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The rapidly increasing performance of graphics processors, improving programming sup-

port  and excellent performance-price ratio make graphics processing units (GPUs) a good

option for a variety of computationally intensive tasks. Within this survey, we  give an

overview of GPU accelerated image registration. We  address both, GPU experienced read-

ers  with an interest in accelerated image registration, as well as registration experts who

are  interested in using GPUs. We  survey programming models and interfaces and analyze

different approaches to programming on the GPU. We  furthermore discuss the inherent
edical imaging

mage registration

cceleration

raphics hardware

PU

advantages and challenges of current hardware architectures, which leads to a description

of  the details of the important building blocks for successful implementations.

© 2010 Elsevier Ireland Ltd. All rights reserved.
.  Introduction

ne of the important promises of medical imaging as the
ye of medicine is to establish spatial and temporal rela-
ionships among anatomical, physiological, and pathological
nformation, which can be brought together for either inter-
r intra-patient studies by means of image  registration. Image
egistration is the process of aligning images – possibly from
ifferent imaging modalities – with various dimension car-
inalities via establishing some common attributes. Image
egistration is categorized as an inverse problem, since the
ransformation parameters need to be extracted from the
maging data. It is now a common clinical workflow that

he patient is scanned multiple times (various modalities
r temporally) for diagnostic purposes. It is also becoming
lmost routine to have fusion of planning and treatment scans

∗ Corresponding author at: Siemens Corporate Research, Princeton, NJ 0
E-mail addresses: oliver@fluck.de, fluck7@gmail.com (O. Fluck), chri

169-2607/$ – see front matter © 2010 Elsevier Ireland Ltd. All rights res
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for image-guided interventions (see for example [1,2]). The
ever increasing amount of images acquired together with the
requirements of some clinical use cases for a quick diagnostic
decision, have pushed the research toward making more  effi-
cient image  registration processes. This requirement can be
addressed on two fronts. One is to devise an algorithm with
the computational efficiency in mind and second is to make
best use of the computational power of the hardware. In this
paper, we focus on the latter approach. Specifically we survey
a body of research activities targeted at improving the regis-
tration time by utilizing the graphics processing units (GPUs).

While GPUs are built to generate rendered 2D-images from
three-dimensional scenes, the inverse problem of inferring
transformation parameters from images is not straight-
forward to solve. This registration requires a customized
parallelization and a modification on conventional building
blocks.
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Fig. 1 – Stages of a registration process. The execution
order of regularization, projection and transformation may
vary among different registration algorithms. We  depict
this by circling these stages in the diagram. Note that a
projection stage (shown in dotted lines) is not necessary in

registration tasks of images of equal dimensionalities.

1.1.  Medical  image  registration  in  general

During the registration process correct alignment of images is
approached iteratively. Usually, one image  is considered the
fixed image  (or source/reference image) and stays unchanged
during iterations. In each iteration, the data of the mov-
ing image  (target/template image) goes through a number of
stages (Fig. 1). The implementation as well as the type of these
stages vary depending on the relationship between moving
and the fixed image,  e.g. modalities and dimensions.

Generally, registration consists of finding a transformation̂̊
 that maximizes the similarity measure S between the fixed

image  If(X) and the deformed, warped, or transformed moving
image  Im(˚(X)), with I : R

n → ˝. The choice of S depends on the
image characteristics.

One way to distinguish types of registration is by the
amount of parameters which need to be optimized in order
to find an alignment. A registration problem falls into either
one of the groups named affine (or rigid if the scale and shear
is kept constant), or non-affine (commonly called non-rigid),
with increasing parameter space respectively. While a rigid
3D/3D registration aims to find six global parameters (rotation
and translation in three dimensions), the parameter-space of
a non-rigid registration (i.e. deformable registration) can be as
large as the number of voxels multiplied by the cardinality of
the moving data set.

When images are of different dimensions, projection
operations Pf and Pm may be incorporated to project a higher-
dimensional image  onto the domain of a lower-dimensional
one.

One can express this by

ˆ̊ = arg max  S(Pf (If (X)), Pm(Im(˚(X)))). (1)

While we  are assuming continuous images for the mathe-
matical discussion above, we are actually dealing with digital
images I : Z

n → ˝, therefore we need to assign intensity values
at positions in the volume that are not necessarily grid points.
This is done by an interpolation function L, with L : Z

d × R
d →

R, which takes a d-dimensional image,  a position vector of

length d, and assigns an intensity at this position. The exact
interpolation used is important, as it can lead to artifacts and
influences the similarity measure [3,4].
 b i o m e d i c i n e 1 0 4 ( 2 0 1 1 ) e45–e57

1.2. How  suitable  is  graphics  hardware  for  image
registration?

Driven by the gaming industry and the constant demand for
more  sophisticated graphics effects, graphics hardware has
evolved from a simple interface over a fixed function pipeline
towards a programmable supercomputer. The standard GPU
in today’s PCs outperform their CPU counterparts by a large
factor in peak computation performance as well as mem-
ory bandwidth. Since the introduction of the programmable
graphics pipeline a vivid research community [5] is working
on strategies for scientific (non-graphics) computing on graph-
ics hardware. A large overview of results in that area can be
found in [6],  however the work does not disclose most of the
efforts in the field of image  registration. Several forms of par-
allel processing in image  registration have been reviewed in
[7].

The non-standard implementation of floating point data
as well as the absence of double precision floating point data
types used to be an issue for numerical algorithms. But double
formats are starting to appear and emulation techniques using
single float format have been adapted to the GPU [8].  Some
computations can even be performed with just 16 bits-floating
point numbers [9].

Interpolation of pixel intensities is a common step in image
registration. Because it is often performed on all pixels of
an image,  it can become very time consuming on regular
serial processors. Fortunately, this operation is a fundamen-
tal part of the graphics pipeline (Section 2.1). Hence, GPUs are
equipped with special hardware that performs linear interpo-
lation more  efficiently than code written for the CPU. Another
important difference between CPUs and graphics processors is
the degree of flexibility when accessing memory.  Historically,
read access at arbitrary memory  locations has not been neces-
sary for graphics programming, as it is dominated by localized
memory  access. Therefore texture lookups are typically opti-
mized for localized memory  access. Even more  problematic
is the lack of write-operations to arbitrary memory locations
(scatter). This is a common reason for re-design of algorithms
ported to the GPU (discussed in [10–12]).

An additional performance bottleneck is often caused by
data transfers between main memory  and graphics memory.
Throughput rates between these two memory  types are con-
siderably low. However, once image  data is residing in graphics
memory,  registration methods usually benefit from a very high
bandwidth to the graphics processor.

1.3.  Performance  gains

With this work we are striving to report about all the work
addressing GPU accelerated medical image  registration. As
we are looking at over a decade of research in which com-
puting platforms have developed rapidly, we  found it to be
rather impracticable to list the reported performance gains
side by side. The reported numbers in the cited articles
depend on many  variable factors, which make it difficult

to extrapolate numbers from older papers to current hard-
ware.  The change in the GPU–CPU performance gap not only
depends on the increase in pipelines and clock-rates, but also
on memory  and/or CPU–GPU bus bandwidth. Based on var-

dx.doi.org/10.1016/j.cmpb.2010.10.009
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ous characteristics, the performance comparison between
n algorithm on CPU and GPU may be affected by the
volution on both platforms. We  therefore put aside the
eported numbers and refer to the cited articles for algorithmic
etails.

.4. Outline

his paper is organized as follows. In Section 2 we will give
n introduction to GPU programming models. We  will look
nto programming interfaces such as the traditional tech-
iques via graphics programming, as well as newly emerged
eneral purpose interfaces and the GPU memory  types they
llow access to. In the following sections, we will discuss
he registration components depicted in Fig. 1. In Section

 we  look into image  registration cornerstones and details
n how projection, transformation, and regularization can be

mplemented. Section 4 covers similarity metric computation
nd in Section 5 we conclude the survey and have a look at
ew developments which might have a future impact on this
eld.

.  GPU  programming  models  and  interfaces

he graphics pipeline on GPUs was at first restricted to fixed
unctionality with limited configuration possibilities, allow-
ng an efficient hardware implementation. These restrictions
ere subsequently lifted to allow more  programmability of
ifferent stages, through so-called shaders in high-level pro-
ramming languages, resulting in increased possibilities to
reate a unique graphics style for each game. This has enabled
esearchers to tailor general purpose algorithms to be run at
ifferent stages of the rendering pipeline.

Various high-level programming languages are associated
ith different graphics APIs (application programming inter-

aces). The OpenGL shading language (GLSL) [13] is the high
evel shading language for OpenGL [14], HLSL is the equiva-
ent for DirectX [15], whereas the output of a Cg [16] compiler
an work with either OpenGL or DirectX. The graphics APIs
nd shading languages are functionally equivalent.

On the other hand, there are general purpose programming
anguages for GPU programming that are not geared towards
raphics. Generally, these APIs are equally or more  suitable
or image  registration. Brook [17] was one of the first general-
urpose languages, which offered developers to strictly follow

 stream-processing model (see Fig. 4 for a comparison of the
tream processing programming model to the sequential pro-
ramming model). Stream-processing is a paradigm for highly
arallel computations that matches the architecture of mod-
rn GPUs (or the CELL processor) very well [18]. The input is a
equence of data of the same type (stream) that is processed
lement-wise by a so-called kernel. The parallelism is explicit,
he programmer has the task to define it. Brook was not
esigned just for graphics APIs, and maps to various streaming
rchitectures. For GPUs, Brook is built on top of graphics APIs

nd thus, supports different back ends to compile the code
o either DirectX or OpenGL (or a CPU reference code). While
rook is hiding graphics related code, GPU vendors developed
ew interfaces to allow GPU stream processing by circum-
i o m e d i c i n e 1 0 4 ( 2 0 1 1 ) e45–e57 e47

venting graphics programming. CTM (Close to the Metal) is an
assembly-like language from ATI (now AMD). The next gener-
ation after CTM is called CAL (Compute Abstract Layer) [19].
The exposed Instruction Set Architecture (ISA) can be used
directly or as target for a compiler. Brook+ is an extension of
Brook that targets the ISA exposed by CAL. CUDA (Compute
Unified Device Architecture) is a proprietary extension to the
C language from NVidia and runs on NVidia hardware only.
A more  generally applicable framework is OpenCL that is not
only supported on GPUs but also on CPUs. DirectCompute is
another framework for general purpose programming that is
part of the DirectX API. Fig. 2 gives an overview of the differ-
ent languages. In the following sections we will have a closer
look at two common frameworks following the two paradigms
of graphics-oriented programming and stream processing. It
has to be said that medical image  registration algorithms can
be implemented with any one of the available programming
interfaces.

2.1.  The  graphics  pipeline

Graphics processors are tailored to handle the complex three-
dimensional scenes of current video games. The graphics
pipeline consists of highly parallelizable components, so GPUs
have been built to exploit this property. The input for the
graphics pipeline are vertices – points in 2D or 3D describe
the geometry of a rendered scene – and textures (images) that
are mapped onto objects described by vertices.

The input vertices are transformed in the first pro-
grammable stage, the vertex stage, according to vertex
programs running on the GPU (vertex shaders). The con-
nections between vertices that form lines, triangles or more
complicated polygons are only used in the next stage, which
is programmable by geometry shaders. In this stage, geometric
primitives (called primitives from now on) can be transformed
and new primitives generated. The emitted primitives are then
rasterized.

The rasterization step fills the primitives with fragments.
Same as pixels, fragments are associated with a specific screen
location, but in contrast to pixels, the fragments are not nec-
essarily drawn on screen, if they are part of a primitive that
is covered by another primitive. The generated fragments are
then fed into the fragment stage in which the appearance
of each fragment is determined by a fragment program (or
fragment shader). During fragment processing, textures can
be mapped onto the primitives. Depending on the scaling,
one pixel of the texture (texel) might map  to exactly one
fragment of the rasterized primitive. In cases where texture
size and primitive do not match, the GPU can automatically
interpolate between texture elements. The supported inter-
polation modes are nearest-neighbor interpolation and linear
interpolation, but more  complex interpolation schemes can
be implemented with shader programs. When blending is
enabled, several fragments might be combined to determine
the color of one pixel.
In the final step, the fragments are converted into actual
pixels. The vertices, geometric primitive as well as the frag-
ment data are processed independently in a data-parallel
fashion. Fig. 3 gives an overview of this process.

dx.doi.org/10.1016/j.cmpb.2010.10.009
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GPU

Graphics
APIs

CTM

BROOK
High Level 
Shading

Languages
CALCUDA

Intend ed for graphics Intend ed for stream computin g

OpenCL DirectComput e

Fig. 2 – GPU programming languages. Higher shading languages are installed on the GPU via graphics APIs (left side). GLSL
and HLSL are part of OpenGL and Direct3D respectively, whereas Cg can be used with both APIs. The family of languages
especially designed for GPU computing are shown on the right, with BROOK (being the first of this kind) communicating
with the GPU via OpenGL.
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Fig. 3 – GPU computing initiated through a graphics API. A primitive is defined by vertices in space. Each vertex causes the
execution of a vertex program. The size of the primitive projected on the image plane is measured in pixels. Each pixel of
the output buffer evokes an execution of the loaded fragment shader program.

Processing

elements
P P P

1 2 n

for each element i
{

c[i] = a[i] + b[i];
}

Sequential program:

kernel F(a<>,b<>,c<>)
{

c = a + b;
}

Stream program:

stream a<> stream b <>

Fig. 4 – Stream programming model [20]. The example code written for serial processing compared to a stream-processing
illust
notation is shown on the left side. The right side shows an 
2.2. CUDA,  OpenCL  and  direct  compute

CUDA (Compute Unified Device Architecture) is an extension
to the C language from NVidia. In contrast to the graphics-
ration of the stream-processing scheme.
oriented approach where the GPU code is strictly separated
from the CPU code, CUDA kernels can be contained in .cu files
where the GPU code of the kernels may be mixed with CPU
code. In a preprocessing step, the contents of the code file

dx.doi.org/10.1016/j.cmpb.2010.10.009
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re then directed to separate compilers for either CPU or GPU
ompilation. Alternatively, CUDA provides a lower-level driver
nterface with a clear separation of GPU code and CPU code.
o match the underlying hardware, threads are hierarchically
rganized (see Fig. 6). Kernels in CUDA are the equivalent
o shaders in graphics APIs, the computation of a fragment
hader on a fragment is equivalent to a thread in CUDA (see
ig. 6).

OpenCL [21] is a framework for stream processors like
PUs, but supports multicore CPUs as well as the CELL archi-

ecture. It has been developed by Apple and is now managed by
he consortium Khronos Group that manages OpenGL as well.
onceptually, OpenCL is very similar to the CUDA driver inter-

ace and the performance considerations detailed for CUDA
pply to OpenCL programmed on NVIDIA GPUs as well. The
otation for OpenCL is slightly different however. A work-item

n OpenCL is a thread in CUDA and a processing element is
alled a scalar processor in CUDA. CUDA threads are grouped
nto blocks that are processed on a streaming multiproces-
or. The local memory  in OpenCL is called shared memory
n CUDA, the private memory  is OpenCL is called registers in
UDA. For NVIDIA GPUs, CUDA is the basis for OpenCL as well
s for DirectX Compute which is the computing interface for
irectX starting with version 11.

.2.1. Memory  types
n contrast to graphics APIs like OpenGL, CUDA gives direct
ccess to video memory  which consists of several memory
ypes (see Fig. 5). A number of registration algorithms bene-
t from having access to these memory  types. These are often
ethods where the parallely accessed locations are not coher-

nt with the thread IDs (e.g. CUDA) or texture coordinates
shading language). For example, the address for a memory

rite operation may be determined by the intensity of a pixel
n which a kernel is executed. An example of such a case is
he popular histogram-based similarity metric mutual infor-

ation (see Section 4). In such cases, algorithms benefit from
hared memory  that can be used for communication within
roups of threads (so called blocks), or global memory.  In such
ases, developers have to be aware of the possibility of con-
icting memory  accesses through concurrent threads.

.3.  The  right  choice  of  programming  interface

e  have seen that two main families of programming inter-
aces exist. The programming paradigm of choice may be
ependent on the background and preferences of a devel-
per, as all introduced interfaces can be utilized for medical

mage registration. Characteristics of registration algorithms
owever may play a role in the decision process. Developers
ith computer graphics experience may find GPU program-
ing through a graphics API more  suitable, especially when

lassical rendering schemes are utilized within the regis-
ration process, such as for projection (see Section 3.2). On
he other hand, with general purpose programming inter-
aces, vendors opened up the underlying memory  hierarchy to

evelopers. This gives more  freedom and flexibility which ulti-
ately increases the efficiency with which many  algorithms
ay run on graphics hardware. Advantages due to low level
emory  access have been reported for varying registration
i o m e d i c i n e 1 0 4 ( 2 0 1 1 ) e45–e57 e49

stages, such as regularization (see Section 3.5)  and histogram
computation for similarity computation (Section 4.1). How-
ever, the increased flexibility that CUDA (and OpenCL) offer
to the programmer comes at the cost of higher demands on
the optimization. The amount of resources (like registers) the
threads in a kernel require, determines how many  threads can
be resident on a streaming multi processor at the same time.
If the occupancy is too low, the performance suffers. Graph-
ics API like OpenGL distribute the workload automatically to
different streaming multi processors.

3. Image  registration  cornerstones:
optimization,  projection,  transformation,  and
regularization  on  the  GPU

In the following, we look into image  registration cornerstones
and details on how projection, transformation, and regular-
ization can be implemented.

3.1.  Optimization

Optimization algorithms can be divided into gradient-free and
gradient-based approaches. Gradient-based approaches usu-
ally converge faster to an optimum, but are more  complex,
since the gradient has to be computed, either through a closed
form or by numerical approximation. For GPU-based regis-
tration, it is important whether the registration performed
is affine or deformable. Since affine registration have a very
limited set of parameters (translation, rotation, shear, scale),
computing the derivatives on the GPU does not offer any
advantages, so only the cost function is evaluated on graph-
ics hardware. For deformable registration, more  parameters
are available, especially if the deformation is described by a
dense vector field with dimensions equal to the image  dimen-
sions. In this case, the computation of the gradient is usually
performed on the GPU (see [9,10,20,22–32]).  On the whole, how-
ever, optimization is not a focus of registration research on
the GPU due to its low computational intensity and lack of
computations that can be parallelized [7].

3.2. Projection

A projection stage is usually needed for example when reg-
istering 3D with 2D image  data. Registration and fusion of
these dimensionalities is common in minimal invasive inter-
ventions, computer aided surgery, or radiation therapy [1,2].
While 3D imaging such as computed tomography (CT) or mag-
netic resonance imaging (MRI) often requires relatively long
acquisition times and is used for diagnostics and interven-
tion planning, 2D images can be acquired in real-time (e.g.
through fluoroscopy) during interventions and allow for guid-
ance when registered with the planning data. With respect
to Eq. (1) a projection of 3D to 2D corresponds to Pm, and
Pf equals the identity transformation. Thus, Pf : R

2 → R
2 and

Pm : R
3 → R

2.

In this case Pm refers to a reconstruction of the lower

dimensional image  by means of the higher dimensional one.
In a large body of work, rendering of Digitally Reconstructed

Radiographs (DRRs) [33] is utilized for registration of CT and X-

dx.doi.org/10.1016/j.cmpb.2010.10.009
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Fig. 5 – Conceptual overview of a compute Device in OpenCL: A work-item runs on a processing element. Work-Items are
grouped into work groups that are processed on a compute unit. Local memory is accessible by all work-items within a

gs to
work group, private memory only by the work-item it belon

ray data. During X-ray acquisition simulation, integration of
intensity information within CT data follows the same rules
as if X-rays traverse through a patient’s body. During the ‘real’
acquisition, a ray r(x, y) traverses from its source to a detector
plane while photons get attenuated on their path through dif-
ferent body substances and tissues. The energy intensity I(x,
y) reaching the detector plane determines the intensity of the
final image  pixel. The ray integral can be described by
I(x) = I0e

(
−
∫

r(x)
�(X,Eeff )dr

)
, (2)

Fig. 6 – Design of modern graphics pipelines in relation to the CU
avoid graphics related code. Furthermore, threads within a block
executed on one of several multiprocessors of a GPU.
.

with x ∈ R
2 and X ∈ R

3. Note that Eq. (2) is slightly simpli-
fied with an effective energy Eeff and the assumption of a
monochromatic X-ray source, and does not include scattering
and other physical effects (we refer to [34] for more  details).
The varying attenuation factor along a ray’s path is denoted
by �(X, Eeff).

During the rendering process one can approximate the
integral of Eq. (2) by building a discrete sum along ray

directions. Taking this into account, radiographs can be recon-
structed following popular volume rendering schemes [35].
Common techniques for this task are slice-based volume ren-
dering and ray casting. GPU volume rendering algorithms first

DA framework. Using CUDA, programmers are allowed to
 are able to access shared memory as each block is

dx.doi.org/10.1016/j.cmpb.2010.10.009


i n b 

s
i
i
[
o
p
c
[
p
D
c
l
p
p

3

A
l
p
o
b
o
g
o
o
t
t
m
t
t
s
p
d
U
w
i

3

I
t
g

3
A
t
h
a

E

w

E

T
t
d

c o m p u t e r m e t h o d s a n d p r o g r a m s 

pecify a volume’s proxy geometry, either a stack of polygons
n slice-based methods [36] or a bounding box for ray cast-
ng [37]. In older literature, we have found use of 2D textures
35].  3D textures have been used later [38] where addressing
f voxels became more  straight forward and trilinear inter-
olation became available. In [38], the authors also include
omparisons to multiple CPUs in high performance networks
39]. The problem of dissimilarities between CTA (CT Angiogra-
hy) data including contrast material and X-ray images during
RR rendering is addressed in [40]. In [41], strategies on how to
ompute DRRs on older graphics hardware generations with
ower render-buffer precision by employing Z-Buffers were
resented. A fast method based on splat rendering has been
roposed in [42].

.3.  Rigid  and  affine  transformation

s a rigid or affine transformation does not require non-
inear displacements of pixels, it only depends on a few
arameters that globally govern image  size, position, and
rientation. Changes on these parameters can, for example,
e conveniently mapped to manipulations on coordinates
f the texture that holds the moving image.  Following the
raphics API approach for GPU computing, an arbitrary rigid
verlay of two images can be achieved by first rendering
ne quadrilateral (2D) or several quadrilateral (3D) and then
exture-mapping the images (or volume slices) onto it. For
he moving image,  size and boundaries of the texture should

atch with those of the quadrilateral. Texture coordinates of
he moving image  are allowed to change throughout the regis-
ration process. Texture coordinates can be defined during the
etup stage before each rendering pass to allow for different
ixel correspondences during rendering. These correspon-
ences are implicitly established due to the GPU texture unit.
sing general-purpose APIs, the offset is explicitly encoded
ithin the kernel. After sampling from both images, the qual-

ty of the alignment will then be evaluated (see Section 4).

.4.  Non-rigid  transformation

n the following sections we  will describe non-rigid regis-
ration algorithms which have been successfully ported to
raphics processors.

.4.1. Regularized  gradient  flow
s to our knowledge, the first 2D deformable image  regis-

ration on graphics hardware was proposed in 2003 [22], a
ardware accelerated regularized gradient flow (RGF) which
ims to minimize the energy

 = 1
2

∫
If ,Im

∣∣im(˚(x)) − if (x)
∣∣2

, (3)

here  ̊ evolves along the gradient

′ = (im(˚(x)) − if (x))∇im(˚(x)). (4)
he regularization used in this method is described in Sec-
ion 3.5. Attempts to extend the RGF registration to three
imensions have been presented in [23]. The lack of render-to-
i o m e d i c i n e 1 0 4 ( 2 0 1 1 ) e45–e57 e51

3D-texture features was reported as the reason for insufficient
speed for a deformable RGF registration in 3D. However, graph-
ics hardware following the new DX10 standard exposes this
feature.

3.4.2. Demons
The use of demons is a very popular approach for GPU acceler-
ated deformable registration. This algorithm is an optical flow
([43]) variant, a concept from computer vision and based on
the assumption that for small movements the intensity at a
point remains the same. Based on the constant intensity, a
velocity vector can be inferred from gradients of the intensity
values. The displacement is computed by solving Eq. (5),  with
I containing both the moving and fixed image, u and v the
unknown components of the displacement vector.

∂I

∂x
u + ∂I

∂y
v + ∂I

∂t
= 0. (5)

Due to the underlying assumptions of constant intensity, this
algorithm is commonly used for single modality registration.
It approaches a final alignment in each iteration k by updating
for each voxel a displacement field U, such that

U(X)k = U(X)k−1 + (Im(˚(X)) − If (X))∇If (X)

(∇If (X))2 + (Im(˚(X)) − If (X))2
◦ G�, (6)

where U(X) = ˚(X) − X, which is regularized by a Gaussian filter
in each iteration. Note that Uk is not updated in cases where
the denominator falls under a certain threshold. In [20], the
authors implemented the demons algorithm using the Brook
programming environment. Later work also follows Eq. (6) for
the registration of MR  images of the head [24]. Further work
we have found on GPU accelerated demons utilizes the CUDA
framework [25,26] and includes a performance comparison to
[24]. In [44] five Demons variants were implemented using the
CUDA framework and tested on CT data.

3.4.3.  Physics  based
An interactive deformable registration method incorporating
stiffness models has been presented in [27]. Here, a fast GPU-
based segmentation has been utilized to allow users to select
different tissues in images and assign physical attributes. The
iterative algorithm computes a dense deformation by means
of optical flow (see also Eq. (5))  and applies the resulting vector
field as external force to compute a physically correct finite
element deformation.

A successful implementation of a non-parametric
deformable registration method solving a viscous-fluid
partial differential equation (PDE) was presented in [28].
Here material properties are assigned manually by specifying
anatomic templates. As described in the paper, equations are
solved on the GPU numerically by solving a system of linear
equations using a finite difference discretization. Closely

related to fluid mechanics is the approach of image  registra-
tion via optimal mass transport (OMT) [29], the authors report
a successful implementation of an OMT  multigrid algorithm
on the GPU.
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3.4.4.  Free-form  deformation
The motivation behind free-form deformation (FFD) tech-
niques in image  registration is to reduce computational
complexity by introducing a lattice of control points. Find-
ing a correct displacement of nx × ny × nz elements is then
reduced to finding the correct constellation of mx × my × mz

control points �i,j,k with initial spacing ı. Pixel displacements
throughout the image  domain are then governed by these con-
trol points and in the three-dimensional case computed by the
interpolation function

˚(X) =
d∑

l=0

d∑
m=0

d∑
n=0

Bl(u)Bm(v)Bn(w)�i+l,j+m,k+n, (7)

with basis function B. Control points surrounding X can be
addressed with i = �x/ı	 −  q, j =

⌊
y/ı

⌋
− q, k = �z/ı	 −  q, with

(x, y, z) being components of X, and q being dependent on
degree d (e.g. q = 1 for cubic interpolation).

This has been taken into account in [45], where finding opti-
mal  control point positions is formulated as the optimization
of an energy functional. The approach has been success-
fully tested on synthetic as well as CT thorax datasets. An
application with significant speedup using graphics hardware
has been reported in [46]. Here locations of texels relative to
control points (u, v, w) can be determined using texture coor-
dinates (when using a graphics API) or thread IDs (when using
CUDA or OpenCL).

In [47], the authors demonstrate how the deformation of
volumes can be accelerated using graphics hardware. The
method is based on slice based volume rendering where con-
trol points are defined by vertices and then again vertices
are associated with three-dimensional texture coordinates.
A linear interpolation method can be chosen during texture
initialization and will then be computed rapidly by the GPU
during rendering. For this reason, the translation of con-
trol points can be stored and updated in texture coordinates
whereas the geometry remains static. The method allows
the rendering of a deformed volume without constructing an
intermediate dataset and allows for subdivision schemes for
adaptive refinement. Focusing on brain tissue deformations,
a variant of this has been tested on MR  images in [48]. In
[49], the authors have extended [47] and [48] and allow for
additional grid points with positions determined using 3D
Bézier functions. Another paper [46] shows how deformed
DRRs can be created using ray casting. The proposed method
combines fast GPU ray casting [37] with the concept of inverse
rays deformation [50], the method allows for arbitrary inter-
polation techniques. In [51], Bi-cubic Bézier basis functions
have been implemented for image  warping and used for pre-
calculation for finite element basis functions, and Ruijters
et al. [52] use cubic B-spline deformation for elastic image  reg-
istration as well. The work in [53] presents a parallel-friendly
re-formulation of free-form deformation. Implementation and
evaluation has been conducted using the CUDA framework.
3.5.  Regularization

Regularization is a means for dealing with ill-posed prob-
lems such as deformable image  registration. When pixels are
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allowed to be displaced arbitrarily, deformations have to be
smoothed to ensure topology preservation. Furthermore, reg-
ularization prevents an optimization function to get stuck in
local minima. In other words, regularization makes the prob-
lem tractable by restricting the solution space.

In the RGF 2D method of [22] (see Section 3.4.1), gradients
are regularized by Jacobi iterations during a multigrid-cycle. In
order to prevent faulty results by local minima their work also
proposes computation on multiple scales. In [23], the authors
proposed the use of the simpler Gaussian filter for faster pro-
cessing instead of a multigrid regularizer. In fact, optimized
versions of Gaussian smoothing have been used for the regu-
larization of the flow field in several papers [23,25,10]. While
Gaussian smoothing is relatively straightforward to imple-
ment, it poses challenges concerning its performance if the
blurring kernels are very large. Improved performance over
shader based techniques has been reported using the CUDA
framework which provides shared memory  and finer-grained
memory  access [11]. Recursive filtering is often used in CPU
based work because it is cache efficient and the computa-
tional complexity is independent of the filter width. Recursive
filtering [54] has been used for registration on the GPU
in [24], but has the drawback that it restricts the parallelism.
The integration of a smoothing term into the registration error
function in form of a weight image  has been proposed in [51].
Other options for efficient smoothing on the GPU are multigrid
or Jacobi iterations [30].

4.  Similarity  metrics  on  the  GPU

In order to evaluate the quality of alignment between multiple
images, the similarity S of Eq. (1) of image  features needs to
be computed.

Similarity metrics fall into two broad classes:

• based on landmarks, and
• based on voxel intensities.

The only example of a landmark-based registration on the
GPU we have found is [55]. The authors register microscopic
images non-rigidly and have chosen the GPU because of the
large amount of data that is processed, in the range of 16k
times 16k pixels per image  or more.  The window size of the
selected features has to meet a minimal variance threshold
to be considered, in order to find informative features. Fea-
ture matching is performed by determining the best match
for the selected feature within an alignment window in the
second image.  The metric used in this case is the normalized
cross correlation. The cross correlation is implemented using
the fast Fourier transform in CUFFT (part of [54]) provided by
NVIDIA. Apart from the metric computation, the registration
process runs on the CPU due to the communication overhead
between CPU and GPU.

All other surveyed papers on GPU-based registration used
voxel intensity based metrics. Since these metrics are per-

formed for each voxel of a volume, the high computational
and memory  throughput demands are a good fit for the GPU. A
large number of different similarity metrics have been imple-
mented on the GPU: Sum of Squared Differences (SSD), Sum
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Table 1 – Reported GPU implementations of common similarity measures and their characteristics.

Measure Reference Strength Weakness

SSD [23,51,56] Simplicity Result can be distorted by a minority of pixels with
large difference in intensities

SAD [56] Reduces the prob. of
SSD

Same  as with SSD but less strong

NCC [55,56] Unaffected by
variations in contrast
and brightness

Regions with inverse intensity relation can have a
compensating effect. Hence, not necessarily suitable
for multi-modal registration
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MI [12,9,10,32] Stable measure fo
multi-modal
registration

f Absolute Differences (SAD), Variance of Differences (VOD),
ormalized Cross Correlation (NCC), mutual information (MI)

Table 1). However, all these metrics can be implemented with
n element-wise stream processing of two input streams,
eduction and histogram generation.

An average of 8 metrics has been implemented in [56].
nother approach [57] uses projection in order to generate
imilarity metrics in a lower-dimensional space and gives an
verview over the speedup for different similarity measures
n the GPU. In order to allow the analytic differentiation of
nergy functions with more  complex similarity measures, an
utomatic differentiation approach has been proposed for GPU
ode in Cg [31].

One of the simplest similarity metrics in use is the sum of
quared intensity differences (SSD). The SSD has been imple-
ented on the GPU for example in [23,51].  Since the SSD (see

q. (8))  only compares intensity values at corresponding sam-
le points in the images/volumes, this measure is particularly
asy to implement on the GPU. A reduction operation that
dds all the computed values (see Section 4.1.3) is still nec-
ssary to compute the sum, though. If,m in the equation is the
verlap of the two images If and Im.

SSD(U) = 1
|If,m|

∑
If,m

(if − im)2. (8)

nother popular metric for the GPU is mutual informa-
ion (MI). The mutual information metric measures the
ependency between two random variables, and has been
imultaneously proposed in two works [58,59].  The metric can
e defined as in the following formula:

MI(U) = −
∫

f

∫
m

pU(if , im) log
pU(if , im)

p(if )pU(im)
dif dim, (9)

ith U representing the deformation field that aims to align
he intensities if and im of the two images If and Im. The dif-
erent probabilities are denoted by p, p(if) is the probability of
ntensity if in the fixed image,  pU(im) is the probability of the
ntensity im in the moving image  and pU(if, im) is the probabil-
ty that the intensities if and im are at corresponding points in
he images given a deformation field U. The integration is per-
ormed over the number of bins f in the fixed image  and the

umber of bins m in the moving image.  In order to compute
his similarity metric on the GPU, the histograms are gener-
ted first. Using these histograms, the computation consists
ust of simple arithmetic operations plus a logarithm, followed
Relies  exclusively on statistical information of
available intensities. No spatial information is
considered

by a reduction step. The same is true when the gradient ∇UIMI

is used. This metric has been implemented in several papers
[12,9,10,32]. The mutual information computation benefits
from a more  complex algorithm. Parzen windowing estimates
the underlying probability density function from the observed
sample [60,9,10]. Instead of interpolating new intensity values
in the moving image  at the position of the grid points of the
fixed image,  the values of the nearest neighbors in the moving
image  are distributed into the histogram, weighted according
to the linear interpolation when partial volume interpolation
[61] is used. This technique is implemented on the GPU in [62].

Another example of a specific similarity metric imple-
mented on the GPU is gradient correlation, implemented in
[38].

4.1.  Implementation  building  blocks

In the following sections we want to discuss the three main
concepts for implementing similarity measures on the GPU.

4.1.1.  Interpolation  on  the  GPU
Interpolation is an important part of the graphics pipeline
for applying textures to geometric primitives, in order to add
details. Because of its importance, interpolation is directly
supported by the hardware. The hardware-supported inter-
polation modes are nearest-neighbor and linear interpolation
[63]. These interpolation modes are very fast, but suffer from
two drawbacks: the interpolation type (linear interpolation)
itself might not be precise enough and the accuracy with
which the interpolation is computed is limited, since only
8 bits are used to encode the fraction between two grid
points. Therefore, an implementation of a custom scheme
with higher accuracy in the shader/kernel code might be war-
ranted [64,65].

4.1.2.  Element-wise  stream  processing
Basic stream processing is the building block of the most
straight forward implementation of a metric. Considering the
two input streams If and Im, corresponding elements are pro-
cessed in parallel and written to a location in an output buffer
corresponding to its location in the input stream. For many

metrics, such basic operations are the first step when evaluat-
ing the alignment of two images. Often, not only one element
has to be taken into account, but a local neighborhood of val-
ues, for example in 2D or 3D.
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Table 2 – Application of GPU based image registration.

Modality Reference Type Appl. Year

CT/MR [70] Rigid 3D Brain 1998
CT [35] Non-rigid 3D Swine lung 2001

[57] Rigid 3D Pelvis, head 2006
[25] Non-rigid 3D Lung 2007
[26] Non-rigid 3D Lung 2008
[28] Non-rigid 3D Head, neck 2008
[44] Non-rigid 3D Thorax 2010

CT/SPECT [9] Non-rigid 3D Cardiac 2007
[10] Non-rigid 3D Cardiac 2008

CT/X-ray [34] Rigid 2D/3D Pelvis 2005
[38] Rigid 2D/3D Spine, femur 2006
[56] Rigid 2D/3D Head, thorax 2007
[46] Non-rigid 2D/3D Thorax 2008
[31] Rigid 3D N/A 2008

CTA/X-ray [40] Rigid 2D/3D Aorta 2008
MR [70] Rigid 3D Brain 1998

[49] Non-rigid 3D Brain 2002
[79] Non-rigid 3D Brain 2004
[24] Non-rigid 3D Head 2008
[80] Non-rigid 3D Brain 2008
[51] Non-rigid 2D Cardiac 2008
[71] Non-rigid 3D Brain 2008
[28] Non-rigid 3D Head, neck 2008

Microscopic [55] Non-rigid 2D Breast 2009
 2D 

-rigid
)rigid
Retinal images [32] Rigid
Not specified [22] Non

[23] (Non

4.1.3.  Stream  reduction
A stream often needs to be reduced to a single quantity in
order to obtain a statistical representation by counting inten-
sities. The reduction operation is one of the first operations
on GPUs that have been extensively studied [66,67].  Reduc-
tion on the GPU works by a gather approach: With each step
the size of the stream is reduced, usually by a multiple of two
and for each output element, the corresponding elements in
the larger stream are gathered and combined according to the
required operation. A detailed description of the optimiza-
tion steps that can be used for reduction in CUDA can be
found in [68]. With these two building blocks, metrics such
as SSD (see Eq. (4))  that just takes the sum of the squared dis-
tances between the fixed and the moving image,  can already
be implemented.

4.1.4.  Histogram  computation
For metrics such as MI,  a histogram has to be computed. This
requires scattered writes to memory  addresses and therefore
does not fit nicely into the streaming architecture of mod-
ern GPUs. The OpenGL extension for computing histograms
[69] – used in [70] – is not widely supported anymore. Using
graphics APIs, vertices can be used for scattering operations.
Texture input comes from vertex-texture fetches [9] or using
vertex-buffer-objects that allow to interpret a texture as ver-
tex data [10,71].  Blending is the approach in the graphics
pipeline to combine incoming data with data that is already
stored at a memory  address, this allows scattered writes with a

well-defined behavior. As demonstrated in [72], the histogram
generation can be converted into a gathering process. For
a comparison of different histogram algorithms on the GPU
complete with speed comparisons see [73].
Retina 2008
 2D N/A 2003
, 2D and 3D N/A 2006

In CUDA, OpenCL and CAL scattered writes are sup-
ported directly. Atomic functions in CUDA consist of a read
and write access to a memory  location without interference
from any other thread. Atomic operations are guaran-
teed to succeed, whereas simple write operations that try
to access the same memory  location simultaneously are
serialized by discarding every operation except one. The
sequence in which simultaneous write operations to the
same memory  space are performed is still undefined how-
ever. Atomic operations for shared memory  can be simulated
[11].

Depending on the amount of bins, several strategies
[74,11] can be used. For a small amount of bins for
the histogram, every thread can allocate a whole sub-
histogram in shared memory,  avoiding write conflicts but
restricting the number of bins. In the case of more
bins, a single sub-histogram for several threads is kept
instead.

5.  Conclusion  and  outlook

In recent years, the medical imaging registration community
has embraced GPUs as powerful yet cost-effective paral-
lel processing hardware. The key advantages of GPU based
image registration are a high memory  throughput, used
for re-sampling huge data sets, as well as the high par-
allelism in the processing unit and specialized hardware
for interpolation. Researchers have managed to overcome

the architectural limitations of GPUs with innovative algo-
rithms, achieving tremendous speed-up in numerous cases.
Table 2 gives an overview of modalities and application
areas.
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.1. Comparison  of  many-core  architectures

ompared to single CPU implementations, GPU implemen-
ations of registration algorithms remain more  challenging,
owever, the reason for this is mostly the different approach
o the algorithm design that has to be divided into a mas-
ive amount of work threads. This is true for every many-core
latform that is available, whether it is Cell, a many  core
PU or a cluster of machines. Implementations on the GPU
re potentially limited by the amount of memory  available.
urrent GPUs provide up to 4GB of memory.  This limit is suffi-
ient for many  registration tasks, especially for typical image
imensions in interventional imaging. The memory  limit can
urthermore be increased by adding several GPUs to one com-
uter. Compute clusters are in many  ways complementary to
PU computing, since the computers in the cluster can be
quipped with potentially several GPUs. A drawback at the
oment is the slower speed of double precision floating point

omputations on the GPU, a drawback the GPU shares with the
ELL architecture (two reports on registration implementa-

ions on CELL processors can be found in the literature: [75,76]).
owever, full precision is not always necessary [9,10]. Fur-

hermore, mixed-precision solvers have been demonstrated
o speed up computations such as in finite element problems
hile maintaining the accuracy of double precision computa-

ions [77]. However, the use of mixed precision registration on
he GPU has not been extensively investigated so far.

.2. Future  directions

e  observed that the rate with which new APIs emerge
r change has slowed down. As the bibliography shows,
UDA has established itself as a popular platform not only

or registration but also for other tasks in medical imag-
ng such as segmentation and filtering. Since the race for
igher clock-rates within the CPU industry has come to an end
nd processors started to become rather “wider than faster”,
esearch results in general purpose computation on graphics
ardware are an important factor towards a possible adop-

ion of GPU technology by CPU manufactures. Novel processor
esigns with a multitude of cores started to be available (IBM
ell processor) or announced [78], which will be interesting
latforms for algorithms that require a rather hybrid processor
esign. At this point, developers still have to decide for a plat-
orm for massively parallel processing, be that a single GPU, or

ultiple processors organized in clusters. As OpenCL receives
road support from all processor manufacturers, it appears as
n emerging standard for programming parallel architectures.
uch standardization might allow the reduction of processor
pecific programming efforts.
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