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Abstract. The preoperative planning of primary tumor resections in
the larynx region shall be supported by a 3D visualization of the patient-
specific anatomy and pathological situation. This requires a segmenta-
tion of the larynx cartilage structures from computed tomography (CT)
datasets.

In our work, we use 3D Stable Mass-Spring Models (SMSMs) for this seg-
mentation task. Thereto, we create a specific 3D deformable shape model
for the segmentation of the thyroid cartilage. A new concept for elastic
initialization of this model is presented, allowing the deformable model
to adapt specifically to patient-specific shape variations and pathological
deformations.

We show that using our generation and initialization method, prototypi-
cal 3D deformable shape models can be adapted to very different patients
without any prior training and prior knowledge about new patients’ data.

1 Introduction

In the case of tumor affections in the larynx and lower hypopharynx, the patient’s
life expectancy and further life quality depend strongly on the required surgical
treatment. The parts of the larynx which need to be resected, determine the
patient’s ability to breathe, swallow and speak. For the decision on a surgical
strategy, the extent of the tumor must be evaluated with respect to infiltration
of the following structures:

— the vocal chords and muscles (usually judged by laryngoscopy),

— the glottis, subglottic and supraglottic space, and

— the larynx cartilages, in particular the epiglottis, thyroid cartilage, cricoid
cartilage, and the two arytenoid cartilages (often judged by CT [1]).

For the assessment of the air and cartilage structures, a 3D visualization of the
patient-specific anatomy and pathological situation is desirable to reduce uncer-
tainties in the chosen surgical procedure. This requires a precise segmentation of
the larynx and its substructures from neck CT datasets. These images are very



rich of different small structures of high signal intensity (Figure 4 in the evalu-
ation section gives an impression) making any segmentation task very difficult.

The inhomogenous nature of the cartilage itself makes its segmentation a
challenging task, for which neither simple edge-based techniques, such as LiveWire,
nor gray-value-based segmentation techniques are appropriate. Since profound
anatomical knowledge is needed to bridge areas of weak signal in the cartilage
wall, we target at a 3D model-based segmentation of the thyroid cartilage.

2 State of the art

For the segmentation of the thyroid cartilage, no specific approaches exist to our
knowledge. General methods for the segmentation using 3D deformable mod-
els are known [2]: 3D Active Contours or Balloons [3] incorporate rough shape
knowledge by means of a viscousity condition. The use of an inflation force pre-
vents them from shape collapse and drives them towards the target structure’s
contour. This global representation of shape does however not allow to model
complex shape information. I'mplicit 3D deformable models [4] do not bear the
problem of instability and need no inflation force. However, they are restricted to
describing regular geometric shapes, that can be described by a simple equation.
Active Shape Models (ASM) and Active Appearance Models (AAM) [5] provide
support for segmenting more complex shapes by means of a statistical analy-
sis of training data. They require large amounts of training data and a very
good correspondance of 3D points, which makes model creation laborious and
segmentation results potentially imprecise. For the segmentation of pathological
shape variations (e.g. caused by a tumor), ASMs and AAMs are principally in-
appropriate, because these shape variations are very individual and cannot be
trained.

Stable Mass-Spring Models (SMSMs, [6]) are prototypical 3D shape mod-
els, that need no training, but an initial model describing the expected shape.
These models are especially appropriate for tracking and searching as well as
for segmentation, if the individual structure is known in general. They are very
robust to noise and gaps in the data, as [7] show for the segmentation of the left
ventricle in 3D SPECT.

In our application, such specific deformations need to be modeled. Therefore
it is not enough to create an SMSM like in [8] that prototypically models the
target structure. A further adaption to the patient-specific pathological shape
variation is necessary, which will be introduced in this work. This way, a seg-
mentation model is created, that is directly tailored to an individual patient
and does not represent unnecessary shape knowledge about other patient’s like
statistical models would.

3 Method

In our work, we construct an SMSM of the thyroid cartilage semi-automatically
from a manual sample segmentation. We thereto adapt and refine the model



creation (section 4) introduced in [8], which proposes a model topology consisting
of two parts created independantly from each-other:

1. an (outer) surface submodel containing masses with gradient sensors and
the contour faces representing the modeled object contour, and
2. an (inner) volumetric submodel containing intensity sensors.

Both submodels are connected afterwards to an overall model.

To adapt this prototypical model to each individual patient’s data, an elastic
initialization technique is introduced (section 5.1) to translate, rotate, scale and
deform the constructed general model nonlinearly and model-consistently to fit
the segmentation target structure by means of key masses. Because of these
starting conditions, the segmentation of the thyroid cartilage becomes possible
in this difficult data.

4 Model generation for the thyroid cartilage

The semi-automatic model generation for the thyroid cartilage is based on a
manual segmentation created from a dataset with a visually average-shaped
larynx. The sample segmentation is available as a binary volume dataset. For
our examination, two different models were created and evaluated:

1. One volumetric model, according to the model creation of [8], consisting of a
surface submodel and a volumetric submodel connected by 1:1 connections.

2. For comparison, a pure surface model is created, consisting of the surface
submodel only. This model was employed to evaluate whether segmentation
based on edge detection alone is more appropriate than using gray value
information.

4.1 Generation of the surface model

The sample segmentation was resampled down to an isotropic voxel size for
efficient model generation. From this resampled segmentation, an isosurface was
generated using the marching cubes method (Fig. 1(a)), smoothed and simplified
with Quadric Error Metrics [9] to a certain degree (Fig. 1(b)), that is adjustable
for different abstraction levels. The resulting number of triangles (in our case 50—
200) provides an appropriate modelling of the cartilage shape while still allowing
for realtime model simulation (Fig. 1(c)).

The resulting surface was used to create the surface model: For each vertex of
the mesh, a mass point was created. For each edge in the mesh, a spring connect-
ing the incident vertices, rsp. mass points, was created. All masses and spring
constants throughout the model were set to 1.0. A direction-weighted gradient
sensor [10] was attached to each mass point of the surface model, ensuring that
contour masses are only attracted by image gradients of the same direction as
the incident surface normal. This prevents the model from being distracted by
neighbouring but irrelevant gradients, which is a common problem in neck CT
datasets.
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Fig. 1. Stages of model creation (surface submodel: (a)-(c), volumetric submodel: (d)
- (f)) for the thyroid cartilage: (a) Isosurface, (b) Surface simplification, (c¢) Surface
submodel, (d) Mass point initialization, (e) Mass point reduction, (f) Volumetric
submodel

4.2 Generation of the volumetric model

For the generation of the volumetric model, inner masses with attached intensity
sensors, dragging these masses towards neighbouring voxels of a certain gray
value interval, have to be created and combined with the surface submodel.
Thereto, an initial set of mass points is created by placing one mass point at
each voxel of the resampled manual segmentation (Fig. 1(d)). Then, the initial
point set is reduced iteratively by the following relaxation.

Reduction of inner masses. For each mass point, all mass points inside
a neighbourhood of radius r are moved to their common center of mass and
merged. By iterating this relaxation, the initial point set is reduced considerably,
and fills the manual segmentation evenly (Fig. 1(e)).

The convergence of the relaxation towards a reasonable point set depends
on the choice of r. According to our experiments, a radius of half the desired
minimum distance of two mass points leads to a convergence representing the
original shape well. A dense placement of the volume masses has the advantage
that the inner properties of the segmentation target structures are measured
at more positions, which is equivalent to a higher sampling rate. We therefore
always chose 7 to be within [voxelsize; /2 - voxelsize).



Fig. 2. Elastic model initialization: (a) Key masses, (b) Key masses placed, (c) Model
during adaptation to key positions, (d) Model after adaptation to key positions

Cross-linking of the inner masses. Each of the resulting volume mass points
is linked with each neighbouring mass point within a user-defined radius p. In
our model of the thyroid cartilage, a radius of p = 10mm (for a voxel size of
2.148 mm) led to good results in all cases (Fig. 1(f)).

4.3 Connecting inner and outer submeodel

Both the volume and the surface submodel are interconnected by springs and
merged to one volumetric model. A 1:1 interconnection (each point of the surface
submodel is connected to the closest mass point of the volume submodel) has
proved to be appropriate for good model stability.

5 Segmentation process

5.1 Elastic, model-consistent initialization

A good initial adjustment of the deformable model to the individual patient’s
larynx shape is needed, so that the adaptation of the model to the dataset will
not be distracted by ‘wrong’ gray value information of adjacent structures.

For this initialization, the model’s position, rotation, scaling and expected
shape have to be adjusted for our application. Classical initialization methods
correcting only the model’s position, rotation and/or scaling are not sufficient
according to our tests (see section 6.2 for details).

We therefore introduce a new initialization method, which exploits the model
specification already available: In the created deformable model, a mass point at
each of the most prominent landmarks is marked as a key mass at the end of the
model creation process. The user can specify the positions of these key masses by
clicking into the dataset. The 6 key masses for the model of the thyroid cartilage
are positioned at the cornu superius left and right (1.), cornu inferius left and
right (2.), as well as the upper (Adam’s apple) (3.) and lower end of the larynz
front side (4.) (Fig. 2(a)).



These key masses are then fixed and the model simulation is started with
only the spring and torsion forces active, but all sensor input turned off®. The
internal forces, normally representing the model’s shape knowledge during a
regular segmentation, adapt the model’s shape to the key positions (Fig. 2(b)-
(d)), while keeping the model as consistent as possible to the shape knowledge it
represents. With this method, the model adjusts itself flexibly and nonlinearly
to the specified key positions. Guided by the key masses, it adjusts position, size,
orientation and shape during this process to the individual patient’s anatomy.

After complete adaptation, the rest lengths and rest directions of all springs
are set to their current (deformed) length and direction values. This way, the
new expected shape is anchored in the model.

5.2 Model adaptation

After initialization, the precise model adaptation is started* . All key masses are
left fixed, so that the model adaptation occurs within their frame of reference.
This way, the model is kept at the correct position. Besides, the lengths of the
cornu superius and inferius vary widely among different patients. By keeping
the top of the cornu fixed, we can ensure that the whole cornu is found. The
simulation is stopped, when the model speed falls below a certain threshold,
which always happens because of the damping.

6 Evaluation

6.1 Data material and ground truth

12 CT datasets of the neck were acquired for preoperative planning, containing
the larynx. The slice thickness of the datasets ranged from 1.5 mm to 6.0 mm.
The datasets varied significantly w.r.t. signal-to-noise ratio, contrast and motion
artifacts. In 3 datasets, the larynx was displaced or partially destroyed due to
tumor affection. On all 12 datasets, a manual segmentation of the thyroid carti-
lage was created by an experienced user and controlled by a radiologist. These
verified manual segmentations were used as a ground truth for the evaluation.

6.2 Model initialization

To evaluate the single effect of our elastic initialization method from section
5.1, we compare it to the classical initialization methods of positioning and
positioning with independent scaling for each axis, where always the optimal
initialization is computed with regard to the ground truth. Rotation correction

3 simulation parameters: spring force weighting w; = 5.0, torsion force weighting
wy = 10.0, damping factor d = 0.001, simulation time step At = 0.05

simulation parameters: sensor force weighting ws = 0.05 for gradient sensors, ws =
0.001 for intensity sensors, spring force weighting wy = 1.0, torsion force weighting
wy = 2.0, damping factor d = 0.001, simulation time step At = 0.05

4



Evaluation Measure|Position |Position / Scale|Elastic

Hausdorff Distance [30.54 mm|29.16 mm 20.06 mm

Average Distance |4.73 mm |4.09 mm 2.90 mm
Table 1. Average initialization results of the standard initialization methods (position
and position / scale) and our elastic, model-constistend initialization method compared
to the ground truth, measured for 11 CT datasets of the neck using a model created
on the 12th dataset (leave-one-out-test)

did not make sense here, since the datasets have because of the same imaging
process all the same principal direction.

In the optimal case, a “perfect” model initialization would be equal to the
ground truth. We therefore calculated the shape (border) distances (Hausdorff
and average distance) of both classical initialization methods and our elastic,
model-constistent initialization method to the ground truth for evaluation. Table
1 shows, that the new elastic, model-based initialization technique places the
model roughly 30 % - 40 % closer to the ideal segmentation result than the
classical initialization methods. This is an important improvement for every
segmentation method using a local search technique, such as the SMSM approach
used for our application.

Furthermore, these numbers show, that the elastically initialized model’s
shape approximates already the individual shape of the segmentation target
structure for a single patient. Otherwise, the shape distances from table 1 would
not be so much lower than the ones from the classic initialization methods, which
optimally match the ground truth using models without deformation allowed,
but only scaling (Fig. 3 illustrates this fact).

6.3 Segmentation experiments

From a dataset with an average-shaped larynx, a volumetric model (consisting of
a surface and a volumetric submodel) and a pure surface model were generated

Fig. 3. Enhancement by elastic model initialization: (a) Manual initialization using
only translation, (b) Manual initialization using translation and scaling, (c) Elastic
initialization with 6 landmarks



Evaluation Measure|Volumetric model|Surface model

Hausdorff Distance [11.11 mm 9.84 mm

Average Distance |1.20 mm 1.06 mm
Table 2. Average segmentation results of the 2 models and 1 experienced user com-
pared with the ground truth, measured for 11 CT datasets of the neck

as described above (section 3). The key masses were marked manually and used
throughout all experiments. The two models were then applied to the remaining
11 datasets (leave-one-out-test) in the following manner:

1. The user marks the key positions in the dataset (6 markers).

2. The model is automatically positioned and scaled according to the bounding

box of the key positions.

The model is adapted to the key positions (1 click for stopping this phase).

The newly adapted shape is automatically learned by the model.

5. The model adaptation to the dataset is performed with the key masses still
fixed. (1 click for model stopping).

=

The segmentation results for both models, as well as the manual segmentation
results of an experienced user were compared with the given ground truth by
different evaluation measures (Tab. 2).

6.4 Results

In all 11 datasets, the thyroid cartilage could be robustly segmented with an
average border distance of 1.064 mm to the ground truth. No significant loss of
segmentation quality could be found in the cases of pathological larynx shapes
(Fig. 4(a)). Weak-signal holes in the cartilage were successfully bridged by the
model’s intrinsic shape knowledge (Fig. 4(b)). The model adaptation time needed
for elastic initialization was 0.5-1.5 minutes for all datasets, the model adapta-
tion to the datasets took 2—4 minutes per dataset (all measures performed on a
standard PC: Pentium M, 1,7 GHz, 512 MB RAM).

Our results show, that the volumetric model is not superior to the pure
surface model. In fact, with intensity sensor weighting ws > 0.001, the intensity
sensors tend to be attracted by false gray values in neighbouring structures. This
leads to strong model instability and significantly worse segmentation results.
We therefore recommend using a pure surface model for the segmentation of the
thyroid cartilage, which will be less affected by gray value inhomogenities.

The model’s adaptation to the datasets is significantly better in the lower
part of the thyroid cartilage (i.e. below the adam’s apple) than near the upper
border, which may cause up to 50 % of the observed undersegmentation. This
can be attributed to several circumstances:

— The lower part of the thyroid cartilage tends to be signal-intensive, while
the model often lacks signal support in the upper part. This may lead to



strong undersegmentation of this area (Fig. 4(d)). This causes the relative
high values the Hausdorff distance. A simple user interaction might prevent
this behaviour.

— In some cases where the hyoid bone is very close to the thyroid cartilage,
the upper sensors of the model are attracted by its strong signal. In order to
prevent leaking, the os hyoideum may be subtracted from the dataset first.
Another possibility is to integrate the hyoid bone into the model to ensure
that the masses for the thyroid cartilage are kept at appropriate distance.

Except for the hyoid bone, no other neighbouring structures distracted the
model. This must be attributed to the new method for initialization followed
by shape learning. Without these techniques, the thyroid cartilage could not be
separated from the thyroid gland, blood vessels and the trachea robustly.

(d)

Fig. 4. Results of the model adaptation to the datasets.



7 Discussion

A deformable 3D model (Stable Mass-Spring Model) has been constructed and
adapted for the segmentation of the inhomogeneous and complex-shaped thyroid
cartilage. We introduced model-consistent (position, orientation, rotation and
shape) adaptability of the model to individual patient shape variations by means
of an elastic initialization. In contrast to statistical shape models however, our
method is not limited to a pre-learned range of shape variations. Instead, it
is always initialized to represent the shape information it needs by means of
a few key masses. This makes it especially suited for segmenting pathological
structures.

Compared with a manual or LiveWire segmentation, the model offers a dras-
tic reduction of interaction effort. Already now, the model can be used at least
as a presegmentation of the cartilage, which needs only be corrected at 2—3 po-
sitions by the user. In contrast to other 3D models, such as implicit models and
ASMs, interaction is intuitively supported by the explicit shape representation
of our model.
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