance. ROI (top) and context (bottom) used for compari-
son (a). Differing distributions w.r.t. the three leftmost features in-
dicate an influence. The rightmost feature is considered independent,
as ROI and context distributions are similar (b).

HISTOGRAM: WHICH FEATURES RELATE TO THE VARIANCE?
Histograms allow us to use our visual sense to efficiently compare the dis-
tribution associated with brushed curves to the distribution of all curves
in the cell. A feature is assumed to relate to the target variance repre-
sented by the brush, if (1) the distribution of the brush highly differs
from that of the context and (2) the brushed data items are distributed
only within a self-contained part of the feature’s domain. Note that the
latter is not a necessary condition. A suitable predictor might be found
among features, for which brushing the target variance influences the
shape and domain coverage of the distribution.

Figure 45b provides an overview of histograms depicting the region of in-
terest (top) and context (bottom) distributions for four different features
(columns) on a logarithmic scale. The curves corresponding to the region
of interest and context are given for reference (Figure 45a). For the three
leftmost features, the brush distribution clearly differs from the context
distribution. For now, we can conclude that a relation between those fea-
tures and the investigated target variance exists. Including the three fea-
tures in the current feature subset might add significant value to it.
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Still, when investigating the corresponding histograms in more detail,
we can perceive different characteristics concerning the deviation of the
brush distribution from the context. These characteristics give us subtle
hints concerning the strength of the relation between feature and target
variance. For the first feature, the difference between both distributions
primarily consists in one of the two peaks in the context distribution.
However, the brush distribution still exhibits a similar spread. In this
sense, the influence of the region of interest on the shape of the distri-
bution is not as significant as for the second feature. There, the brush
manifests within a small part of the feature domain, indicating that the
variance can be strongly related to this same portion of feature values.
In contrast to that, the context distribution covers the entire domain. The
brush distribution seems to be made up of the thinner one of the context
distribution’s two separable parts. Another interesting case can be ob-
served for the third feature. Here, both distributions cover approximately
the same part of the feature domain. The difference consists in the gaps
that the brush distribution exhibits, which are not present in the context
distribution. In this way, both distributions significantly differ, but — un-
like for the second feature — the region of interest and therefore the target
variance cannot be associated with a separate part of the feature domain.
In contrast to the features possibly related to the target variance, the right-
most feature does not show changes in the distribution when considering
the two different sets of curves. The two corresponding histograms show
that the distribution of the brush mainly follows the overall distribution.

According to our independence criterion, the rightmost feature is not
worth to be considered as a predictor candidate. The varying distribu-
tions for the remaining three features lead towards the conclusion that all
of them might be related to the target variance and thus suitable as an ad-
ditional predictor to be included in the model. However, the degree and
appearance of the differences between brush and context distributions
provide an additional impression of the strength of this relation. For the
second feature, the brush distribution occupying one part of the domain
is complementary to the remaining part of the context distribution. At the
same time, the brush only occupies a small range of the feature’s domain.
Both are strong hints for the feature being related to the variance repre-
sented by the brush. We therefore conclude that the second feature has
the strongest relation to the target variance and thus should be added to
the feature subset to improve the predictive power. Nevertheless, conclu-
sions concerning the existence or strength of a relation need to be handled
with care and should be double-checked.



PROOF OF CONCEPT USING AN ARTIFICIAL DATA
SET

The case study in Chapter 6 showed that the proposed system can suc-
cessfully be used to perform the first iteration of a feature selection pro-
cedure for time-dependent sensor data. As our approach was developed
to be non-sensitive to specific characteristics of the underlying data, we
believe that it is applicable to any numerical time-dependent data.

To evaluate the methodology’s applicability in a general context, we pro-
vide a Proof of Concept that is based on an artificial data set. To mimic a
real-world setting, where the analyst does not know the data, this infor-
mal evaluation involves two entities: (1) the constructor, who generates
the time-dependent data with preconceived patterns, and (2) the analyst,
who does not have any knowledge about the patterns. The analyst then
works out insights into the data, while the ground truth is given by the
generating equations that the constructor invented.

The Proof of Concept conveys an impression of the functionality, but also
the limitations, of the proposed IVA system. Being able to compare the
analysis findings to the ground truth also allows for assessing the level
of detail that can be achieved. This could be the degree to which an iden-
tified feature subset matches the ground truth. The analysis procedure
consists of two steps: (1) a general exploration of the features and pat-
terns without any previous knowledge about the data set and (2) the first
step of a feature selection given two initial features and a target feature.

7.1 GENERAL EXPLORATION WITHOUT PREVIOUS KNOWLEDGE

The data set contains 18 features, whose values were recorded for 10, 000
equidistant time points. To mask the meaning of the features, they are
labeled with the letters a to r. The following exploratory analysis begins
with an investigation of the value distributions and temporal develop-
ments for each feature separately. At the next stage, multiple time series
are plotted simultaneously to search for co-occurring patterns and thus
potential relationships. Finally, the explanatory power of a chosen feature
subset is analyzed using the synchronization approach.
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Figure 46: A selection of features with outstanding distribution characteristics
as starting points for an exploratory analysis of patterns in the data.

7.1.1  Value Distribution

We start the actual analysis by investigating each feature’s value distribu-
tion. We primarily search for any outstanding characteristics that might
pose a starting point for further analysis. For an exploratory analysis,
there can be multiple such starting points, each of which might lead
towards another insight. Points of interest could be features with a re-
markable distribution, e.g. one that might be non-symmetric, bi-modal,
or skewed. Figure 46 shows six selected histograms. Besides providing
an overview of feature values, histograms can also raise a first aware-
ness for features whose time series potentially relate, as similar or mir-
rored histograms might be produced by identical (and potentially phase-
shifted) or inversely developing time series. We identified feature i to ex-
hibit only one value. Thus, it does not contain valuable information and
is excluded from further analysis. We also noticed that some histograms
were highly similar. Comparing the corresponding time series helps to
determine whether these features indeed behave in a similar way.

7.1.2  Temporal Development

For such purposes, we consider the Time Series Plot next. It stands out
at first sight that the data is highly periodic. Observing the shapes of
time series might be helpful for determining features that are not at all
influenced by components of the system. Their values solely depend on
time as well as the values that the same feature took on at previous time
points. Due to this property, the time series of an independent feature
might exhibit rather undisturbed and uniform oscillations, which do not
exhibit sudden changes that are likely to be caused by an influencing
feature. Such characteristics can be observed for features a (Figure 47a)
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Figure 47: Two features whose undisturbed periodic oscillations suggest that
they are entirely independent of the investigated system and thus
might be a good starting point for the identification of relationships.

and b (Figure 47b).Independent features are important, because they do
not pose the risk of being an intermediate variable or having a common
cause induce a relation to another feature.

Finding o.1 (Independent Features) Features a and b might be independent
of any other feature in the investigated system.

In a second step, we compare multiple time series and look out for inter-
relations. The overall goal at this stage is to build up feature subsets for a
more detailed analysis using the Synchronization Grid. One way of iden-
tifying such feature subsets is to plot multiple time series simultaneously
and investigate their concurrent development. Particular attention is paid
to whether peaks or valleys in different time series co-occur or whether
one time series increases as another one decreases.

We reconsider the features with remarkable histograms as a starting point.
The Time Series Plot shows that the time series of features d and g as well
as 1l and r are actually exactly the same. As a consequence, we exclude g
and r from further analysis to avoid the redundancy introduced by those
pairs. The time series of features a and j are strongly related in terms of
the locations of peaks and valleys as well as the curve slope. For a correct
interpretation of future findings, one should keep in mind that j might
originate from a in large parts (as we assume a to be independent).
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Figure 48: Investigating relationships between features. We assume d to depend
on q, as a decrease in q is mostly followed by a decrease in d (a).
Large parts of f can be explained by 1 (b). The scatter plot confirms a
strong linear correlation except for a cloud of outliers (c).

Finding o.2 (Feature Equality) The data set contains two pairs of equal fea-
tures: d = g and | = . Features g and v are excluded from further analysis.
Feature j is assumed to be highly dependent on feature a.

From the histograms of features d and q, we could conclude that their
time series might be approximately mirrored. At first glance, this hypoth-
esis can be confirmed in the Time Series Plot (Figure 48a). However, when
taking a closer look at the behavior, we can see that — for most peaks of d
— the decrease of d-values starts simultaneously to or slightly after a de-
crease in q. Due to the temporal order of decreases, we might assume that
changes in d are influenced by the behavior of q. In Section 7.2, we con-
sider an additional influencing feature as given and analyze the resulting
feature subset as a showcase using the Synchronization Grid.

Finding 0.3 (Influencing Factor) Changes in feature d are assumed to be in-
fluenced by the behavior of feature q.

For features f and 1, the Time Series Plot reveals that they are almost equal,
except for some sharp valleys of f (Figure 48b). The scatter plot of both
features shows a strong linear correlation, with a cloud of outlier points
at the lower end, where those valleys manifest (Figure 48c). The question
is: which feature(s) can help to explain those valleys in f that 1 does not
cover? Further exploration of f together with different features in the Time
Series Plot reveals that the time series of k contains highly similar valleys
at exactly the same locations (Figure 49). From this analysis, we conclude
that | and k each explain complementary parts of f.

Finding 0.4 (Two Features Explaining One Target) Feature f is assumed to
depend on k and 1. Both features seem to explain complementary parts of f.
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Figure 49: Feature k (red) exhibits sharp downwards peaks that approximately
correspond to those of f (purple), which are not covered by | (Figure
48b). Consequently, k and 1 explain complementary parts of f.

Figure 50: The effect of varying 1 and k on the target curves. Feature | influences
the slope. Low values are associated with a positive gradient (a). High
L-values lead to decreasing target values (b). Feature k influences the
variance. Low values result in little variance (c). Large k-values are
critical, as they co-occur with strongly differing target behaviors (d).

7.1.3 Searching for an Additional Feature

After having performed the exploratory analysis, we now verify the hy-
pothesis of 1 and k together explaining feature f. For this purpose, we
take a look at the synchronized behavior of the target f across the feature
space spanned by | and k. We first notice the effects of varying 1 and k on
the target behavior. The slope of the target curves is considerably influ-
enced by the values of 1 (Figure 50a and 50b). Furthermore, feature k has
a notable effect on the degree of variance exhibited in the cells. This vari-
ance increases with increasing k (Figure 50c and 50d). We believe that this
observation is plausible, as k only explains the large valleys of f, where its
own values are rather low (recap Figure 49). The remaining development
of f-values is supposed to be described by 1.

As the Synchronization Grid exhibits undesired variance for several cells,
we take k and 1 as predictors and search for a third independent feature
that might relate to these differences in the synchronized behavior of the
target f. We perform a detailed analysis of one of the cells with large vari-
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Figure 51: Do n or b relate to the target variance? Curves representing the
variance are compared to all curves as context (left). For n, the distri-
bution associated with variance clearly deviates from the context, in-
dicating a relationship (center). Brushing the variance does not have
an effect on the distribution of b, indicating independence (right).

ance. It contains two sets of diverging curves. One is brushed as region
of interest, while a context brush covers all curves in the same time range
(Figure 51, left).

We compare the distributions resulting from those brushes for two fea-
tures n and b. For feature n, brushing the region of interest clearly in-
fluences the distribution’s shape (Figure 51, center). The brushed region
solely covers the upper half of the feature domain, while the distribution
associated with the context brush is spread across the entire domain. In
contrast to feature n, the distribution for b is not significantly influenced
by brushing the region of interest (Figure 51, right). Both histograms ex-
hibit a similar shape and cover the whole feature domain.

These findings suggest that feature n could be meaningful when it comes
to further discriminating between both sets of curves and thus reducing
the target variance. Feature b would be less helpful for this purpose. As
a conclusion, n is worth considering as an additional predictor candidate.
However, its interdependencies with the current feature subset as well as
the actual benefit of additionally including it into the model have to be
evaluated in more detail.

Finding 0.5 (Additional Feature) Feature f cannot be sufficiently explained
by k and 1. Feature n was determined as a suitable additional predictor candidate.
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Figure 52: Observing the behavior of d for different configurations of 1 and q.
The variance in the critical region (blue rectangle) is characterized by
two sets of diverging curves. Those easiest to separate (red rectangle)
are used for further analysis of the target variance.

7.2 TARGET-ORIENTED EXPLORATION OF FEATURE SUBSETS

In this second part of the Proof of Concept, we perform the first step of
a feature selection procedure based on 1l and q as independent features
and d as the target feature to be predicted. We start by analyzing the
Synchronization Grid to assess how well the feature subset {1, q} explains
d as the target feature.
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7.2.1  Gaining an Overview Using the Synchronization Grid

The Synchronization Grid is shown in Figure 52. Its upper third contains
Synchronization Line Plots depicting only a few curves (i.e. up to four).
This is caused by the sparse coverage of the feature space in this area.
For reasons of missing significance, we will not consider this region for
further analysis. A certain variance is present for the cells in the left and
right thirds of the grid, but the slope of the curves can be said to be consis-
tent for these cells. They either show decreasing (left third) or increasing
(right third) target values starting from the synchronization point. Due to
this consistency, we do not consider them as critical.

Instead, we will focus on those parts of the feature space, for which the
target feature shows significantly discordant behavior (Figure 52, blue
rectangle). In this region, both decreasing and increasing target values
occur as behaviors. Consequently, the corresponding cells mainly contain
two sets of diverging curves. This leads to the conclusion that there must
be an additional influencing feature, which discriminates between both
sets and thus determines the behavior that the target actually shows. The
question is: based on which feature can we decide whether the target be-
havior belongs to one or the other set of curves? In other words, which
feature can be used to discriminate between a target increase and a de-
crease? Having found such a feature, adding it to the set of predictors
might significantly reduce the target variance and thus improve the ex-
planatory power. However, such conclusions need to be double-checked
by assessing the target variance for the newly created feature set.

7.2.2  Drill-Down to the Region of Interest

We now investigate one of the cells from the region, to which the analysis
was already narrowed down, in more detail to identify the next feature
to be added to the feature subset. A suitable feature shows a significant
difference in the distributions associated with one of the sets of diverging
curves and the entirety of curves. Data items that belong to both sets of
curves make it difficult to perceive a difference between the distributions,
because they contribute to both of them. If many of them are present, a
comparison might be inconclusive. Accordingly, we choose the cell (Fig-
ure 52, red rectangle), for which the sets of diverging curves are best
separable (Figure 53a). In this way, we prevent an overlapping of the two
sets (i.e. green set against all curves) to be compared in the next step.
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Figure 53: Critical cells contain two sets of curves with contrary behavior that
make up the variance (a). Comparing one set to all curves might re-
veal a feature that relates to the variance. However, undesired curves
are included in a line brush due to replication of curve sections (b).

We first choose the line brush to easily select one set without including
curves from the other set. Due to the highly frequent time series in this
data set, the configuration trajectory crosses many different grid cells in
a short time. Consequently, the automatically selected synchronization
points exhibit a small temporal distance. Together with the fixed interval
length, this leads to strong replications. Brushing only one of the two di-
verging sets leads to the majority of curves — 40 out of 51 — being selected
(Figure 53b). Obviously, this is not effective for comparing one of the sets
to all curves. For this reason, we change the mode to a rectangular brush.
As it allows us to limit the brush to a certain time range, we can specify
those parts, in which the curves actually diverge, more concretely. At the
same time, covering only sections of the curves instead of the whole re-
duces the selection of replicated curves belonging to the other set. Thus,
it offers a better separation of the two brushes.

7.2.3 Comparing Focus and Context Distributions

Having specified the focus and context brushes (Figure 54a), we can now
compare the corresponding distributions for all remaining features. We
notice differences for nearly all features — for some to a greater and for
others to a lesser extent. In all cases, the focus brush can be associated
with values covering a rather small part of the feature domain. Only b, e,
and k can be excluded as candidates, because their distributions do not
change when brushing the region of interest instead of all curves (Figure
54b). The remaining features have to be compared carefully to identify
those with the most significant differences as predictor candidates.
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(a) Focus + Context (b) Corresponding Value Distributions

Figure 54: Comparing the value distributions w.r.t. the focus and context
brushes (a). Feature e is excluded as predictor, because the distri-
butions are too similar (b). Brushing the variance significantly influ-
ences the distribution of a, indicating an additional predictor.

For two features, namely a and j, the context distribution shows two
peaks to each end of the feature domain, while the brush distribution only
covers one of these peaks (see Figure 54b). Thus, brushing the region of
interest obviously has a significant influence on the distribution. We can
even go a step further and compare the distribution of the brushed region
with that of its complement. The histograms reveal that the complement’s
distribution is also the complement, i.e. the second peak, of the context
distribution. Thus, the values of these features are well-suited to discrim-
inate between both sets of diverging curves in the Synchronization Line
Plot. As a was already identified as an independent feature before, we
solely consider a as a predictor candidate.

Observing the distributions of the remaining features, it cannot be clearly
determined which of them should additionally be analyzed in more de-
tail as a predictor candidate. However, we can distinguish between two
groups of features with different characteristics. 1) For some features (e.g.
f or h), the focus distribution’s shape is highly similar to a specific part
of the context distribution — as if the context distribution was cut in two
parts, where one of those parts is the focus distribution (Figure 54b). In
this sense, the difference between focus and context lies in the covered
part of the feature domain, but not in the distributions” shapes. 2) For
other features (e.g. ¢, m, n, or o), the focus distribution has a completely
different shape than the context distribution within the same range (Fig-
ure 54b). Here, the difference between focus and context distribution does
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not only originate from the difference in the covered ranges of the feature,
but also in the significantly different shapes of (part of) the distributions.
As a conclusion, besides a, we cannot decide for another potential predic-
tor to be added to the feature set, because no feature shows a significantly
larger difference in its distributions than the other features.

Finding 0.6 (Target-Oriented Exploration) Given {1, q} for prediction of d,
we notice that this feature subset is not sufficient. Features b, e, and k are ex-
cluded as predictors. Feature a is considered as a predictor candidate. The remain-
ing features cannot be rejected nor confirmed as suitable predictor candidates.

7.3 SUMMARY OF RESULTS AND COMPARISON TO GROUND TRUTH

In this section, we reveal the relationships that were intentionally in-
cluded in the data set. While doing so, we evaluate to what extent the
findings gained with our approach actually match this ground truth. This
gives us an impression of the system’s suitability for relationship discov-
ery and feature selection in multivariate time series data.

The data set originates from a predator-prey simulation involving plants,
rabbits, and foxes. For each population, the number of living and eaten
organisms, energy and water level, as well as reproduction are simulated.
Two external influencing factors, namely precipitation and light are also
included. All three populations depend on the available amount of water.
The plants additionally need light as energy source. Due to the complex-
ity of the simulated system, the data set contains various dependencies.
Some of them are direct, like the relationship between eaten plants and
the number of rabbits. Others involve more independent features, e.g. the
reproduction of rabbits depends on both their water and energy level.

FINDING 0.1: @ AND b ARE INDEPENDENT

This finding can be confirmed by the ground truth. The features a and b
correspond to light and precipitation, which were included in the simula-
tion as external factors to bound the maximum size of the populations.

FINDING 0.2: d =g AND Ll =71

These perfect dependencies are also contained in the data set. The features
d and g represent the foxes” energy level and the number of living rabbits. For
simulation, the energy of the foxes was modeled to equal the number of
rabbits that are available as food. The same holds for r and 1 representing
the rabbits’ energy level and the number of plants.
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FINDING 0.3: q INFLUENCES d

This can be partially confirmed. Feature q represents the number of foxes,
while d stands for the foxes” energy, which is equal to the number of rab-
bits (g). According to the simulation model, the number of rabbits indeed
depends on the number of foxes. We noticed that low values of q occur
together with high values of d and vice versa (Section 7.1.2). This corre-
sponds to general reasoning: if there are only a few foxes, the rabbits do
not have as much enemies threatening their lives. However, the simula-
tion model also suggests, that q is not the only feature influencing d.

FINDING 0.4: f DEPENDS ON k AND 1

This can also be partially confirmed. Feature f represents the reproduction
of rabbits, while k refers to the reproduction of foxes and 1 to the number of
plants, which in turn equals the rabbits” energy (r). The dependency of the
reproduction of rabbits on their energy level is contained in the model. Its
dependency on the reproduction of foxes is not as straight-forward. One
could reason that an increasing number of foxes decreases the number
of rabbits available for reproduction, thus reducing the rabbits” reproduc-
tion itself. However, this reasoning relies on indirect dependencies and,
instead of k, the simulation model involves another feature influencing f.

FINDING 0.5: N SHOULD BE ADDED TO {k, l} TO EXPLAIN f

Searching for an additional feature influencing f to improve the explana-
tory power of the feature subset {k, l} resulted in n, the rabbits” water level.
Indeed, the simulation model consists of n and 1 as features influencing f.
Our identified feature subset {k,1,n} contains the truly relevant features,
but is not the minimal descriptive subset {l, n}. The proposed approach is
robust w.r.t. the choice of initial features: although k was wrongly chosen,
the predictor n was correctly identified in the second attempt.

FINDING 0.6: @ SHOULD BE ADDED TO {l, q} TO EXPLAIN d

This cannot be confirmed. The task description “Given 1 and q, on which
feature does d additionally depend?” originated from an actual relation-
ship in the simulation data. It corresponds to the number of rabbits (g=d)
being influenced by the number of plants (1) and the number of foxes (q). We
identified a, i.e. the light, to be the missing feature for prediction. Accord-
ing to the simulation model, the stored water (c) would have been directly
related to d. The identified dependency on light is therefore an indirect
one, as stored water is in turn influenced by light due to evaporation.
However, using the proposed approach the analyst did not find the most
influencing additional feature.



CONCLUSION

For the purpose of forecasting, time series analysis and modeling is of fun-
damental importance in numerous application domains. The challenge
lies in filtering the relevant from the available features to build a sim-
ple model that accurately predicts the target without suffering from di-
mensionality issues. Feature selection therefore aims at identifying the
minimal subset of features that together are most useful for capturing
all characteristics of a target feature. Wrapper methods conventionally
measure the quality of a feature subset according to the performance of
a given predictor that was optimized based on the respective subset. In
contrast, filter approaches do not require a predefined analytical model
and are not influenced by the performance of the model fitting algorithm.

This thesis contributes a stand-alone filter approach for feature selection
in multivariate time series data as a preprocessing step for a regression
analysis. It builds upon visualization and interaction techniques to inte-
grate the analyst’s strengths into the feature selection process. To comply
with the model-free characteristic, we employ a generic quality criterion
that is derived from the assumption that a valid model outputs the same
predictions when given the same inputs. This assumption can be veri-
fied for a given feature subset by using the proposed synchronization
approach. It is adapted from an alignment concept in the health care
domain, where analysts investigate how time series are affected by the
occurrence of an event. The synchronization supports an observation of
the similarity of time series that represent the predictions for a particu-
lar combination of input values. A broad evaluation of a feature subset’s
quality thus boils down to visually assessing the variance in sets of curves
that refer to different inputs across the entire feature space.

The key visualization that enables analysts to visually approach the qual-
ity of a feature subset is surrounded by a system that provides additional
standard visualizations supporting an efficient exploration of relation-
ships. Interaction techniques enable the analyst to focus on relevant parts
of the data and to steer the feature selection by navigating between differ-
ent perspectives based on analysis tasks and previous findings. Analysts
can also integrate domain knowledge by interactively initializing and re-
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fining feature subsets based on their expertise. An informal evaluation
was performed by applying the developed method to real-world sensor
data as well as an artificial data set. Domain knowledge in the real-world
case study was used to initialize the feature subset. The Synchronization
Grid offered a good overview of the explanatory power and drew the
analyst’s attention to critical regions, which served as a starting point for
interactively searching for an additional influencing factor. For the artifi-
cial data set, the surrounding Interactive Visual Analysis system provided
good support in identifying initial features based on relationships. Even if
the choice of initial features is not optimal, the true explanatory features
are identified as influencing factors in the further process of the analysis.

The presented approach is independent of a model class and not tuned
to the model generating process. This property offers several advantages:
(1) the function class of the model does not have to be known, (2) low
computational effort is required, and (3) due to its independence, it can
be combined with any model generating algorithm. Using the strengths
of the human visual sense for evaluation of feature subsets makes the fea-
ture selection procedure much more tangible than could be achieved by
quantifying the quality of a feature subset. On the other hand, analysts
face a certain learning effort to be able to efficiently interpret the un-
derlying Synchronization Line Plots. Once the interpretation is clear, the
analysis process becomes more transparent, thus allowing for a deeper
understanding and interpretation of obtained findings. A strong limita-
tion, however, lies in the low dimensionality: the approach can only be
used to evaluate two-dimensional feature subsets and to identify a third
predictor to be added. Consequently, only one iteration of the feature
selection process can be performed. An evaluation of feature subsets con-
taining three or more features requires an adaptation of the visualization.

The proposed method is intended to serve as a universal dimension re-
duction step prior to regression modeling. Nominal features are not sup-
ported. The approach does not prefer or defer any type of relationship
and minimizes the risk of rejecting a relevant feature, which might have
resulted in a better feature subset. Because it is based on an Interactive
Visual Analysis concept, the system might also be combined with visual-
ization solutions dealing with other steps of the regression pipeline, e.g.
the actual model building. The presented method is highly generic. In the-
ory, it is therefore applicable to any modeling task involving multivariate,
numerical time series. A more formal and diverse evaluation is needed to
demonstrate the method’s usefulness for further application scenarios.



FUTURE WORK

There are several ways to extend the methodology presented in this thesis.
In the following, we cover selected ideas targeted at different aspects of an
interactive feature selection that might advance the proposed approach.

The first suggestions deal with the quality of the underlying data. Up to
now, no particular actions were taken to ensure good data quality. Miss-
ing data in certain features, e.g. represented by a not available entry, might
induce artificial dependencies, due to which relevant features might be
erroneously excluded from the feature subset. Noise might also distort
the results of modeling, because the data does not accurately represent
the underlying real-world conditions. Such errors in the values of fea-
tures should consequently already be considered for feature selection. In
contrast to noise, outliers include not only errors, but might also contain
useful information that originate from natural variations within measure-
ments. To explicitly consider missing data, noise, and outliers might yield
improved feature selection results that lead to more accurate models.

Grouping the configurations for an overview visualization was performed
in a straight-forward way. Defining similar configurations to be located
within one grid cell is intuitive, but might also be inappropriate, because
it does not consider the distribution of data points within the feature
space. More advanced methods like circular neighborhoods or clustering
algorithms might reduce the deviation of data points in the same neigh-
borhood and thus improve the precision of the synchronization approach.

To reduce the cognitive load of the analyst, user guidance could be en-
hanced. For the Synchronization Grid, this might be implemented as an
automatic highlighting of critical cells with large target variance to more
clearly draw the analyst’s attention towards parts of the feature space that
need refinement. Guidance might also be realized by initially providing a
reasonable choice of parameters, like the grid resolution, to enable users
to get started with the analysis right away. Both approaches might also be
combined with a guided search strategy to more efficiently identify the
most critical parts of the feature space.
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Sometimes, a target feature might not directly depend on an original fea-
ture, but rather on the way its values change, i.e. the first-order derivation.
In the Synchronization Grid, changes of a feature are represented by indi-
vidual rows or columns. To observe how certain patterns are reproduced
throughout the grid could offer meaningful insights concerning the rela-
tionship between target variance and changes of features. Thus, advanced
interpretation and realization of brushing within the Synchronization
Grid might provide answers regarding the question whether first-order
derivations might be suitable explanatory features.

Finally, the presented method in this thesis might not only serve as a pre-
processing step for model building, but could also be used for model
validation. The synchronization approach was developed in a general
manner: it simply takes a feature subset as input and does not require
further assumptions about the data or future model. In theory, it cannot
only be applied to training data for feature selection, but also to a time
series that was predicted by an already fitted model, which allows for an
evaluation of the model’s explanatory power. However, further evaluation
of the method’s usage as a model validation approach is required.
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