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Abstract

Purpose Exact and reproducible knowledge regarding the
position, size, and type of the lymph nodes is often needed
for tumor computer-aided diagnosis, treatment planning, and
follow-up. An automatic segmentation method for CT data
was developed that can identify and delineate normal as
well as pathologically altered lymph nodes to satisfy this
requirement.

Methods A semi-automatic lymph node segmentation
method was developed using a 3D Stable Mass-Spring Model
(SMSM), based on parallel simulation of the shape model on
CT scan images. The models are started across the whole
dataset at all potential lymph node positions but will only
adapt to the data where a lymph node is found. The node
positions can be determined by an evaluation of the model’s
quality of fit.

Results Systematically chosen lymphnodesin 5 CT datasets,
including enlarged, necrotic, fuzzy-bounded, and deformed
lymph nodes, were used to evaluate the segmentation algo-
rithm performance. A test set of 29 lymph nodes taken from
4 typical lymph node regions were included. All lymph
nodes were detected automatically, while an additional 31%
false-positive (n =9) candidates were detected. The average
calculation time was 2min per dataset. The segmentation
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accuracy was comparable to the inter-observer variance of
human experts.

Conclusions Clinically relevant lymph nodes were detected
within a few minutes and provided sufficient accuracy to
demonstrate the feasibility of a new segmentation method.
The test data were diverse, and the robust results suggest
potential applicability to many kinds of lymph node abnor-
malities, except for extremely degenerated lymph nodes.

Keywords Dynamic models - Stable mass-spring models -
Lymph node segmentation - Lymph node detection

Introduction
Application

The assessment of a tumor disease (TNM classification')
and the following therapy decision and evaluation depend
not only on the tumor itself, but also on the lymph node
situation w.r.t. size, dignity, and infiltration of neighboring
tissue [1]. If exact analysis, visualizations, or measurements
are required, the lymph nodes have to be segmented (e.g.,
in CT data), which, in general, is a most time-consuming,
tedious, and error-prone procedure [2,3]. A complete fully
automatic segmentation of all lymph nodes in a whole body
region (e.g., the neck) would be most appreciated in this case.

Technology

A complete automatic detection process consists of a detec-
tion of all lymph nodes, followed by or combined with a

! The international normed TNM classification describes the state of
the tumor (T), the lymph nodes (N), and possible metastases (N).
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segmentation of each finding. In this paper, both tasks will
be addressed.

Object detection in medical images is an important and
difficult problem. Due to the variability of medical structures
and due to the often low image quality of medical image data,
object detection tasks are currently carried out manually in
most cases, as no adequate automatic techniques exist. This
makes many image analysis tasks (e.g., in the preparation
of datasets by segmentation of many structures) very time-
consuming or may lead to increased error rates, when time
is short in the clinical routine and objects are overseen (see
study in [4]).

This article builds upon prior work on the segmentation
with dynamic shape models (e.g., [5]) and employs this
robust technique for the object detection as well. We ver-
ify these model’s appropriateness for local search tasks and
employ it for the development of a global search process.

In this work, we use Stable 3D Mass-Spring Models
(SMSM) that were introduced by Dornheim et al. in [6].
These models are a special type of mass-spring models that
have been extended by an additional torsion force that pro-
vides the direct possibility of flexible shape maintenance,
in order to prevent shape collapse during the model adapta-
tion. They are force-driven and are simulated time-discretely
according to Newtonian mechanics. The model’s relation to
the dataset is implemented by sensors at the masses, which
create forces according to the local image information, which
pull the model toward specific features and structures in the
dataset, while concurrently the model’s shape is preserved
by the torsion and spring forces.

State of the art
Lymph node segmentation

Rogowska et al. [7] analyzed several lymph node seg-
mentation techniques and stated that reliable lymph node
segmentation is only possible with the use of model knowl-
edge. A fast-marching lymph node segmentation approach
presented by Yan et al. [8] requires complex user interac-
tion (barrier placement, etc.) to prevent leaking. The active
surfaces approach proposed by Honea et al. [9] uses more
complex model knowledge but was never evaluated on real
CT datasets, but only on idealized phantoms.

The first relatively robust method [10] uses a Stable Mass-
Spring Model (SMSM) consisting of two layers, which inte-
grates shape and appearance knowledge and requires only
a starting point close to or inside the target lymph node.
The quality of the segmentation results lies slightly above
the inter-personal variability. Enlarged, necrotic, or fuzzy-
bounded lymph nodes were not addressed, which is however
very important for tumor diagnosis. A similar approach was
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presented by Maleike etal. [11], who used a statistical instead
of a Stable Mass-Spring Model. This statistical model uses
very few shape modes to restrict the model to rather elliptical
shapes. The results of this method are comparable to [10],
but a lot more user interaction (rough scribbling of the lymph
node interior on the dataset) is needed before the segmenta-
tion. In some cases, a manual correction is recommended.

Lymph node detection

Object detection in image data is a wide field of research.
Much research in this area has been directed at the recogni-
tion and tracking of objects in projective, two-dimensional
images (e.g., photos), in which occlusion and varying views
of objects are a problem; however, the size of the data is
rather small. These approaches are therefore focused on the
identification and relation of specific, discriminable object
features [12—15]. Global optimization techniques trying to
fit models of different nature to the target objects are also
often found in this category [16—19].

For object search in large medical volume data, those
approaches are however often inappropriate, because their
global optimization approach is too inefficient for large data-
sets. Furthermore, the object shape is not represented directly,
even though it is often an essential recognition feature, as it
is not affected by occlusion and different viewing directions.
Besides, these models are hard to construct for specific detec-
tion tasks.

In some cases, complex filter pipelines are used to detect
certain kinds of structures. E.g., [20] presents a method
that employs a 3D minimum directional difference filter
for enhancing blob structures with suppressing line struc-
tures, before context information is applied. But without spe-
cific knowledge about the object’s shape and appearance,
the detection results were not satisfying in any case (57.0%
detection rate of enlarged lymph nodes with 58 false positives
per case).

For search tasks in large medical volume data, three-
dimensional shape models are of interest, such as they are
often applied to segmentation tasks on medical data. They are
able to deal with the large size of the datasets and describe the
shape and gray value specifics of medical structures. Single
object parts are often not specific enough to draw conclu-
sions about the whole object. Typical shape models in this
area, besides the SMSMs mentioned in the introduction, are
Active Shape Models [21], Simplex Meshes [22], and super
quadrics [23].

For detection tasks, SMSMs are very appropriate, as they
can be created easily and efficiently for many different types
of target structures [24]. Furthermore, they are locally flex-
ible w.r.t. their shape, which complies with the nature of
medical structures, and allow for a direct measurement of
their quality of fit [25]. In [26], the direct predecessors of
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Detection Procedure
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Fig. 1 Schematic overview of the complete fully automatic lymph node segmentation process

the SMSMs have been applied for object classification in the
context of a stochastic search of different object parts. We do
not know of any other approaches to use other shape models
for object detection.

Methods

The process of automatically detecting all structure of a cer-
tain type (lymph nodes in our application case) in a whole
dataset or a dataset region is schematically depicted in Fig. 1.
The search process needs three kinds of inputs:

1. The dataset or dataset region, which is searched for the
specific structures.

2. The specific structure type to search for in form of a
dynamic model describing its shape and appearance.

3. Additional search information like the number of
expected structures and relevant sub-regions.

As the search process starts, the whole input data are ana-
lyzed and an adequate partitioning of the dataset into cells is
determined. The dynamic model is cloned, once for each cre-
ated cell of the dataset. The cells are chosen small enough, so
that a single dynamic model is always able to find any target
structure in its associated cell.

Now, in each cell, a complete local search is performed
by the associated clone of the dynamic model. Using addi-
tional search information, some of the cloned models can
be skipped for performance reasons. If a dynamic model has
adapted successfully to the data, then the resulting segmenta-
tion describes a detected structure; otherwise no target struc-
ture was found in the corresponding cell. The search process
can run in parallel and has finished, when all cloned mod-
els have been skipped or finished their own adaptions to the
data, either successful or without success. At last, only a

subset of the successful adapted models can be selected
to avoid duplicate findings to ensure a certain number of
detected structures.

In the following sections, first the used lymph node model
and its dynamics and components are introduced (“Lymph
node model”). After that, the whole search process (“Com-
plete automatic segmentation process’’), which this model is
used in, is described.

Lymph node model

In this section, we first present a segmentation model for
lymph nodes in CT data, which is based on the method from
[10], but extends it considerably w.r.t. accuracy and support
of enlarged, necrotic, fuzzy-bounded, and deformed lymph
nodes. This lymph node segmentation technique requires an
initialization step, which can be carried out manually or auto-
matically. In this work, a fully automatic initialization is of
interest, which will be addressed later in “Complete auto-
matic segmentation process” on the description of the object
detection framework, which will use the following method
for the segmentation of the single lymph nodes.

Model design

We use a three-dimensional Stable Mass-Spring Model
(SMSM) for the segmentation of the lymph nodes, which
is a mass-spring model with extended dynamics to achieve
a more controllable and stable behavior in 3D (see “Model
dynamics”). This model consists of two layers and is initially
sphere-shaped (Fig. 2). Due to its physics-based nature, it can
deform elastically to model the ellipsoidal or bean shape of
real lymph nodes. The outer model layer has edge sensors at
the mesh vertices, which strive toward edges in the CT data-
set that have an orientation parallel to the model’s surface.
In contrast to this, the vertices of the inner model layer wear
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Fig. 2 a Schematic 2D view of (a)
the two layers of the 3D lymph

node model (SMSM). Outside,

the edge sensors (red) and inside

the gray value sensors (blue) are

shown. Bold springs are

especially stiff. b 3D view of the

real lymph node model

intensity sensors, which strive toward the typical gray value
range of lymph nodes in CT datasets.

During the model simulation, the model adapts to the
lymph node’s edges by means of the gradient sensors on
its outer layer, while the intensity sensors on its inner layer
keep the model on the lymph nodes, so it cannot drift away or
leak out. Meanwhile, the shape-preserving torsion forces of
the model ensure that the model keeps a rough lymph node
shape according to the chosen weighting of dataset fitting
versus shape maintenance.

Model dynamics

We use Stable Mass-Spring Models (SMSMs, see [6]), an
extended kind of mass-spring models, that enables a stable
dynamic behavior in 3D. They adapt to structures in image
data by balancing their internal and external forces during a
discrete time simulation. While the internal forces sustain the
model’s size and shape knowledge, the external forces drive
the model to certain image features. This way, a weightable
compromise between the image data and the model knowl-
edge is achieved, so that missing image information can be
replaced by appropriate expectations.

In contrast to conventional mass-spring models, they use
an additional kind of internal force (the torsion force), which
can be used to explicitly control the model’s shape, while the
spring forces control the scaling of the model. Furthermore,
measurement of these forces allows separated conclusions
about the model’s current shape and scale deviation. In the
following paragraphs, the model mechanics are described in
more detail.

Mass-spring models
Mass-spring models are dynamic, physics-based models

known from image analysis literature (e.g., [26]). They are
a theoretical model representing a dynamic system of mass
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points interconnected by elastic springs. Besides the physi-
cal parameters, i.e., the masses m; of the mass points i, and
the rest lengths /o,;, and spring constants k;; (force exerted
per length difference) of the single springs, the connection
topology of the masses and springs plays a central role.

The dynamics of such a system can be described by
Newtonian Mechanics. The motion of the mass points is thus
solely influenced by the forces acting on the mass points.
In this simple theoretical and ideal system, only internal
forces exist, which are the spring forces F;; (Eq. 1) being
exerted on the mass points by the elastically deformed
springs. Their value depends on the positions of the incident
mass points i and j (here represented by position vectors s;
and s ).

Sj—S,'

Fij =kij - (||sj —si| —loy,) (M

sy =il

As it is common in literature (e.g., in [27]), the model
dynamics shall not be calculated exactly by differential equa-
tions. Instead, it is simulated in discrete time steps of dis-
tance At. Starting from the speed v;, of mass i at time ¢, its
speed at the time ¢ + At is calculated. Equation 2 shows the
motion equation involving the spring forces summed up for
all masses j that are connected to the mass i. This notation of
the summation of connected masses shall be kept throughout
this paper. In addition, a damping factor d exists in this equa-
tion, which is motivated by the time-discrete simulation of
the system. This significantly reduces problems in reaching
a stable equilibrium.

Image information is integrated through external forces
exerted on the mass points through sensors. Each sensor i
creates a force F; depending on the image data. Thereto,
the position of mass s; as well as the type and parametriza-
tion of the mass’ sensor is relevant. Furthermore, this motion
equation contains weight coefficients, where w y weights the
spring force component and w; (i) is the coefficient for the
sensor force component. The latter depends on i insofar,
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(a) (b)

(c)

Fig. 3 a shows the springs in their rest directions (marked at the mass). In b, these springs are contorted by some external force. As a result, in ¢,

a torque moment acts on them in direction of their rest directions

as different types of sensors suggest different and indepen-
dent weight coefficients.
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Torsion forces

In [26], Bergner already recognized the instability problem
of explicit dynamic 2D models and suggests to its solution,
besides a dense cross-linking, the use of an angle force which
he refers to as torque force. Dense cross-linking (especially
in higher dimensions) solves the instability problem only at
the expense of high model complexity and only indirectly, for
no additional control over the degree of stability is gained.
The angle forces in [26] do only consider angles between
two springs with a common mass. In higher dimensions, this
allows the angle plane to turn, so that a multitude of addi-
tional angle forces would be necessary, leading to the same
complexity problems as the dense cross-linking.

The solution to this problem is the introduction of (nor-
malized) rest directions ro,;of the springs starting from one
mass i to all its adjacent mass j along the lines of the spring
rest lengths. Spring contortions, i.e., deviations from their
rest directions, can then be compensated by opposed torque
moments as Fig. 3 illustrates.

These torque moments manifest themselves in forsion
forces ¥(; j (Eq. 3), whose values depend on the mass-spe-
cific torsion constant #; (torque moment per torsion angle).

- ti-|L(rijro)| my
i.j) = :
ij ij
r n
They act upon the mass j tangentially to the motion curve
in order to compensate the torsion. The working direction of
the torsion forces n;; is calculated as Eq. 4 shows.

with rjj=S8; —Si 3)

(rij B rO,‘j )
=
i

Stabilization works successfully in arbitrarily high dimen-

sions. It allows an exact control of the shape stability via a

n;j = ro; — rjj 4)

weight coefficient w; of the torsion forces. It requires as many
torsion calculations per mass, as springs are connected to this
mass. Thanks to the absolute rest directions of all springs,
there is no danger of mutually shifting angle planes. So, the
problem of shape collapse and contortion in higher dimen-
sions is no longer relevant (for details see [6]). Equation 5
shows the motion equation extended by the torsion forces.

m;

-At)-d 4)

The forsion forces belong to the internal forces, as they
code knowledge about the model’s shape. Mass-spring mod-
els having these forces are called Stable Mass-Spring Models
(SMSMs). With sparse cross-linking, it can be assumed that
the springs define the size of the modeled object, whereas the
spring directions model its shape. Shape and size of a model
can therefore be weighted and measured individually with
respect to their influence on the model adaptation. Further-
more, the existence of rest directions for each mass allows
easily for direction-dependent sensors. Therefore, edge sen-
sors of SMSMs are normally direction-weighted, which leads
to lower edge sensor values the more the edge’s normal direc-
tion differs from the sensor’s mass’ rest direction (see [28]
for further details).

wr-2 Fij+ w2 Fn +ws (@) - F
Vipar =\ Vie

External forces

The external forces Fex¢ are induced by sensors k attached
to the masses of the model. In general, many kinds of differ-
ent sensors are thinkable, but on voxel image data, normally
voxel-based sensors are used, which compute their forces as
gradients on the original or preprocessed variants I of this
image data on the position s; of the mass i they are attached
to, as Eq. 6 shows.

Fext, = VI(si) (6)
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Hounsfield transformed
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Hounsfield original

Fig. 4 Schematic course of a plateau filter function

This preprocessing can depend on the sensor status, e. g. its
direction dg. In the case of edge sensors, this direction is the
normalized normal direction of the model border. A border
offset parameter by was introduced within this work to move
the sensor position along its parent mass’ normal back and
forth, as can be seen in Eq. 7. This way, the model border can
be pushed along its normal directions to grow or shrink the
model to compensate systematical over or under segmenta-
tions. This is an important control option, since ground truth
segmentations normally do not have their borders exactly on
the highest gradient values in the image data.

Fextk =vI(s; + by -dy) @)
Sensor filter design

In contrast to the technique in [10], we filter the CT data-
sets (their intensities and gray values, respectively) by means
of plateau transformations, before the sensors of the model
access them. In the case of the intensity sensors, a transfor-
mation variant is used, which sets all pixels within the lymph
node Hounsfield range ? to its base value 10. All values below
10 are not changed, and all values above 110 are flipped on
the center value of the lymph node intensity interval, in our
case 60 (see Fig. 4).

This way, it is guaranteed that all gradients in the dataset
point in direction of the lymph node intensity range, which
has no further gradients inside. So all gradient-based intensity
sensors strive into the lymph nodes but create no disturbing
and unwanted forces when they are inside the lymph nodes.

Especially for necrotic lymph nodes (like in Figs. 5 and 6),
this behavior is very important and a main improvement com-
pared to the base method, because they have strong inner
gray value variations, which normally would strongly dis-
turb the model. If otherwise the gray value interval is filtered
using rigid limits (rectangle-shaped function) like in the base

2 From 10 to 110 in our datasets, as determined by our clinical partners.
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Fig. 5 a plateau-transformed dataset. b model adaption using a rect-
angle-filtered gray value range for the intensity sensors. model adaption
using plateau-filtered intensity sensors in ¢ without and in d with plateau
filtering for the edge sensors

method, then strong forces that deform the model too much
will appear due to the very strong gradients at the filtered,
binary gray value interval borders. Furthermore, there will
be no forces outside the lymph nodes, which could pull the
intensity sensors back into the lymph node, if they have driven
away. Also, if the gray value interval does not fit perfectly to
an individual lymph node, its borders cannot be found exactly
by the model if they lie slightly outside this interval, since
the model will be kept strongly inside this interval behind the
binary, filtered gray value interval border (see Fig. 5b).

Also the edge sensors use a special, plateau-filtered dataset
instead of the original dataset. This plateau transformation is
different from the one used for the intensity sensors: The pla-
teau is degenerated to a peak at the top of the lymph node gray
value interval, which is 110 in our case. So, this special case
of the plateau filtering is carried out with a triangle-shaped
function. By this technique, it is achieved that the orientation
of all edges in the dataset within the gray value range above
110 is flipped, but their size and strength is not changed,
so that no edges disappear or show gray value interruptions
caused by the filtering.

After the plateau filtering, the lymph node’s gray value
range is the most intense range in the dataset. Therefore, it
can be assumed that all lymph node border edges are oriented
(w.r.t. their gradient) toward the inside of the lymph node,
even if they were adjacent to a brighter, contrasted vessel in
the original dataset (see the plateau-transformed dataset in
Fig. 5a in contrast to the original dataset in b).
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Furthermore, it can be assumed that all relevant lymph
node border edge information does not lie outside the lymph
node Hounsfield interval, extended by a certain tolerance for
the border value range. We use 50% of the lymph node inter-
val from 10 to 110 as this tolerance, leading us to our edge
Hounsfield interval of —15 to 135. All edges outside this
interval will be filtered out.

This way, the edge sensors on the outer model layer can be
adjusted to detect only border edges oriented inside, discard-
ing most of the useless, distracting edge information in the
dataset without losing any lymph node border edges. Without
plateau filtering, either the outside-oriented edges would also
have to be considered, which would additionally distract the
model, or the edges to brighter neighboring structures would
be ignored and not found by the model. In the last case, an
unwanted drifting toward these brighter structures is often
observed (like in Fig. 5c¢).

Multi-model strategy

When trying to segment lymph nodes in general, it will be
noticed that lymph nodes can have very different appear-
ances. They can be small or large, elliptical or severely
deformed, evenly gray or strongly textured, etc.. Especially
lymph nodes that are relevant for tumor assessment are often
enlarged, deformed, or even necrotic (i.e., strongly textured
or at least with dark interior areas). From a computer vision
point of view, normal and necrotic lymph nodes must be han-
dled as different classes of objects as respects scaling, shape
variation, and texture.

SMSMs are prototypical models, which are verifiably very
well suited for the segmentation of such a class of objects
that are characterized by a specific shape, appearance, and
also scaling, if wanted. In contrast to this, statistical mod-
els (ASMs, etc.) can represent different object classes at the
same time, but in practice they also have problems, if these
classes differ too much from each other. In general, for single
specific classes, specifically designed models perform better
than general models, which also model other classes at the
same time.

Hence, to adequately deal with the different classes of
lymph node appearances, we use a set of single lymph
node models as a virtual overall model in a concurrent seg-
mentation strategy, where each single model is specifically
designed for a certain type of lymph node. For the lymph node
segmentation, one of the most important class partitions is
the one by size. So, we use a set of models for lymph nodes of
different sizes (see Fig. 6). Furthermore, there are also mod-
els thinkable for different lymph node textures, shapes, etc.

For the multi-model segmentation strategy, all models of
the set will be started at the same position (the start position
of the virtual overall model) in parallel. After the individual
model adaptions have converged and finished, the best fitting

Fig. 6 Results of the multi-model segmentation using modes of dif-
ferent scaling level a factor 3, b factor 5, ¢ factor 7, d factor 9

model of all started models is chosen as the segmentation
result of the virtual overall model. So, besides the pure seg-
mentation result, it is also possible to determine the class of
the segmented lymph node, because it is known which lymph
node class the chosen model belongs to.

The best fitting model is determined using a quality of
fit calculation, which considers both the correspondence of
the adapted model with the dataset (by evaluating the current
sensor values of the adapted model) and its deformation (by
using the still existing shape forces of the adapted model).
The result is calculated as a value between 0O (not fitting) and
1 (very well fitting). In [25], it is explained how the quality
of fit can be calculated for SMSM, which are used in our
method. Furthermore it states that these models are espe-
cially suited for the calculation of such a quality of fit, which
was one important reason to choose this model type for our
segmentation task.

Complete automatic segmentation process

In this section, we present the overall search process. It is
a general method, which can be used to detect arbitrary
known structures in medical volume data safely and auto-
matically. Thereto, these structures need to be adequately
describable by a dynamic shape model, which we will explain
in “Requirements”. For our application task, the lymph node
shape model described in “Lymph node model” is used.
The searchitselfis based on a parallel adaptation of several
instances of this shape model to the image data. All model
instances are systematically distributed across the complete
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dataset at all potential lymph node positions. This fully auto-
matic distribution serves as the required initialization step for
the models, as introduced in “Lymph node model”.

Requirements

The global search process consists of independent local
search processes, whose individual action ranges are ideally a
partition of the search space. It is essential for the correctness
of the search result that the complete search space is covered
without gaps by this partition, whereas the pairwise disjunc-
tiveness is only relevant for the efficiency of the search. For
the sake of simplicity and efficiency, it is additionally desir-
able that all individual action ranges have the same shape,
size, and orientation, so that they can be treated uniformly.
For this reason, we chose a partition of the volumetric search
space into congruent, axis-parallel cuboids.

In order for a model to successfully perform a local search
in its action range, it must fulfill three requirements: consis-
tency with its target structure, monotonicity of the search
space, and measurability of the quality of fit. These are
explained in the following sections.

Consistency with the target structure

The model must consistently represent its target structure,
i.e., the target structure must be a local minimum in the search
range of the model, w.r.t. the objective function given implic-
itly by its motion equations. This ensures that the target struc-
ture is always found, if the search initialization is sufficiently
close. Thereto, the model must reliably represent the shape
and gray value features of the target structure in order to
discriminate it from other structures. At the same time, it
must be flexible enough to model unexpected occurrences of
the target structure (e.g., by noise, soft tissue deformation,
natural shape variability, or smaller pathological variations).

Dornheim et al. [24] describes the construction of SMSMs
from sample segmentations, which quasi represent the expec-
tancy of the model knowledge, but do not limit it w.r.t. its
system-imposed local variability, which is necessary for
modeling the mentioned occurrences. It shows how SMSMs
can efficiently be constructed for target structures, so that
they are adequate for segmentation. The consistency with
the target structure is a prerequisite for that, as otherwise the
model would not converge to the target structure, even for
optimal initial placement, which will necessarily lead to a
bad segmentation.

Monotonicity of the search space
The model should reliably find a target structure in its action

range, if it is placed inside this structure. This is only the
case, if the target structure is the monotonously closest local
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(a)

(b)

Fig. 7 aThe orange chess board model has converged to a false, inter-
nal local minimum of the objective function. b The orange model of the
black circle was attracted by the neighboring black quadrilateral

minimum of the objective function of the model in its search
range 3. This means in particular that there must not be more
than one target structure inside the action range of one model,
because in this case at least one target structure cannot be
found by the model. This monotonicity only has to be given
for an action range, if indeed a target structure is present in
this action range.

If only one target structure exists in one action range, there
may be multiple reasons for the occurrence of monotonously
closer local minima. On the one hand, there may be addi-
tional local minima located between the starting point of the
model and the target structure, which are also caused by the
target structure (e.g., self-repeating patterns like in a chess
board, see Fig. 7a) Besides these internal minima, there can
be external ones, which result from other structures in the
action range, distracting the model completely or partly, due
to the close neighborhood to the starting point (see Fig. 7b
for an example of a prominent adjacent structure).

For an efficient global search, a partition of the complete
search space is desirable, which partitions it in few large local
search ranges. However, the larger each action range is, the
more local minima can occur inside it. In reality, for SMSMs
describing compact objects, the biggest search range without
local minima lies normally around the half of the target struc-
ture size. It means that such a model finds its target easily, if
it is started somewhere in the inner half of its target structure,
as [10] states.

3 For the sake of simplicity, we identify the position of a target structure
with its barycenter.
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Fig. 8 Lymph node detection process. a Initial placement of the
model population according to the expectation map (“Reduction in the
population”). b—f Progressing simulation, models are rejected and
extend from other slices into the current slice, respectively. g End of

Measurability of the quality of fit

Another prerequisite for the applicability of the models to
local search is the possibility to measure the quality of the
model’s adaptation to the target structure in the dataset. This
quality of fit expresses how well the shape and gray value
properties expected by the model were found in the data-
set, i.e., how much the structure the model has adapted to
resemble the target structure. Thereto, information about the
compliance of the adapted model with the dataset, as well
as information about the occurred deformation, must be
accounted for.

In [25], this information is efficiently computed for
SMSMs, which are pointed out to be especially suited for
the calculation of the quality of fit. These pieces of informa-
tion are combined to a quality of fit function, which can take
values between 0 (bad quality of fit) and 1 (perfect quality of
fit). The parameters for this function can be estimated auto-
matically from a successful adaptation of the model to its
target structure. This quality of fit function was evaluated by
means of a plausibility consideration of the possible model
behavior and a series of experiments.

The search process

The model-based object search technique presented here uses
the capability of SMSMs for a local search. By means of a

the search, two structures have been detected by more than one model.
h Extraction of the best adapted representative of each cluster of struc-
ture models

population of several model instances with individual action
ranges, a global search is achieved. For the success and effi-
ciency of the search, in particular the composition and sub-
sequent reduction of this population are critical.

The search procedure

The search process starts with the generation and placement
of the model population. Thereto, we distribute instances of
the search model across the dataset in a rectangular, axis-par-
allel grid, so that their local search ranges cover the complete
dataset without gaps (see “Requirements”).

Now the simulation of the dynamic models is started
simultaneously and is continued, until their movements con-
verge and the models come to a rest. Fig. 8 gives an impres-
sion of this population life cycle. After the simulation, all
models that do not bear a given quality of fit are rejected. All
other models have adapted successfully to a target structure.

Grouping of the results

Especially in the case of larger target structures, it often hap-
pens that a structure lies in the action range of more than
one model and can therefore be detected by more than one
model. In this case, models that detected the same structure
need to be grouped after the simulation and reduced to one
final candidate. As an indication for the adaptation of two
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Fig. 9 aTwo structures are each found by several models started from
different grid points. b After grouping of the models, for each structure,
the model with the best quality of fit was selected

models to a common structure, a volume-based subset coef-
ficient k is introduced (see Eq. 8), which is 1 in case of a full
subset relation of the models M; and M, and O in the case
of no intersection of these models. Here, the subset relation
is used intentionally instead of the equality relation for the
description of the model grouping, because a subset leads to
an unambiguous grouping.

k = max [ VMlﬂMz ) VMlﬂMz ]

478 Vum,

®)

After the grouping of the successfully adapted models on
behalf of a high threshold k, the individual with the best qual-
ity of fit is chosen as representative out of each group and
the rest of the group is discarded. This way, besides a good
search result, a segmentation result as good as possible is
ensured, because high qualities of fit are normally connected
to good segmentation results (see [25]). Figure 9 shows the
effect of this model grouping.

If the number of target structures in a dataset is known
(e.g., exactly one left ventricle is expected in a thorax data-
set), then this number of expected findings can exactly be
chosen from the set of individuals by only keeping the best
fitting individuals until this expected number is reached.

@ Springer

Fig. 10 Original CT slice of the neck and three variants filtered by
different expectation maps. a Original. b Gray value expectation map
of the lymph nodes. ¢ Anatomic (positional) expectation maps of the
lymph nodes. d AND-combined expectation maps (b) and (c)

Reduction of the population

Due to the necessary grid size for very small target struc-
tures (e.g., lymph nodes) on real medical volume data, very
large model populations may be necessary, which cause very
high calculation times for the above-described search pro-
cess. However, the majority of all model instances do not
find a target structure. The earlier this is identified, the ear-
lier these models should be removed from the model popu-
lation in order to increase the efficiency of the whole search
process. This circumstance can be identified on the basis of
several criteria that are now described in more detail.

Expectation Maps The target structures in medical data-
sets are in general not evenly distributed across the dataset.
Almost always they are only found in specific anatomical
regions. These regions can be described by a certain gray
value range, or a spatial relationship to certain landmarks or
anatomical structures (see Fig. 10). In addition, knowledge
from preceding segmentations of other structures can be used
to exclude regions from the area of potential target structure
locations. The acceptable search regions can be described
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Table 1 Parameter of the

available neck CT datasets Dataset ~ Voxel count Voxel size Contrast ~ Manufacturer
agent
XYy Zz X/Y (mm)  Slice distance  Slice thickness
(mm) (mm)
1 512 65 0.28 3 3 yes Siemens
2 512 61 0.45 3 3 no Siemens
3 512 63 0.42 3 3 yes GE
N N 4 512 262 0.47 0.7 1 yes Philips
The datasets were chosen to be 5 512 161 041 s 3 yes Philips

as divers as possible

by binary expectation maps. Expectation maps can be calcu-
lated in different ways, depending on the kind of knowledge
they are based on. For instance, the region inside a certain
distance around a given, already segmented structure can be
marked as an expectation map (Fig. 10). By a binary combi-
nation (AND) of several expectation maps achieved in this
way, the global search space can be reduced significantly,
by immediately removing models from the population that
leave this expectation range during the search.

Quality of fit Besides the final determination of the suc-
cessfully fitted models, the quality of fit can also be used to
reduce the population during the search process. As success-
ful models have in most cases been placed close to the tar-
get structure (often with significant overlapping), they have
already an increased adaptation quality at the beginning of the
simulation process, which increases during their adaptation.
We can therefore specify a lower threshold for the quality of
fit, below which models are removed from the population.
This lower acceptance threshold on the quality of fit can be
increased progressively during the search process, up to the
final threshold on the quality of fit, which is applied after the
simulation process (“The search procedure”), so that after a
certain number of simulation steps only successfully adapted
models remain in the population.

Scaling  After the successful adaptation, the scaling of the
adapted model can also be used to reduce the population
size, if it is known that the target structures do not exceed or
go below a certain size threshold. However, in this case, the
population reduction has the goal of excluding false-positive
candidates, instead of increasing the calculatory efficiency.
Along these lines, several other features are thinkable, which
could be used to identify false-positive results after the end
of the search process.

Evaluation

In this section, the methods described in this paper will
be evaluated. Before the complete automatic segmentation

process as a whole is evaluated, the relevant parts of it will
be examined separately to gain more detailed insight into
the complete method. To get reliable results, we used very
diverse data.

Test environment

The experiments were carried out on 5 neck CT datasets
from scanners of three different manufacturers. Some of the
datasets were acquired with a contrast agent and some with-
out. The slice distances varied from 0.7 to 3mm, and the
resolution was between 0.28 and 0.47 mm. For details, see
Table 1. An isotropic resampling (to the slice resolution) was
necessary for the Stable Mass-Spring Models, because their
sensors rely on gradient computations, which need cubic vox-
els for equidistant sensor range in every direction. The gold
standard were expert segmentations additionally approved
by radiologists.

All experiments were carried out on a modern standard
PC (Intel Core2 Quad Q9550, 2.83 GHz, 4 GB RAM). For
the single-model segmentation evaluation, one processor was
used. In contrast, for the search process tests, all four pro-
cessors were used in parallel to simulate the different models
for performance reasons.

Single lymph node segmentation

Table 2 shows the results of the direct evaluation of the
single lymph node model. Here, the segmentations of the
human experts of 40 different lymph nodes from 5 neck
CT datasets are compared to the results of the base method
from [10] on the same lymph nodes and the newly developed
method in this paper. The lymph nodes were equally chosen
from 4 categories addressing the standard case and the typical
problems from an image analysis point of view to assess the
potential of the evaluated method more differentiated. These
categories were as follows:

— isolated lymph nodes (clear borders, no direct neighbor
structures)

— lymph nodes with weak gradients at the border (in direct
vicinity to soft tissue with similar intensity)
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Table 2 Overall comparison of the segmentation results of all 40
lymph nodes by two human experts, the base method from [10] and
the here presented method

Table 3 Comparison by lymph node category (10 lymph nodes each)
of the segmentation results of all 40 lymph nodes by two human experts,
the base method from [10] and the here presented method

Expert 1 Expert 2 Base [10] New Expert 1 Expert2 Base [10] New
Tanimoto?® 0.678 0.684 0.560 0.721 Isolated
Over seg. 33.3% 38.2% 7.5% 24.5 Tanimoto 0.654 0.643 0.512 0.720
Under seg. 11.6% 8.0% 40.0% 11.0% Over seg. 29.7% 50.8% 9.8% 16.9%
Surf. dist. 0.378 0.356 0.465 0.280 Under seg. 17.5% 5.2% 44.3% 15.7%
Hausdorff 2.57 2.39 2.74 2.44 Surf. dist. 0.253 0.273 0.408 0.176
The measures are the Tanimoto coefficient, the relative over and under Hausdorff 1.99 2.15 2.25 1.67
segmentation in percent, the average surface distance in mm, and the Weak border
f%llsdgff. distance ifnﬁﬂ}m o olumetic simila . Tanimoto 0.648 0.718 0.589 0.705
e Tanimoto coetficient 7 1s a volumetric simi arlty measure of two
segmentations A and B, which is defined as follows: t = “28“2 Over seg. 43.8% 32.5% 11.7% 28.8%
Under seg. 9.7% 7.8% 34.2% 10.0%
Surf. dist. 0.610 0.367 0.544 0.367
— lymph nodes with strong gradients at the border (in direct Hausdorff 3.67 2.69 3.47 3.15
vicinity to bones or contrast agent showing higher inten- ~ Strong border
sity) Tanimoto 0.698 0.666 0.536 0.726
— deformed lymph nodes (with no rough elliptical shape) Over seg. 30.2% 42.3% 6.6% 30.5%
Under seg. 10.5% 8.3% 42.4% 7.3%
Th leulati K h ) | h Surf. dist. 0.281 0.391 0.434 0.240
e calculation never took more than 2s per lymp Hausdorff 218 29 237 528
node (average: 0.525s). In contrast to the base method from
. Deformed
[10], the newly developed technique performs 40% bet- .
. . . Tanimoto 0.712 0.707 0.599 0.732
ter in average (regarding the average surface distance) and
. Over seg. 29.6% 27.0% 1.8% 21.9%
even improves the results of the human experts between 21
. . . .- . Under seg. 8.8% 10.6% 38.9% 11.1%
and 26% regarding this measure, meaning that it is lying )
clearly within the range of the inter-personal variance of these Surf. dist. 0.366 0.394 0.474 0.337
Hausdorff 2.44 2.49 2.88 2.64

human experts. The improved results of the new method
are caused by the two techniques presented in “Lymph
node model”. The sensor plateau filters enhance the results
in general, which is shown in Fig. 5. In contrast to that,
the improvements on the subset of significantly enlarged
lymph nodes are bigger, due to the multi-model segmen-
tation. At last, a chosen border offset parameter value of
—0.8 mm balances over and under segmentation and avoids
large over or under segmentations, which would lead to worse
results.

Table 3 shows the detailed results for the different lymph
node categories, and Fig. 11 shows sample segmentation
results for each category. As expected, the best results are
achieved on isolated lymph nodes, followed by lymph nodes
with strong gradients at the border, because of the clear bor-
ders in both cases. Lymph nodes with weak gradients at the
border or deformed shape lead to worse results, because of
the partly useless border or shape information. Interesting is
that the new method improves the results in all categories.
This is due to several effects:

1. the overall more stable fitting of the model to the lymph
node border , due to the use of plateau filtering techniques
in all sensor types,
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The measures are the Tanimoto coefficient, the relative over and under
segmentation in percent, the average surface distance in mm, and the
Hausdorff distance in mm

2. the improved segmentation of the significantly enlarged
lymph nodes, which are contained in each lymph node
category,

3. the model’s border offset, which leads to an even pro-
portion of over and under segmentation.

The effect of the multi-model segmentation technique was
separately quantitatively evaluated using models of different
scales (base model with 3 mm diameter and bigger scales of
this model) on all 19 existent enlarged lymph nodes (diame-
ter > 10mm) in the given datasets. Table 4 shows the results
in the case of an especially large, necrotic lymph node (diam-
eter: approximately 22 mm) exemplarily. Here, the positive
effect of the new technique can be seen very clear, since the
base scale model does not work a bit. On the smaller but
still enlarged lymph nodes, the results are very similar, but
on smaller scales, of course. Here, it can be seen that a high
quality of fit corresponds very well with a good segmentation.
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Fig. 11 Sample segmentation results from the different lymph node
categories. a Isolated lymph node. b Lymph node with weak gradi-
ents at the border. ¢ Lymph node with strong gradients at the border.
d Deformed lymph node

To get a better impression of this values, Fig. 6 shows some
sample results of this test.

Initialization robustness of the lymph node model

On the same 40 lymph nodes from “Single lymph node seg-
mentation”, we also tested the robustness of the initializa-
tion, that is the dependency on the lymph model’s starting
position. Thereto, we systematically compared all possible
starting positions on a given grid, so that the placed model
still touches a part of the target structure. This is neces-
sary, because otherwise the model gets no sensor input from
the target structure and cannot perform a successful local
adaption. Thereto, the size of this grid was chosen as the
bounding box of each lymph node, extended on each side by
half the diameter of the basis model, which has a diameter
of 3mm. As the grid resolution, we used 1.2 mm, which is
more than twice as fine as the resolution of our search grid

(see “Complete automatic lymph node segmentation”).
A segmentation from a grid starting point was considered
as successful, with a robust starting point, when it had a Tan-
imoto coefficient of 0.66 or more compared to the reference
segmentation from the model that was successfully started at
the center of each lymph node. This conforms to the average
Tanimoto coefficient of inter-personal manual comparison
segmentations. All used parameters can be seen in Table 5.

In Table 6, the results of the initialization robustness tests
are shown. As can be seen, a robust starting point was always
found outside a circle around each lymph node center with a
radius of 40% of the respective lymph node diameter, which
is 80% of its radius. This value is noticeably higher than the
expected 50% reasoned from the theory in “Requirements”,
because of the fact that the plateau-filtered inner intensity
sensors seem to steer the model during the model adaption
even from starting positions outside the lymph node bor-
der reliably inside the lymph node, which forms their local
attracting plateau maximum. In this context, Fig. 12 illus-
trates this test in pictures.

Complete automatic lymph node segmentation

We selected the four typical lymph node regions in one of the
datasets of the neck used in the previous tests. They contain
29 lymph nodes with a diameter of minimal 8 mm, so that
they could be potentially enlarged and clinically relevant for
that reason. Furthermore, we had complete gold standards
for them. The chosen regions represent the two typical set-
tings for lymph nodes from an image analysis point of view,
because regions 1 and 2 have many lymph nodes directly
between other soft tissue structures (muscles, vessels, carti-
lage etc.), and regions 3 and 4 contain lymph nodes in the
direct neighborhood of bone structures. The specific infor-
mation on the four regions can be found in Table 7.

The lymph node model developed in “Lymph node model”
(see Fig. 2) was used in the search process, which is suitable
for the adequate semi-automatic segmentation (after manual
initial positioning) of the lymph nodes, as seen in Table 2.
This makes it suitable for the local search of these struc-
tures, as stated in Sect. “Requirements”. Furthermore, as the
lymph node model is an SMSM, a method exists to efficiently

Table 4 Results of the multi-model segmentation with models of different scaling factors (base model: 3 mm diameter) on a large, necrotic lymph

node (diameter: ca. 22 mm)

Scaling factor 1 2 3 5 6 7 8 9 10
Quality of fit 0.572 0.570 0.572 0.757 0.769 0.834 0.835 0.841 0.791 0.763
Visual acceptable no no no no yes yes yes no no
Tanimoto coefficient 0.012 0.012 0.046 0.428 0.445 0.733 0.731 0.760 0.620 0.591
Average surface distance (mm) 8.85 8.80 8.35 3.65 3.53 1.19 1.23 1.03 1.98 1.97

Best results achieve the models of scaling factor 6, 7, and 8, which have an initial diameter of 18, 21, and 24 mm, respectively
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Table 5 Parameter values used for the initialization robustness test
Value

Test parameter

Test grid size lymph node size + 3mm

Test grid resolution 1.2mm

Tanimoto coeff. threshold 0.66

Table 6 Maximal successful model initialization distances from the
respective centers of the successful reference models for each lymph
node and resulting Tanimoto coefficients

Distance (mm) Distance fraction of Tanimoto
lymph node diameter (%) coefficient
Minimum  2.40 40.2 0.676
Average 6.69 73.6 0.898

Fig. 12 Initialization robustness tests on a sample lymph node. a Cor-
rectly adapted reference model. b All models finally adapted. ¢ All
successfully adapted models. d All not successfully adapted models

Table 7 Overview of the 4 chosen typical sub-regions from the exam-
ined neck CT dataset (rough locations, numbers of contained lymph
nodes, and sizes of the sub-regions)

Region  Location Lymph nodes  Size in voxels
description
X Y VA
1 V. jugularis right 7 80 113 233
2 V. jugularis left 12 110 137 222
3 Mandible right 4 142 110 76
4 Mandible left 6 106 110 80
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Table 8 Parameter values used for the search process

Search parameter Value
Search grid resolution 3.5mm
Quality of fit (Init.) 0.6
Quality of fit (End) 0.8
Maximum step count 250
Minimal scaling 2.0
Overlap coefficient 0.7

calculate its quality of fit (see [25]), which is another require-
ment according to Sect.“Requirements”. With a diameter of
3 mm, the lymph node model was significantly smaller than
its target structures in order to be able to initialize it com-
pletely inside the target structure, which is necessary for a
reliable segmentation, before it adapts its size by its dynamic
adaption to a target lymph node.

For the search process described in “The search process”,
the density of the starting grid for the initial model population
has to be determined. It was according to “Requirements”
chosen slightly below half the expected minimal object diam-
eter of 8 mm of potential clinically relevant lymph nodes.
For the lymph node detection, we therefore chose a grid dis-
tance of 3.5mm. This grid size can easily be chosen like
that, as in the lymph node application case we are deal-
ing with a compact model (the lymph node model includes
the object’s interior), so that no different internal local min-
ima exist for the objective function of the model. This value
derived from the theory in “Requirements” has furthermore
been confirmed by practical examinations about the robust-
ness w.r.t. the initial placement of the model. “Initialization
robustness of the lymph node model” shows that the segmen-
tation accuracy of the lymph node models only decreases at
an initial placement, which is more than half the object’s
radius away from the center of the lymph node. All other
parameters could be determined easily by experiments, as
the search is robust w.r.t. to them, so that they could be cho-
sen with a certain tolerance. These parameters are listed in
Table 8.

The expectation map was a combination (Boolean AND)
of two maps. One map represented the anatomical regions of
the neck lymph node groups, and the other map represented
the expected gray value range of the lymph nodes.

The results from the search process are listed in Table 9.
Example results are depicted in Figs. 13 and 14. All 29 lymph
nodes were found in 2min in all of the tested regions, so there
exist no false negatives. Nine false positives (ca. 31% of the
correct lymph node count) were detected, which must be con-
sidered as very few, compared to the manual expert search
(compare [4]) and other automated approaches [20].

The false-positive lymph node candidates (in most cases
slightly contrasted blood vessels) are similar to lymph nodes
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Table 9 Results of the lymph

node detection Sub-region Models Models Models Detected cand. False pos. Runtime
total started successf. (detect. rate) in sec
Region 1 3,920 294 7 7 (100%) 0 28
Region 2 5,967 346 18 12 (100%) 6 50
Region 3 1,989 184 7 4 (100%) 3 25
Region 4 1,690 134 6 (100%) 0 17
Sum 13,566 958 38 29 (100%) 9 120

Fig. 13 Two detected target structures for the lymph node detection,
the false positive is marked (“F”)

with respect to the modeled shape and gray value proper-
ties but differ from the latter by their context (see Fig. 13).
Additional information about the location of the blood ves-
sels, as it is often available, would allow to exclude these
false-positive results.

Table 9 also shows the calculation times of the search pro-
cess in the range of 2 min for all relevant lymph node regions
in a dataset, which is a necessary condition for a practical,

Fig. 14 All lymph nodes were
correctly detected in region 1,
which are shown here in context
to the V. jugularis

or even clinical applicability of the method. Besides the use
of 4 processors for the straightforward parallel calculation,
one reason for the low calculation times is the high percent-
age of individuals that were rejected early, which is shown
in detail in Table 10.

Limitations

Beside the positive results, there exist some limitations of
the presented method. At the moment, 3D data from a CT
are required, because of the comparability of the Hounsfield
values. If other image modalities (e.g., MRI) would be cal-
ibrated in a defined way, the application of the method on
them would also be thinkable.

In our tests, the result quality decreases significantly, if
the X-Y resolution falls below 1 mm and the Z resolution
falls below 3 mm. However, the quality of the results does
not seem to depend on the manufacturer of the scanner or the
use of contrast agent.

Furthermore, it was noted that extremely degenerated
pathological lymph nodes (frayed shape, more than 5 cm
diameter, necroses at the border, etc.) differ so much from
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Table 10 Details of the model

reduction during the lymph node Sub-region Exp. map ngl. of fit Ex'p. map anl. of fit Scaling Grouping
detection, distinguished by (Init.) (Init.) (Sim.) (Sim.) (End) (End)
;‘;}i‘;ﬁmn criteria and process Region 1 3,388 238 26 255 1 8
Region 2 5,151 470 22 279 11 23
Region 3 1,507 298 4 141 22 13
Region 4 1,348 208 6 103 8 14
Sum 11,394 1,214 58 778 52 58

Double countings were possible

the shape and appearance knowledge coded in the used
lymph node model because of their individuality that no reli-
able automatic segmentation is possible. Here, methods for
the segmentation of individual tumors address these special
structures better. But for the vast majority of possible lymph
node characteristics, the present method performs very reli-
able, as the tests show.

Conclusion

The presented partial technique for the segmentation of sin-
gle lymph nodes in CT datasets is the first to handle lymph
nodes of different classes (normal, enlarged, necrotic, fuzzy-
bordered, deformed). Furthermore, it is very robust regarding
its initialization. An evaluation on a set of 40 systematically
chosen lymph nodes of 4 different image analysis categories
from 5 very different neck CT datasets showed that the qual-
ity of the results improves the former techniques significantly
and lies clearly in the range of the inter-personal variance of
human experts. The running times of about half a second of
the developed method for the single lymph node segmenta-
tion qualifies it for use within other complex methods. Any-
way, complicated deformations or large necroses cannot be
segmented satisfying in any case, because too much dataset
information (artifacts, poor dataset quality, etc.) is missing
to be completed by the model knowledge.

The introduced plateau filtering technique could also
be interesting for other sensor-based segmentation models,
because general problems are addressed with them (object
internal gray value range and useless, distracting edge infor-
mation). Also interesting in this way could be the principle
of the multi-model segmentation, whose effect was theoret-
ically motivated and practically clearly confirmed. Here, a
transfer to other segmentation problems with different object
classes is also considerable.

The presented novel completely automatic segmentation
method for structures in medical volume data based on a
population simulation of dynamic shape models (SMSMs)
consists of a global search, which is achieved by a distrib-
uted, local search of the individual model instances with a
quality of fit estimation. The lymph node model (an SMSM)
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developed in the first part of this paper has proved to be espe-
cially suited for this purpose.

All 29 lymph nodes contained in 4 selected typical lymph
node regions of a neck CT dataset were detected correctly.
The 31% false-positive results can be attributed to the (also
for a human observer) difficult distinguishability of the tar-
get structures from other medical structures. In the examined
cases, the presented method performed within 2 min, which
complies with the time requirements for an application in the
clinical setting of our clinical partners, since it can be run as
a background task, while other work is done by the user.

Beyond the presented application case, our object detec-
tion approach is a general and well-manageable possibility
to search for compact structures in medical volume data. The
requirements developed in this work allow for a judgment on
the suitability of the presented detection technique for further
application cases.
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