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Abstract

Dynamic contrast-enhanced magnetic resonance
imaging (DCE-MRI) of the breast has become an
important image modality for early breast cancer
detection. In comparison to conventional X-ray
mammography it exhibits a higher sensitivity, but
only moderate specificity. To improve the speci-
ficity, and therefore the distinction of benign and
malignant changes, the lesion’s heterogeneity and
the lesion enhancement kinetics have to be evalu-
ated. We present a visual analytics approach for
breast tumors in DCE-MRI data that divides a tumor
in different regions with different perfusion char-
acteristics by employing a region merging method.
The resulting region-based representation allows
for evaluation of the tumor’s heterogeneity and the
region-wise qualitative and quantitative evaluation
of the enhancement kinetics. The analyses are com-
bined with a glyph-based representation for a fast
overview of the whole lesion. We tested our ap-
proach with seven well-chosen lesions and com-
pared them to their histopathologic reports.

1 Introduction

In the western countries, breast cancer is the
most frequent malignant disease in women. Dy-
namic contrast-enhanced magnetic resonance imag-
ing (DCE-MRI) of the breast is currently the most
sensitive modality for invasive breast cancer de-
tection [1]. Breast perfusion DCE-MRI data ex-
hibits a high spatial and low temporal resolution. In
comparison to conventional X-ray mammography it
may reveal yet undetected lesions and is therefore
the image modality of choice for high-risk patients
and suspicious lesions detected with X-ray.

A breast tumor leads to the formation of new
vessels and/or the sprouting of existing capillaries,
which is referred to as angiogenesis or neoangio-
genesis [1]. In DCE-MRI, a contrast agent (CA) is

intravenously injected and works as a tracer of per-
fusion. The angiogenetic activity of a lesion leads to
CA accumulations and allows for breast cancer de-
tection. On the one hand, these newly formed ves-
sels yield an early CA enhancement and therefore a
strong CA wash-in. On the other hand, the highly
permeable vessels cause a rapid CA wash-out.

Since DCE-MRI is applied in high risk and un-
predictable cases, but only has a moderate speci-
ficity compared to X-ray mammography [1], the
distinction of benign and malignant lesions should
be improved. For the accurate assessment of breast
cancer, no standardized evaluation guidelines but
two main evaluation criteria [2] exist:

• the morphology of the lesion, and
• the lesion enhancement kinetics.
We focus on the second criterion. The evalua-

tion of the enhancement kinetics is carried out by
the definition of a region of interest (ROI) and the
analysis of the average signal intensity change over
time of this ROI. For the exact ROI’s size and place-
ment, different recommendations exist. In gen-
eral, it should be very small and avoid inclusion
of necrotic or surrounding tissue, since this could
distort the averaged enhancement kinetics [1]. The
heterogeneity of tumor vascularization, the close
neighborhood of necrotic and vital tumor tissue, and
the subjectiveness of ROI placement harden the in-
terpretation of the kinetics and may even result in
unrevealed malignant tissue. For example, if a ROI
covers malignant and benign tissue, the resulting
average curve may indicate benignity.

We propose a region-based visual analytics ap-
proach for breast tumors in DCE-MRI data. Our
region merging method automatically provides re-
gions with similar perfusion characteristics. Quan-
titative analysis of the enhancement kinetics reveals
the most suspicious region as well as the hetero-
geneity of the lesion. For qualitative analysis, the
regions are analyzed in terms of perfusion param-
eters. The region-wise approach is combined with
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a glyph-based voxel-wise representation of the le-
sion, which provides a fast overview of the CA ac-
cumulation in combination with its kinetics. We
finally present a case study, containing different
DCE-MRI tumor datasets together with histopath-
ologic reports.

2 Related Work

A number of computer-aided detection and diag-
nosis techniques for breast cancer have been pro-
posed in the last decade. Mostly, a preselection of
voxels or a segmentation is created, as a basis for
further analyses. Coto et al. [14] employ enhance-
ment scatterplots of the precontrast intensity and
relative enhancement to let the user select voxels of
interest. Chen et al. [15] propose a fuzzy c-means
algorithm followed by binarization and optimiza-
tion steps to automatically segment tumors. The
binarization leads to a classification in background
and lesion for quantification purposes. Tönnies et
al. [16] introduced region merging to segment dy-
namic nuclear image data of the heart based on a
region’s time activity.

For the visual exploration of DCE-MRI data,
Behrens et al. [9] proposed some basic visualiza-
tion techniques. A more advanced concept, the Pro-
file Flag, was described by Mlejnek et al. [13], and
allows for the intuitive probing and annotation of
temporal data. The visualization of the temporal
curves is closely connected to the rendering of the
anatomic structure of the data without removing any
parts thereof. Kohle et al. [11] presented a new ap-
proach for volume visualization of these datasets.
A color mapping for the highlighting of perfusion
abnormalities and the closest vessel projection to
add depth information to maximum intensity pro-
jections are employed. Other approaches employ
glyph-based visualizations for mapping several pa-
rameters in one image. In [10], a survey of the vi-
sual exploration and analysis of perfusion data is
provided. Existing approaches are limited to certain
samples, slices or parts of the dataset. In contrast,
we aim at an region-based analysis of the lesion.

Hauth et al. [7] presented an DCE-MRI breast
tumor analysis approach by employing the three-
time-point method for curve classification [4, 5].
The curve course is mapped to color and the rela-
tive enhancement of the CA is mapped to intensity.
Hauth et al. [7] recommended the evaluation of the

whole lesion for taking the tumor’s heterogeneity
into account. Englmeier et al. [8] also employed
a mapping of parameters to color and intensity, but
the user has to infer the parameter value from the as-
sociated color and intensity component. Beyond the
evaluation of the entire lesion, different approaches
exist for analysing smaller parts of the lesion. To
reduce variations, Mussurakis et al. [6] recommend
at least three different ROIs per lesion. Recommen-
dations for the optimal ROI size in breast cancer di-
agnosis range from 3-4 pixels to the whole enhanc-
ing lesion [1, 2, 6]. We will reduce distortion due
to ROI averaging or subjective ROI placement with
automatically defined regions.

3 Method

Our method comprises of two steps that are in-
tended to gradually extract and visualize perfusion
parameters of breast DCE-MRI data, and thus to re-
veal suspicious lesions. In the first step, the data
is segmented such that a lesion is divided into one
or more homogenous regions in terms of perfusion
characteristics. In the second step, a glyph-based
overview is generated and statistical analyses of
inner-regional perfusion parameters are provided.

3.1 Image Data

We applied our approach to five DCE-MRI datasets,
containing seven lesions. For each lesion, a his-
topathologic report was available. The datasets
were acquired with a 1,5T MRI scanner and ex-
hibit the parameters: in-plane resolution ≈ 0.67 ×
0.67mm2, matrix≈ 528 × 528, number of slices
≈ 100, slice gap = 1.5mm, number of acquisitions
= 5 − 6 and total acquisition time ≈ 400sec.

3.2 Motion Correction and Perfusion Pa-
rameter Extraction

DCE-MRI data exhibit motion artifacts mainly due
to thorax expansion through breathing and patient’s
movement. To establish a better inter-pixel corre-
spondence and reduce the interference, motion cor-
rection is carried out. The motion correction was
performed in MeVisLab (www.mevislab.de), em-
ploying the elastic registration method developed
by Rueckert et al. [12].



To quantify the relative enhancement (RE) of a
lesion, the percentaged signal intensity increase is
calculated [2]:

RE =
(SIc − SI)

SI
× 100, (1)

where SI is the precontrast and SIc is the postcon-
trast signal intensity. The RE can be plotted over
time, yielding RE curves (REC), which can be clas-
sified into three different types [2]. Type I corre-
sponds to a straight (Ia) or curved (Ib) continuously
enhancing REC. Type II is a plateau curve and type
III corresponds to an ascending wash-in phase fol-
lowed by a descending wash-out phase, see Fig. 1.
A type III REC is indicative for malignancy [2].
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Figure 1: Schematic drawings of REC courses (re-
produced from [2]). Type I corresponds to a straight
(Ia) or curved (Ib) line. Type II is a plateau curve
and type III a wash-out time course.

Beyond the classification of the REC course, the
curves can be further characterized by descriptive
perfusion parameters. We consider the following
parameters, derived from the REC (see Fig. 2):

• Peak enhancement (PE). The maximum value
of the REC.

• Time to peak (TTP). The point in time where
PE occurs. Wash-in takes place between the
first time point and TTP, whereas the wash-out
occurs between TTP and the last time point.

• Integral. The approximated area under the
REC for the whole time period.

• UpSlope. The curve’s steepness during wash-
in.

• DownSlope. The steepness of the descending
curve during wash-out.

See [10] for further information about descriptive
perfusion parameters.
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Figure 2: A REC with annotated perfusion parame-
ters PE, TTP, Integral, UpSlope and DownSlope.

3.3 Segmentation

The evaluation of the lesion enhancement kinetics
is carried out on the average REC of a certain ROI.
Therefore, we provide a region merging segmenta-
tion for automatic ROI identification. The purpose
of our approach is to create regions with similar per-
fusion characteristics to form ROIs. Hereby, noise
is suppressed through averaging the voxel intensi-
ties in the regions and artifacts, i.e. motion or blur-
ring, are not reinforced. Tumorous regions, exhibit-
ing different perfusion characteristics, are kept apart
in order to avoid that malignant tissue of a tumor is
neglected because of surrounding benign tissue.

To speed up the segmentation and to avoid the
processing of irrelevant regions, a preprocessing
step is performed for background exclusion. There
are two main indications for a voxel to be consid-
ered as background (and not as part of a lesion).
First, the RE at the first time step after the early
postcontrast phase is below a specified threshold
TPE , or second, the average RE change is below a
certain threshold TCI as a sign of non-perfused tis-
sue, noise or artifacts. If a voxel’s REC does not
exceed one of these thresholds, it is set to back-
ground and not considered in the following. Note
that voxels with a late enhancement will not be set
to background, because of TCI .

Subsequently, region-merging [17] is employed
to arrange the voxels into regions. Initially, each
voxel is a separate region. Iteratively, the most sim-
ilar, adjacent regions are merged until the similarity
of all regions falls below a pre-defined threshold or
the number of regions is reduced to a pre-defined
number. Regions are kept in a region adjacency
graph. The similarity of adjacent regions is stored
in a tree structure for a fast access (O(log n)) to the
most similar pair of regions.

We investigated two different similarity criteria
to compare two regions, each one characterized



by the average RE values of the contained voxels.
The first one employs a priori knowledge regarding
the characteristic perfusion parameters of the REC.
Therefore, the average slope during early postcon-
trast phase (Searly) and the average slope during
late postcontrast phase (Slate) of a region are calcu-
lated and, together with the region’s peak enhance-
ment PE(R), regarded as a feature vector FV1:

Searly(R) =

(
Rp − R0

R0

)
(2)

Slate(R) =

(
Rp − Rn−1

Rn−1

)
(3)

FV1(R) =

⎛
⎝ Searly(R)

Slate(R)
PE(R)

⎞
⎠ . (4)

Rt denotes the average RE value of region R at time
step t with n time steps in the dataset overall and p
represents the first time point after the early post-
contrast phase. The pearson correlation of the fea-
ture vectors of two regions is computed as a simi-
larity measurement.

The second similarity criterion is designed to in-
vestigate the performance of the region merging
without a priori knowledge. For the feature vector
FV2, the averaged RE of each region is employed:

FV2(R) = (R0, ..., Rn−1)
T . (5)

Again, the pearson correlation of the feature vec-
tors is computed as a similarity measurement.

For both approaches, a correlation value from
which on regions should be considered as similar,
can be specified. If no more region pairs fulfilling
this threshold can be found, the region merging ter-
minates.

We compared the segmentation results generated
by both similarity criteria merging regions with a
correlation equal to or greater than 0.99. The re-
gional inhomogeneity of each perfusion parameter,
normalized by the ratio of mean and standard de-
viation, and the average number of voxels in each
region are computed for the seven lesions of our
study are depicted in Fig. 3. As expected, the
parameter-based similarity criterion FV1 leads to
a lower regional inhomogeneity. In addition, the
number of regions containing a higher number of
voxels is smaller compared to the results of the sec-
ond similarity criterion FV2. Together with the in-
creased homogeneity, the higher number of voxels

leads to a better reliability and expressiveness of the
regions.
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Figure 3: The charts evaluate the segmented regions
of all seven lesions generated by applying the simi-
larity criteria FV1 and FV2. The average inhomo-
geneity of the descriptive perfusion parameters, ap-
proximated with the mean and standard deviation
ratio is shown in the left chart. The right chart
shows the average number of voxels per region.

Therefore, we employ the perfusion parameter-
based similarity criterion FV1. Further analysis is
only applied to regions with a minimum size Smin,
i.e. at least 10 voxels or 1% of the lesion’s size.
Smin can be adapted by the user, depending on the
level of detail the user is interested in. To separate
the segmented lesion from the dataset, a one-click
user interaction is necessary.

Since the influence of noise on small regions is
higher than on regions containing a higher number
of voxels, in theory, the correlation threshold should
be adapted to account for this. We neglect this adap-
tion, as our results indicate that regions of similar
perfusion characteristics are found, and leave this
to further investigation.

3.4 Visualization

We provide different approaches for the visualiza-
tion of the lesion and the visual analyses of the seg-
mentation result. First, we introduce a voxel-wise
glyph-based overview for the simultaneous map-
ping of RE and curve courses. Second, we present
quantitative and qualitative diagrams, for evaluation
of the lesion’s heterogeneity as well as for evalua-
tion of the region-wise perfusion characteristics.

Glyph-based Overview Visualization

We developed a glyph-based visualization for
voxel-wise mapping of the RE as well as the en-



hancement kinetics. The amount of RE at a cer-
tain point in time is color-coded by employing a
HLS color scale, whereas the H component deter-
mines the hue of the color and the L and S com-
ponent determines its lightness and saturation, re-
spectively. We employ two tresholds: Tdown for the
minimum RE and Tup for the maximum RE value.
For restriction to suspicious enhancement, we use
Tdown = 60% and Tup = 250% as default val-
ues according to [2]. Color coding of RE is carried
out by assigning red to RE values ≥ Tup, blue to
values equal to Tdown and negative linear interpo-
lation in HLS color space in between (see Fig. 4).
Voxels that exhibit values < Tdown, are mapped to
grey, whereas the brightness is proportional to the
RE, thus providing context information. However,
Tdown and Tup can be adapted for visual analysis.
For example, if the sensitivity shall be increased,
Tdown must be decreased.

L = curve course
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plateau
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Figure 4: Voxel-wise mapping of RE and REC
course to glyphs. The curve course determines the
L component (a), whereas the RE value determines
the hue of the glyphs (b). In (c), glyphs with differ-
ent REC courses and RE values are presented.

The REC of each voxel is classified based on the
three-time-point method [4, 5] for mapping of the
enhancement kinetics. Therefore, a RE change in
the intervall ±10% during wash-out will be inter-
preted as plateau, whereas RE changes higher than
10% and lower than −10% are considered as in-
creasing and decreasing curve, respectively. Map-
ping of the REC course is realized by applying a
3 × 3 kernel for brightness modification. The S
component of each glyph’s color is assigned to 1,
since we only use fully saturated colors for high-
lighting of the lesion’s enhancement, see Fig. 5. In
contrast to [7, 8] the RE and the REC course can be
directly interpreted from the corners and the center

of each glyph. Although the visualization is a little
less intuitive, more information is provided, which
may be important for special cases like a lesion with
moderate enhancement but type III curves.

( )b( )a

Figure 5: Glyph-based visualization of two lesions.
In (a), malignancy is indicated, since in the lower
left, there is a strong wash-in (red colors) and wash-
out (type III courses, see darker centers of glyphs).
In (b), a benign lesion with high RE values (red col-
ors) and mostly type I and II curves (see brighter
centers of glyphs) is depicted.

Region-based Quantitative Analysis

For quantitative analysis of the segmentation re-
sult, we provide information of the average RECs
in the REC diagram. The segmentation yields n
regions Ri (i=1..n) and the whole lesion L as the
combination of these regions. In Fig. 6, the av-
erage REC of L and its regions Ri is depicted as
well as the size of L and the percentaged size of
each Ri. Type III RECs are highlighted with an in-
creased line width. On the contrary, the line width
could also be adapted to a region’s reliability, which
is region-wise approximated with the perfusion pa-
rameters’ standard deviation in relation to the le-
sion. The REC diagram is linked with an interac-
tive slice view, whereas each region is color coded
according to the average REC diagram. The dia-
gram is only applied to regions with a minimum size
Smin. Regions can be selected and presented in the
glyph-based visualization for further investigation,
since the segmentation may yield regions with dif-
ferent curve types and RE values.

Parameter-based Qualitative Analysis

In addition to the quantitative evaluation of the REC
diagram, we provide a statistical evaluation and thus
the average µi of the descriptive perfusion param-
eters Pj , (j = PE, TTP, Integral, UpSlope, Down-
Slope) of each region Ri. The parameters PE, Up-
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Figure 6: Representative slices of the lesion (left). Voxels that belong to smaller regions are mapped to
grey. For larger regions, an average REC is created. The average REC of the overall lesion (grey course)
indicates a type II curve. The most suspicious region R3 is classified as type III and an increased line width
is assigned (middle). The line width can also be adapted to the region’s reliability (right).

Slope and Integral allow for the qualitative evalua-
tion of the wash-in, whereas DownSlope and TTP
are considered for the evaluation of the wash-out
phase.

Beyond the numerical results, a qualitative
region-wise analysis of the enhancement kinetics is
provided. For a fast overview and visual distinc-
tion we establish the measure Cij , which character-
izes the percentaged change of the average µi (Pj)
for each region Ri and each parameter Pj , in com-
parison to the average perfusion parameter value
µL (Pj) of the whole lesion L.

Since the parameters PE and Integral describe
the wash-in and thus a certain amount of CA ac-
cumulation, they are considered as quantitative de-
scriptors. We use the relative amount of change
(see Eq. (6)), since the comparison should indicate
trends instead of providing absolute differences of
these descriptors. UpSlope and DownSlope are de-
rived from the same REC and can be simply com-
pared by difference (see Eq. (7)). TTP describes the
point in time where PE is achieved. Since breast
DCE-MRI datasets typically contain 5 − 6 time
points, we normalize the difference of L and region
Rj with tn, the number of time points (see Eq. (8)).

Calculation of Cij (i=1..n) for j = PE, Integral:

Cij =
µi(Pj) − µL(Pj)

µL(Pj)
∗ 100, (6)

for j = UpSlope, DownSlope:

Cij = µi(Pj) − µL(Pj), (7)

and for j = TTP:

Cij =
µi(Pj) − µL(Pi)

tn
∗ 100. (8)

In Fig. 7, the change diagram containing the
changes Cij for each Pj is depicted (color coding
is synchronized with the REC diagram). In con-
clusion of Eq. (6)-(8), the values of µL (Pj) are
placed at zero along the abscissa. Different perfu-
sion characteristics of a region in comparison to L
are indicated by higher bars (considering the abso-
lute height), whereas similar characteristics are in-
dicated by smaller bars (considering the absolute
height). In Fig. 7, the regions R1, R2, R3 and
R5 indicate suspicious enhancement kinetics, since
they exhibit a stronger wash-in (in terms of parame-
ters PE, Integral, UpSlope) and a stronger wash-out
(high negative magnitudes for DownSlope, TTP) in
comparison to the whole lesion.

PE Integral UpSlope DownSlope TTP
−40

−20

0

20

40

60

Figure 7: The change diagram of the lesion pre-
sented in Fig. 5(a) and 6. The regions R1 − R3

and R5 are very suspicious, because of the stronger
wash-in (higher bars for PE, Integral, UpSlope)
and a stronger wash-out (high magnitude for Down-
Slope, TTP) in comparison to the whole lesion.



4 Case Study

We present a case study which contains different
malignant and benign lesions and their histopath-
ologic reports, listed in Tab. 1. For each lesion, the
results have been approved by a clinical expert. In
this section, the result for each lesion is presented.
In Fig. 8, representative slices with the glyph-based
visualization, the REC and the change diagram of
the lesions L2 - L7 are provided. Visualizations for
L1 were already presented in Fig. 5(a), 6 and 7.

Table 1: Listing of all lesions and histopathologic
reports.

lesion histopathologic report
L1 malignant multicentric, invasive

lobular carcinoma
L2 benign lesion
L3 malignant moderate differentiated

invasive lobular carcinoma, con-
tains small lobular carcinoma in situ

L4 malignant moderate differentiated
invasive ductal carcinoma

L5 malignant inflammatory cancer
L6 malignant mucinous carcinoma,

contains benign fibroadenom
L7 benign lesion with fibroadenoms

Lesion 1

The segmentation result for L1 contains 826 vox-
els and 11 main regions. The glyph-based overview
(see Fig. 5(a)) indicates malignancy with strong RE
and type III RECs. Fig. 6 reveals a multicentric le-
sion. In the REC diagram, the largest region R3

is classified as type III. Five regions with a type
II REC exist and a strong heterogeneity can be ob-
served. By analyzing the change diagram in Fig. 7,
R3 contains a strong wash-in (maximum PE, Inte-
gral, UpSlope) and wash-out (higher negative mag-
nitude for DownSlope and earlier TTP) in compar-
ison to the whole lesion. In combination with the
type III REC, R3 is highly suspicious and indicates
malignancy. Moreover, the change diagram reveals
suspicious type II regions R1, R2 and R5 which
exhibit similar attributes to R3 in comparison to the
whole lesion. The suspicion of malignancy is con-
firmed with the histophatologic report of L1.

Lesion 2

The segmentation result contains a big lesion with
1311 voxels and eight regions. The glyph-based
overview indicates continuous enhancement for
many voxels. All regions exhibit a type I REC.
The change diagram reveals that the regions dif-
fer in terms of PE, Integral and UpSlope, which is
caused by different amounts of CA wash-in. They
do not differ in terms of wash-out, since there are
very small changes for TTP and DownSlope. No
suspicious regions exist, indicating a benign lesion,
which is confirmed by the report in Tab. 1.

Lesion 3

The segmentation yields a small lesion with 330
voxels and five regions. The glyph-based overview
reveals suspicious enhancement kinetics for R1.
R1, with a size of 50% and of type III, indicates
malignancy, whereas other regions are continuously
enhancing. The change diagram indicates similar
perfusion characteristics of R2-R5 and strengthens
the suspicion of R1, since R1 exhibits the strongest
wash-out. The indications are confirmed with the
report in Tab. 1.

Lesion 4

The segmentation contains a lesion with 710 voxels
and nine regions. Although the glyph-based visual-
ization reveals voxels with suspicious wash-in and
wash-out kinetics, almost all regions are classified
as type I in the REC diagram. Furthermore, only
moderate RE (up to 160%) can be observed. The
largest region R1 is classified as type II. The change
diagram shows the lesion’s heterogeneity with dif-
ferent lesion enhancement kinetics. Especially the
wash-out characteristics confirm R1 as suspicious
region, since it strongly differs from the other re-
gions as well as the whole lesion. Although no type
III curve exists, heterogeneity and wash-out indi-
cate malignancy, which is confirmed by the report.

Lesion 5

The glyph-based overview reveals an inflammatory
lesion with irregular contours, indicating inflam-
matory breast cancer. The segmentation for this
specific cancer yields a huge (more than 120.000
voxels), highly fragmented lesion. The largest re-
gion R1 contains only 16% of the lesion’s voxels,



since many very small regions exist. The REC and
change diagram exhibit heterogenous regions and
many type III RECs. The indication of malignancy
is confirmed in Tab. 1.

Lesion 6

For L6, the segmentation leads to a large (4522
voxels), highly fragmented lesion. The glyph-
based overview indicates moderate enhancement,
with some small areas containing suspicious curve
courses. The REC diagram does not reveal type III
RECs, but it exhibits a strong heterogeneity. Fur-
thermore, R2 and R4 are classified as type II. The
change diagram illustrates the lesion’s heterogene-
ity and suspicious perfusion parameter values of R2

and R4. Both regions strongly differ from the whole
lesion, thus indicating malignancy. The suspect is
confirmed by the histopathologic report. L6 does
contain smaller benign lesions, which may have
caused regions with type I courses.

Lesion 7

The segmentation as well as the glyph-based
overview yield a small, enhancing lesion (290 vox-
els) containing only three regions. Two are contin-
uously enhancing and one (R3) is characterized by
a plateau. R3 has a strong RE (up to 300%) but
does not exhibit any significant wash-out character-
istic. This is strengthened by the change diagram,
which reveals strong differences during wash-in (in
terms of PE, Integral, UpSlope), but almost no dif-
ferences during wash-out. The non-existence of
characteristic wash-out kinetics indicates a benign
lesion, which is confirmed in Tab. 1.

5 Results

In this section the results are summarized.
For background exclusion and voxel preselection

described in Section 3.3, we employed a TPE of
60% to select suspicious lesions [2]. TCI was em-
pirically set to 80%, since experiments revealed that
this value allows for inclusion of regions with late
enhancement. Segmentation results were generated
with a correlation value of 0.99, up to which regions
should be merged and considered as similar.

The segmentation results yield dense accumula-
tions of small regions in peripheral parts of a lesion
(see grey voxels in Fig. 8). If a region exhibits very

similar curve parameters and a curve course with
inferior signal intensities in relation to another re-
gion, it is most likely influenced by blurring, e.g.
R4, R3 and R8 of L4. Motion artifacts may cause
uncorrelated curve parameters of average RECs of
adjacent inner-part regions, e.g. for L4 in Fig. 8.
In both cases, the signal is distorted and the cor-
responding regions should be considered as unreli-
able. Vice versa, bigger regions, in the inner-part
of a lesion, do not include conspicuously impaired
voxels. The segmentation process takes about 1 to
5 minutes for normal-sized lesions on a Pentium 4
(3,06 GHz) platform. The inflammatory lesion L5

takes about 20 minutes.
The case study reveals the potential of the region-

based analysis of perfusion parameters. In general,
the glyph-based voxel-wise overview as well as the
region-wise quantitative and qualitative evaluation
with the REC and the change diagram provide ad-
ditional information about the lesion enhancement
kinetics and thus its malignancy.

Problems occur in special cases like a supply-
ing vessel of a lesion. For L4, parts of a vessel
are contained in R1. Since the vessel’s enhance-
ment kinetics are similar to parts of the lesion, the
vessel is merged with R1, resulting in an increased
size of R1. If a lesion exhibits heterogeneity but
no region classified as type III (e.g. L4 and L6),
the clinical expert can examine regions with type II
RECs in more detail. Most important, the manual
placement of ROIs could be constrained to a pre-
selected, suspicious region. Thus, the clinical ex-
pert is supported and distortion due to averaging is
avoided. Since all histopathologic reports were ex-
tracted after surgical intervention to clarify the clin-
ical suspect of malignancy, our approach could in-
crease specificity of lesion enhancement and might
have avoided the interventions for benign lesions.

6 Conclusion and Future Work

We provide an approach for extraction and visual
analysis of regions with similar perfusion character-
istics. We described a case study of that approach,
which indicates an improvement of specificity of
tumor diagnosis in breast DCE-MRI. The region
merging segmentation allows for improved perfu-
sion analysis, since regions were merged based on
similar perfusion characteristics. Furthermore, re-
gions at the lesion’s boundary, which exhibit en-



hancement variations due to noise or motion arti-
facts, could be excluded.

The glyph-based overview enables a voxel-wise
and simultaneous evaluation of RE and curve
courses. More sophisticated analyses, including vi-
sualizations of average RECs and curve classifica-
tions as well as perfusion characteristics in compar-
ison to the whole lesion, allow for a region-wise
evaluation and thus the lesion’s heterogeneity and
the identification of the most suspicious region. The
most supicious region is essential for further diag-
nosis and treatment. The clinical expert’s manual
ROI placement can be constrained to this region.

For future work, the segmentation could be ex-
tended to automatically classify regions as impaired
or reliable by analysing the RECs of adjacent re-
gions. Adequate visualization techniques should be
developed to represent this information.
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Figure 8: Evaluation results for each lesion L2 - L7. A glyph-based overview and a color coding of the
regions for representative slices (left), as well as the REC diagram (center) and the change diagram (right)
are provided. For the larger lesions L5 and L6, zooming is necessary for glyph interpretation.


