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Abstract— Shape models used for the segmentation of 3D
image data often suffer from high instability of shape. Current
approaches to avoid this instability often result in models with
high computation times and few possibilities for interaction and
modelling.

We present a 3D mass-spring model which has been extended
by torsion forces and the capability of explicit rotation. These
models are stable with respect to shape collapse and contortion.
Stability is achieved even if the model is only sparsely connected.
This makes the computation efficient enough for real-time inter-
action.

The extended model has been successfully applied to the
segmentation of the left ventricle of the human heart in 3D
SPECT data.

I. INTRODUCTION

The segmentation of three-dimensional data by means of
dynamic shape models is currently not standard, although
it attracts increasing interest. 2D dynamic models are often
not easily adaptable to the third dimension, which causes
additional problems:

• The search space increases significantly in 3D.
• Due to the additional degree of freedom, many models

are significantly more instable in 3D with respect to shape
and contortion. In this context, figure 1 gives an idea of
this problem occuring already in 2D.

(a) (b) (c) (d)

Fig. 1. (a) shows a simple mass-spring system modelling a square. In (b)
this system is contorted, although no spring has changed its length. In (c)
the same system is even collapsed with no single spring length changed. (d)
is the same system but fully interconnected. So it tries to avoid such shape
instabilities, but loses flexibility in the same moment.

Implicit (analytical) models (see [1] for a distinction of
implicit and explicit dynamic models) are a common choice
for the three-dimensional case, as they reduce the problem
of shape instability by their way of parameterization. Their
implicit parameterization mostly controls the model in a global
manner and is therefore hard to control locally.

Explicit (prototype-based) approaches in 3D do not have
this drawback. They allow the use of explicit knowledge about
the object to segment and they simplify local user interaction.
However, the lack of global control makes the definition of
stable models difficult.

With the segmentation of 3D data becoming increasingly
important for many applications, it would be desirable to
have a stable dynamic shape model with good modelling and
interaction qualities.

II. RELATED WORK

Since the introduction of dynamic models into image anal-
ysis, shape instabilities have been an important problem,
particularly in 3D, where the additional degree of freedom is
hard to control. Since then, different approaches to the solution
of this problem have been developed.

One solution is to create mass-spring models with a dense
mesh of springs ([2]), which require a large computational
effort and therefore do not allow for real-time interaction.

The other solution is to add global constraints, which are
difficult to control locally. Typical examples for this approach
are implicit models like the superquadrics used in [3] with
their drawbacks mentioned in section I or balloons ([4]),
which are using an additional force component that lets the
model expand like an inflated balloon, so that their stability is
associated with a loss of concrete shape and size information
in the model.

This is similar with the Simplex Meshes in [5], which do
not contain concrete shape and size information either, as they
were designed as a 3D mass-spring surface mesh. Here, the
model’s masses move in a self-directed manner toward the
closest data points, which leads to a quasi-stability of the
dynamic behaviour, provided that an appropriate initialization
of the model was achieved.

Explicit dynamic models containing a specific shape and
structure have appearently not been successfully applied to
3D data yet.

III. MASS-SPRING MODELS

Mass-spring models are dynamic, physics-based models
known from image analysis literature (e.g. [2]). They are
a theoretical model representing a dynamic system of mass
points interconnected by elastic springs. Besides the physical
parameters, i.e. the masses mi of the mass points i, and the rest
lengths l0ij and spring constants kij (force exerted per length
difference) of the single springs, the connection topology of
the masses and springs plays a central role.

The dynamics of such a system can be described by
Newtonian Mechanics. The motion of the mass points is thus
solely influenced by the forces acting on the mass points.
In this theoretical, ideal system, these are the spring forces
~Fij (equation 1), which are exerted on the mass points by
the elastically deformed springs. Their value depends on the
positions of the incident sensors i and j (here represented by
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position vectors si and sj), that are spatially associated with
the mass points i and j. We assume that there is exactly one
sensor per mass point, which is not a loss of generality.

~Fij = kij · (‖~sj − ~si‖ − l0ij ) ·
~sj − ~si

‖~sj − ~si‖
(1)

As it is common in literature (e.g. in [4]), the model dynam-
ics shall not be calculated exactly by differential equations.
Instead, it will be simulated in discrete time steps of distance
4t. Starting from the speed ~vit of sensor i at time t, its
speed at the time t +4t is calculated. Equation 2 shows the
motion equation involving the spring forces, summed up for all
sensors j which are connected to the sensor i. This notation of
the summation of connected sensors shall be kept throughout
this paper.

~vit+4t
= ~vit

+

∑
j

~Fij

mi
· 4t (2)

We recommend the addition of a general damping effect,
which is motivated by the time-discrete simulation of the
system. This significantly reduces problems in reaching a
stable equilibrium. Equation 3 shows the extended motion
equation, in which the speed of motion is dampened by a
factor d.

~vit+4t
= (~vit

+

∑
j

~Fij

mi
· 4t) · (1− d) (3)

The damping effect represents dynamic forces, which only
occur when the model is in motion. In contrast spring forces
do not necessarily occur during the motion of the model. They
shall be referred to as internal forces and code the shape
information contained in a mass-spring model.

Image information is integrated through external forces
exerted on mass points through sensors. Each sensor i creates
a force ~Fi depending on the image data. Theroto, the position
of sensor ~si as well as the type and parameterization of the
sensor are relevant. Extending equation 3 by external forces
results in the new motion equation 4.

~vit+4t
= (~vit

+

∑
j

~Fij + ~Fi

mi
· 4t) · (1− d) (4)

This motion equation is extended by weight coefficients
(equation 5), where wf weights the spring force component,
and ws(i) is the coefficient for the sensor force component.
The latter depends on i insofar, as different types of sensors
suggest different and independent weight coefficients.

~vit+4t
= (~vit +

wf ·
∑

j
~Fij + ws(i) · ~Fi

mi
· 4t) · (1− d) (5)

Once the model reaches its state of equilibrium according
to equation 5, the model’s adaptation to the data is complete.
The equilibrium of the model’s shape information and the
incorporated data information has then led to a model-based
segmentation of the data.

IV. EXTENDED MASS-SPRING MODELS

In this section, the mass-spring models of section III will
be extended by stabilizing torsion forces, so that the problem
of shape collapse and contortion in higher dimensions is no
longer relevant (for details see [6]). Because of the inflexi-
bility regarding rotation caused by these forces, possibilities
are presented to let a mass-spring model perform controlled
rotation while maintaining its stability.

A. Torsion Forces

Bergner already recognized in [2] the instability problem
of explicit dynamic 2D models and suggests to its solution,
besides a dense crosslinking, the use of an angle force which
he refers to as torque force .

Dense crosslinking (especially in higher dimensions) solves
the instability problem only at the expense of high model
complexity and only indirectly, for no additional control over
the degree of stability is gained.

The angle forces in [2] do only consider angles between
two springs with a common sensor. In higher dimensions,
this allows the angle plane to turn, so that a multitude of
additional angle forces would be necessary leading to the same
complexity problems as the dense crosslinking.

The solution to this problem is the introduction of (nor-
malized) rest directions r0ij

of the springs starting from one
sensor i to all its adjacent sensors j along the lines of the
spring rest lengths. Spring contortions, i.e. deviations from
their rest directions, can then be compensated by opposed
torque moments as figure 2 illustrates.

(a) (b) (c)

Fig. 2. (a) shows the springs in their rest directions (marked at the sensor).
In (b), these springs are contorted by some external force. As a result, in (c)
a torque moment acts on them in direction of their rest directions.

These torque moments manifest themselves in torsion forces
~F(i,j) (equation 6), whose values depend on the sensor-specific
torsion constant ti (torque moment per torsion angle).

~F(i,j) =
ti ·
∣∣∠(~rij , ~r0ij

)
∣∣

‖~rij‖
· ~nij

‖~nij‖
with ~rij = ~sj − ~si (6)

They act upon the sensors j tangentially to the motion curve,
in order to compensate the torsion. The working direction of
the torsion forces ~nij is calculated as equation 7 shows.

~nij = ~r0ij
−
〈
~rij , ~r0ij

〉
‖~rij‖2 · ~rij (7)
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Stabilization works successfully in arbitrarily high dimen-
sions. It allows an exact control of the shape stability via
a weight coefficient wt of the torsion forces. It requires as
many torsion calculations per sensor, as springs incide with
this sensor. Thanks to the absolute rest directions of all springs,
there is no danger of mutually shifting angle planes. Equation
8 shows the motion equation extended by the torsion forces.

~vit+4t
= (~vit

+
wf ·

∑
j

~Fij + wt ·
∑

j
~F(j,i) + ws(i) · ~Fi

mi

· 4t) · (1− d) (8)

The torsion forces belong to the internal model forces, as
they code knowledge about the model’s shape. With sparse
crosslinking, it can be assumed that the springs define the
size of the modelled object, whereas the spring directions
model its shape. Shape and size of a model can therefore be
weighted individually with respect to their influence on the
model adaptation.

B. Model Rotations

Because of the torsion forces’ dependence on the rest direc-
tions described in the previous paragraph, these rest directions
determine the orientation of the model. If these directions are
specified in an absolute manner in relation to the dataset, a
rotation of the model is prevented. This behaviour can be of
advantage in specific applications, e.g. when the orientation of
the object to segment is known in advance.

On the other hand, in order to enable model rotations, the
rest directions must not be specified absolutely. Instead, it
is reasonable to specify them relatively to the corresponding
sensor. This sensor must be rotatable as well. When it is
turned, then all rest directions of the incident springs are turned
respectively.

The rotation of the sensor i should ideally result from all
contortions of its incident springs, i.e. from their instantaneous
spring directions ~rij (see equation 7). In order to transfer the
sensor at once into a state of equilibrium with respect to the
contortions of all m incident springs, the inverse of the average
of all its incident springs’ compensation rotations is applied to
it. A spring’s compensation rotation is the rotation that would
be required to turn a spring j back to its rest direction ~r0ij

.
Figure 3 shows the sensor rotation in the case of two contorted
springs.

These compensation rotations are thereto modelled by
means of a quarternion Qij , in order to exploit their simple
and efficient ability to represent and combine rotations in 3D.
Equation 9 shows the construction of this quarternion from the
rotation angle ϕij (in mathematically positive direction) and
the vectored rotation axis ~aij .

Qij = Q(ϕij ,~aij) =
(

cos ϕij

2
sin ϕij

2 · ~aij

)
with ϕij = ∠(~r0ij

, ~rij) and ~aij = ~r0ij
× ~rij (9)

(a) (b) (c)

Fig. 3. (a) shows the springs in their rest directions (marked at the sensor). In
(b), these spring are contorted by some external force. As a result, in (c) the
sensor executes a compensatory rotation to minimize the overall contortions
of the springs.

Calculating the average of all mi individual rotations of
a sensor i is nontrivial, as the successive execution of ro-
tations in three-dimensional space is not commutative. This
average is rather comparable to a superposition (simultaneous
application) of the mi-th part of each individual rotation, so
that for large n the average quarternion Qi can adequately be
approximated by equation 10.

Qi =

∏
j

Q(
ϕij

mi · n
,~aij)

n

(10)

By applying the normalized average rotation Qinorm (equa-
tion 11) to all rest directions ~r0ij

of the current sensor i,
this sensor is aligned optimally according to the incident
contortions. This is not a contradiction to its physically based
model assumption, as a mass point has a torque moment of
zero at its center of rotation and can therefore reach arbitrarily
high rotation speeds according to Newtonian Mechanics. In
this context, equation 12 shows the recalculation ~r1ij

of the
rest direction ~r0ij .

Qinorm =

(
ϕ√

1−ϕ2

‖~a‖2 · ~a

)
with Qi =

(
ϕ
~a

)
(11)

(
0

~r1ij

)
= Qinorm ·

(
0

~r0ij

)
·Qinorm

with Qinorm =
(

ϕ
~a

)
=
(

ϕ
−~a

)
(12)

If all sensors in a mass-spring model are individually rotated
in the described manner, they can contort against each other,
depending on the degree of crosslinking. This may make sense
with respect to an exact adaptation to the segmentation target
object. However, if it is known that the object to segment does
not require such contortions, a rotation of the entire model
would be sensible, in which all sensors are rotated equally.

Such a model behaviour can directly be derived from the
free sensor rotation described above. The sensor rotations are
calculated individually as described above. However, instead
of applying them, the average rotation Q of all k sensors
of the model (equation 13) is applied to all sensors after
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normalization. This way, only the entire model rotates and
aligns optimally according to the spring contortions.

Q =

∏
i,j

Q(
ϕij

k ·mi · n
,~aij)

n

(13)

V. APPLICATION AND RESULTS

The extended mass-spring model presented in paragraph IV
was applied to the segmentation of the left ventricle (LV) of the
human heart in 3D SPECT data. The functional 3D SPECT
data in this application often exhibited a low signal in the
myocardium caused by infarcts. The goal was to define the
anatomy of the LV by the model and adapt it to the functional
image data.

The model for 41 datasets from 25 different patients was
generated automatically ([7]). This produced a sparsely con-
nected, three-dimensional mass-spring model, which allowed
for a high simulation speed of the model dynamics (less than 1
minute for the complete, fully automatic segmentation process
on a modern PC). It was achieved by the new stabilizing
torsion forces. Interactive intervention of the user into the
model adaptation process (e.g. moving of a mass) was possible
in real-time.

The model behavior was extremely stable and robust. Even
with initialization positions deviating from the LV positions
(by up to half of the LV diameter), the model quickly and
directedly moved onto the LV. A collapsed model with the
torsion forces switched off was able to regain its stable shape
similar to the original model shape very quickly after the
torsion forces had been reactivated; this way it was still able
to segment the LV successfully (figure 4).

Moreover the usefulness of the model’s introduced explicit
ability to rotate could be proofed. Figure 5 illustrates a case,
where this ability was necessary to segment the LV correctly.

The LV has been segmented successfully in all datasets.
Manual segmentations of medical experts were available for
7 datasets. Based on this gold standard, the average contour
deviation of the segmentation results from the manual seg-
mentation were measured. This deviation never extended half
a voxel (with 4.795 mm voxel size). The respective Hausdorff
distance of the contours was always smaller than 3 voxels.

VI. SUMMARY

The extended mass-spring model presented here is a stable
dynamic 3D shape model offering good modelling and interac-
tion capabilities. Due to their mechanics, they are more stable
in higher dimensions and therefore more goal-directed than
previous mass-spring models. For the first time, they allow for
a controlled rotation of the whole model without contorting it.

As a result of the introduction of torsion forces, sparsely
connected models can be used. For such models, an almost
independent and direct weighting of model size and shape
becomes possible. Furthermore, in higher dimensions, use of
sparsely connected models results in a significantly reduced
computational effort. That way, a simulation of the 3D model
dynamics in real time becomes possible.

(a) (b)

(c) (d)

Fig. 4. The model contour on the LV (top) and the corresponding 3D model
(below). (a), (c): Without torsion forces, parts of the model leave the low signal
infarct region. (b), (d): With torsion forces, the segmentation is correct.

(a) (b)

Fig. 5. 2D views of the final adaption of the LV model using torsion forces
to a LV with different orientation. (a) Without explicit model rotation ability.
(b) With explicit model rotation ability.
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