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Abstract

We investigate the task of breast tumor classification
based on dynamic contrast-enhanced magnetic resonance
image data (DCE-MRI). Our objective is to study how the
formation of regions of similar voxels contributes to distin-
guishing between benign and malignant tumors. First, we
perform clustering on each tumor with different algorithms
and parameter settings, and then combine the clustering re-
sults to identify the most suspect region of the tumor and de-
rive features from it. With these features we train classifiers
on a set of tumors that are difficult to classify, even for hu-
man experts. We show that the features of the most suspect
region alone cannot distinguish between benign and malig-
nant tumors, yet the properties of this region are indicative
of tumor malignancy for the dataset we studied.

1 Introduction

Breast cancer, i.e. malignant breast tumors, are often ac-
companied by neo-angiogenesis yielding an increased num-
ber of supporting blood vessels as well as an increased tis-
sue permeability. In dynamic contrast-enhanced magnetic
resonance imaging (DCE-MRI), malignant tumor enhance-
ment kinetics are often characterized by a rapid contrast
agent washin and washout. For the evaluation of washin
and washout, a region of interest (ROI) is defined and the
ROI’s average contrast enhancement over time – the relative
enhancement curve – is extracted. The radiologist assesses
the early relative enhancement and the curve’s shape to an-
alyze contrast agent washin and washout. Since breast tu-
mors may consist of heterogeneous tissue parts, it is essen-
tial to detect the most malignant part for further diagnosis.
Then, the tumor is rated as malignant as its most malignant
part. Is it then feasible to automatically assess tumor ma-
lignancy by identifying and characterizing the tumor’s most
suspect (i.e., malignant) region? In this study, we apply dif-

ferent clustering algorithms to breast tumors, identify the
Most Suspect Region (MSRegion) for each clustering, and
then use this region’s features to train classifiers, which ex-
ploit different combinations of features for learning. As a
result, we identify which features contribute to the classifi-
cation and should therefore considered in clinical practice.

This study builds upon our previous work [8], where we
studied how features of clusters derived from different clus-
tering algorithms affect the discriminative power of a clas-
sifier. We extend that earlier work by learning classifiers on
different sets of derived features, and by concentrating on
the features of the most suspect region found through clus-
tering, rather than the features of all clusters.

We use a dataset of 68 well chosen tumors (from 50 pa-
tients), of which 37 are malignant. This dataset comprises
small tumors that are only detectable in DCE-MRI, cannot
be classified with conventional mammography and are in-
herently difficult to separate, even for a human expert.

Our paper is organized as follows. In the next section, we
describe related work on classification with features from
the tumor regions. In Section 3, we first describe the DCE-
MRI tumor data we analyzed and then elaborate on our
learning method. The experimental results are presented in
Section 4, and the findings are summarized in Section 5.

2 Related Work

The two major evaluation criteria for DCE-MRI breast
tumors are the tumor’s morphology and its enhancement ki-
netics. We focus on the second criterion. Since benign tu-
mors are predominantly more homogeneous than malignant
ones [17], we expect a more heterogeneous enhancement
with respect to their RE curves. Karahaliou et al. [12] an-
alyzed the heterogeneity of breast tumors by evaluating the
cross section of the largest tumor dimension. However, it is
recommended to consider the whole tumor to improve the
diagnostic accuracy [2]. To this purpose, a region merg-
ing method was adapted to breast DCE-MRI in [9], which



is used in [18] to predict malignancy based on the result-
ing amount and attributes of regions. Chen et al. [3] extract
the most characteristic enhancement curve to differentiate
between benign and malignant tumors.

ROI segmentation is a critical part of the breast cancer
classification process. Marrocco et al. [15], who study mi-
crocalcifications on mammographic images, perform a wa-
tershed transform on the images. They input the ROIs’
geometrical and textural features to decision-trees classi-
fiers, which filter out uninteresting ROIs. The remaining
regions are clustered into spatially contiguous clusters. We
rather perform clustering before classification, and use the
features of the most suspect region to classify the tumors.
Nie et al. [16] focus on morphology/texture features of the
MRI data to classify breast tumors, while Liang et al. [14]
study the shape and margin features extracted from the min-
imum volume-enclosing ellipsoid of lesions that are seg-
mented manually. Fusco et al. [7] also perform the segmen-
tation manually, and then study different subsets of region
features - dynamic ones, spatio-temporal ones and texture
features. They showed that the subset of dynamic features
achieves best performance. In our study, we also focus on
dynamic features, but ROI segmentation is done automati-
cally through clustering.

3 Materials and Method

In this section, we first describe the DCE-MRI breast tu-
mor data set. Next, we give an overview of our method and
elaborate on the tasks of clustering, region building and ex-
traction of most suspect regions, feature specification and
classification on selections of feature subsets.

3.1 Image Data

We study a set of 68 DCE-MRI breast tumors from 50
patients: 31 of the tumors are benign and 37 malignant; con-
firmation was carried out via histopathologic evaluation or
by follow-up studies after six to nine months. We include
only lesions that have been detected in MRI. The breast tu-
mor data were acquired with a 1.0 T open MR scanner and
are described in more detail in [8].

For each tumor voxel, the contrast enhancement is con-
verted into relative enhancement (RE), i.e., the percent aged
signal intensity increase, with

RE = (SIc − SI)/SI × 100 (1)

Here, SI is the pre-contrast and SIc is the post-contrast sig-
nal intensity. The RE plotted over time yields RE curves
that allow for the extraction of the descriptive perfusion pa-
rameters (see Fig. 1(a)): washin (the steepness of the as-
cending curve), washout (the steepness of the descending

curve), peak enhancement (the maximum RE value), inte-
gral and time to peak (the time when peak enhancement
occurs), which are substitutes for physiological parameters
like tumor perfusion and vessel permeability. Since peak
enhancement and integral strongly correlate, we exclude
peak enhancement from the subsequent analysis.

The three-time-point (3TP) method presented by Degani
et al. [5] allows for an automatic RE curve classification
based on three well-chosen time points: t′1, the first point
in time before the contrast agent injection, t′2, 2min after t′1
and t′3, 4min after t′2. With the 3TP method, a RE change in
the interval ±10% in the time between t′2 and t′3 will be in-
terpreted as plateau, whereas RE changes higher than 10%
and lower than −10% are classified as increasing curve and
washout curve, respectively [5]. Since our study contains
five - six time steps due to different scanning parameters,
we assign the third time step to t′2 and the last time step to
t′3. The analysis of the initial contrast agent accumulation,
i.e. the RE value at t′2, which is classified into slow, normal
and fast in combination with the three curve shapes yields
nine curve types (see Fig. 1(b)). We compare the results of
our clustering algorithms with the 3TP classes.

3.2 Overview of the Classification Method

Our approach consists of three phases, see Fig. 2. In
phase I, we perform several clustering runs with different
parameter settings. For each run, we cluster together voxels
that exhibit similar washin/washout curves (I.a). Then, we
form spatially connected regions (I.b). Finally, we select
the most suspect region MSRegion, or more specifically one
MSRegion per good clustering (I.c). This step is described
in Sec. 3.3.

In phase II, we derive a set of features that reflect the
homogeneity of the region. Informally, a region is homoge-
neous if all its voxels are geometrically close to each other
and exhibit the same washin/washout behavior. Hence, a

Figure 1. An RE curve and its perfusion pa-
rameters (a) and the 3TP classes based on
RE at t′1, t′2, and t′3 (b).



Figure 2. Schematic overview of the presented approach. In phase I, we perform several clustering
runs (I.a) and form regions (I.b), of whom we select the MSRegions (I.c), see Sec. 3.3. Second, we
extract features for each MSRegion for data enrichment (II). In phase III, we train learners over the
set of all tumors and their MSRegions to distinguish between benign and malignant tumors.

region consisting only of 3TP class 8 voxels is more ho-
mogeneous than one with voxels from 3TP classes 7 and 8.
Feature extraction is described in Sec. 3.4.

In phase III, we train classifiers on subsets of the features
extracted from our data in phase II. Since phase I delivers
one MSRegion per clustering run on the same tumor, we
combine classifiers, each of which considers the MSRegion
of a different run and predicts tumor malignancy (the label).
A combination of such classifiers is an ensemble, which col-
lectively decides on the label of a tumor by majority voting;
each ensemble member has one vote. The specification of
the classifiers is presented in Sec. 3.5.

3.3 Clustering and Identification of the
Most Suspect Region

For the subsequently applied tumor classification, it is
essential to form spatially connected and homogeneous
voxel groups, i.e. with similar contrast enhancement kinet-
ics. From these groups, we determine the MSRegion and
derive the classification features later on.

First, we extract the four perfusion parameters washin,
washout, time to peak, and integral per voxel (see Sec. 3.1)
and carry out autoscaling. Second, we cluster on these
parameters with a density-based clustering. We carry
out Density-based Spatial Clustering of Applications with
Noise (DBSCAN) [6],Density-Connected Subspace Clus-
tering (SUBCLU) [11], and Ordering Points to Identify the
Clustering Structure (OPTICS) [1]. The algorithms aggre-
gate objects into clusters based on estimated density dis-
tributions. In contrast to other clustering algorithms, the
density notation yields arbitrarily shaped clusters of any
size, which is important for the underlying medical image
data. Objects that do not exhibit similar parameter values to
any cluster are marked as outliers. That’s a further advan-
tage, since outliers may be caused by a missing inter-voxel-
correspondence over time due to motion artefacts.

Each of the three algorithms requires two parameters:

the minimum number of points to build a cluster MinPts
and the maximum radius ε defining the neighborhood of
a point. We set the values for the parameters as follows:
MinPts is empirically set to 4, 6 and 8. The calculation
of ε depends on the clustering algorithm. For DBSCAN
and each MinPts value, ε was automatically determined
as suggested in [4]. For SUBCLU, ε was extracted from the
k-distances graph that maps the distance of an object to its
k next neighbors (see also [8]). We apply this approach to
all four perfusion parameter sets and assign ε to the mean
of the four estimated values. For OPTICS, we experimen-
tally determine ε by successively applying 20 potential ε
values (in the range from 0.05 to 2) to the clustering algo-
rithm. If a OPTICS run for one of the 20 values showed
the best result compared to the 19 other ones, we increment
the score of this ε value. To quantify the quality of a run
we compare the sums of weighted values for Jaccard coef-
ficient, F1 score and Purity based on the actual clustering
and the 3TP division. We pick the two best ε values. With
MinPts ∈ {4, 6, 8} we get three configurations for DB-
SCAN and SUBCLU and six configurations for OPTICS.
To retain spatially connected clusters, each cluster’s voxels
which are reachable within an 18-connected neighborhood
are merged into groups.

Next, we determine the best clusterings by selecting the
clusterings with the least outliers for DBSCAN, SUBCLU
and OPTICS each. Thus, we yield the three best cluster-
ing runs: ADB , ASC , and AOP . From the results of ADB ,
ASC , and AOP , we reject all regions that contain less than
three voxels. From the remaining regions, we choose the
largest region with an average RE curve of 3TP class 7. If
no such region exists, we search for the 3TP class 9, 8, 4, 6,
5, 1, 3, and 2 in that order. Although this is a user-defined
ranking, we establish this empirical ranking based on def-
initions of the most malignant tumor enhancement kinet-
ics: a present washout in combination with a strong washin.
Thus, we obtain for each tumor and each clustering type
(i.e., for ADB , ASC , and AOP ) three most suspect regions



MSRegionDB , MSRegionSC , and MSRegionOP .

3.4 Feature Extraction of the MSRegion

The complete feature space describing a patient’s tumor
is based on the MSRegion and the tumor attributes. We ob-
tain the following sets of features: the features concerning
the MSRegion’s size for each of the clusteringsADB , ASC ,
and AOP (listed in Tab. 1), the features concerning homo-
geneity of these clusterings (listed in Tab. 2), and the fea-
tures on washin and washout behavior based on the MSRe-
gion and the corresponding clustering (listed in Tab 4). Fea-
tures associated with the whole tumor are listed in Tab. 3

General features of MSRegion
1 #RegV oxel Number of voxels of the MSRe-

gion for a given clustering.
2 RelRegSize The percentaged region size

(with respect to the tumor size).

Table 1. Features of the MSRegion of a clus-
tering; these features reflect the region size.

Features on Homogeneity and 3TP Class
1 P Purity value based on the comparison

of the 3TP class division and a given
clustering.

2 J Jaccard coefficient based on the 3TP
class division and a given clustering.

3 F1 F1-score value based on the 3TP class
division and a given clustering.

4 #R3TP(7) The number of regions with an average
RE curve classified as 3TP class 7.

Table 2. Homogeneity features over the re-
gions of a clustering.

Global Tumor Features
1 #V oxel Number of tumor voxels.
2 age Age of patient.

Table 3. Listing of global tumor features.

3.5 Specifying Classifiers and Ensembles

We define three base classifiers L1 - L3 for the three
most suspect regions MSRegionDB , MSRegionSC , and
MSRegionOP . Next, we extract the intersection of these
three regions resulting in the MSRegion∩, which is the start-
ing point for the fourth base classifier L4. Furthermore, we

Washin and Washout Features for the MSRegion
1 REt3 The RE at the third time step.
2 Integral The average value for the pa-

rameter integral.
3 Washin The average value for washin.
4 Washout The average value for

washout.
5 TTP The average value for time to

peak.
6 3TPregion The 3TP class of the region’s

average RE curve.
7..
15

#Voxels3TP(1..9) Number of region voxels that
have an 3TP curve 1..9.

16 #Present3TP Number of different 3TP
classes existing in the region.

17 Majority3TP 3TP class with the most vox-
els in the region.

Table 4. Selection of washin and washout fea-
tures for the MSRegion.

combine L1-L4 into two more classifiers: L5 and L6. The
detailed description of L1-L6 is listed in Tab. 5. Each of
these classifiers learns a decision tree. We combine these
classifiers into the ensembles C1(a) − C1(d) described in
the upper part of Tab. 6. Finally, we learn two baseline clas-
sifiers C2 and C3 that assign the label according to some
intuitive but simplistic rule (cf. lower part of Tab. 6).

4 Experiments

In this section, we apply the learners and classifiers to
our datasets to study the influence of the different cluster-
ings and features. Our evaluation criterion is the number of
Correctly Classified Instances #CCI.

4.1 Experimental Settings

For the decision tree classifiers (Tab. 5), we employ
the J4.8 classification algorithm (equivalent to the C4.5 al-
gorithm [19]) of the Waikato Environment for Knowledge
Analysis (Weka) library [10]. In the first run, we apply all
complete attribute sets to the classification algorithm. Then,
we try to find feature subsets of L1-L6 to optimize the num-
ber of #CCI. Hence, we carry out two further runs (run 2(a)
and (b)) and make use of the following methods (already
available in Weka):

a) The information gain of each attribute in all respective
feature sets is evaluated. An attribute is excluded if its
information gain is zero.



Decision Tree Classifiers
L1 We apply all features of MSRegionDB of

Tab. 1-4.
L2 We apply the features of MSRegionSC of

Tab. 1-4.
L3 We apply the features of MSRegionOP of

Tab. 1-4.
L4 We apply the features of MSRegion∩ (Tab. 4),

all tumor attributes (Tab. 3)and region size at-
tributes (Tab. 1).

L5 We apply two features from each of the four
MSRegions of L1 - L4: the region’s size
(Tab. 1(2)) and average 3TP class (Tab. 4(6)).

L6 We extend L5. We use for each of the four
MSRegions (of L1−L4) the relative region size
(Tab. 1(2)) and average 3TP curve (Tab. 4(6)).
For the clustering with the least outliers from
ADB , ASC , and AOP , we extract the homo-
geneity measures (Tab. 2)(1)-(3). The tumor at-
tributes are used (Tab. 3).

Table 5. Table of Learners L1 - L6.

b) The wrapper approach, described in [13], is used to ne-
glect irrelevant attributes. It delivers an attribute subset
with the highest possible accuracy.

Since age and #Voxel show a high significance to almost
every constructed decision tree, we then investigate the im-
pact of these two global tumor attributes on the classifica-
tion results. Therefore, we take the full attribute set and
conduct three further runs where we exclude age, #Voxel
and both, respectively. It becomes apparent that their influ-
ence on #CCI is very high. The restriction to attributes of
the MSRegion only (run 3) results in a drastic decrease of
maximum and average #CCI.

4.2 Results

For the first run, L2 yields the best decision tree and cor-
rectly classifies 53 out of 68 (≈ 78%) tumor instances. It
uses the attributes Majority3TP , age and #Voxel.

For the run 2(a), the maximum #CCI is 50 (≈ 74%),
achieved by L2, C1(b), and C1(d). L2 is based on the
MSRegionSC . The decision tree of L2 contains the at-
tributes JSC , F1SC , 3TPregion, Majority3TP, and age. For
run 2(b), L2 also yields the best result with #CCI= 56
(≈ 82%). This is the overall maximum of all runs as well.
The corresponding decision tree (see Fig. 3(a)) consists of
the attributes Majority3TP, age, and #Voxel. Both runs
2(a) and 2(b), i.e., the information gain and the wrapper
approach, yield an increased number of average #CCI.

The best tree that used solely MSRegion-based features

Ensemble Classifiers C1(a)− C1(d)
C1(a)
C1(b)
C1(c)
C1(d)

The classifiers C1(a) - C1(d) carry out a
majority voting based on their inputs. If
50% of each classifier’s inputs predict ma-
lignancy, then the classifier labels the tumor
as malignant. We employ the following in-
puts (based on Tab. 5):
C1(a) was created from L1 − L6,
C1(b) was created from L1 − L5,
C1(c) was created from L1 − L4 and L6,
C1(d) was created from L1 − L4.
Rule-based Classifiers C2 and C3

C2 Labels the tumor based on the MSRegion∩.
If its average curve type equals 3TP class 1,
4, or 7 the tumor is labelled as malignant.
Otherwise it is labelled as benign.

C3 If the number of voxels with an RE curve
classified as 3TP class 1, 4, or 7 is greater or
equal to 3, than the tumor is labelled as ma-
lignant. Otherwise it is labelled as benign.

Table 6. Table of Classifiers C1 (C1(a)−C1(d)),
C2, and C3 based on L1 - L6 from Tab. 5.

was produced by L4. It classifies 45 (≈ 66%) tumors cor-
rectly and is depicted in Fig. 3(b). The two baseline classi-
fiers achieved a #CCI of no more than 38 (≈ 56%). This
means that simple rules of thumb are not adequate to distin-
guish between benign and malignant lesions on this difficult
dataset.

5 Conclusion

With the presented approach, we examined the classifi-
cation of DCE-MRI breast tumors based on their MSRe-
gions. Therefore, we carried out density-based clustering
to form groups of similar voxels with respect to their con-
trast enhancement. With the MSRegions from these clus-
terings, we derived features and focussed on the influence
of the clustering, i.e., the feature set, to the classification.
As a result, we showed that for the final classification step
only a few features have to be employed. Another finding is
the influence of patient age and tumor size. Both attributes
strongly correlate with tumor malignancy and thus prove the
challenges of automatic DCE-MRI breast tumor classifica-
tion solely based on perfusion data. However, we identified
features that correspond to tumor heterogeneity (i.e, Jaccard
coefficient and Purity) and are also suited for distinguishing
between benign and malignant tumors. In conclusion, the
clustering and thus the grouping of the voxels into regions
is more important for classification instead of the extraction



Figure 3. Decision tree (a) achieved the best #CCI value; decision tree (b) is the best among the
classifiers that did not consider the features age and #Voxel.

of complex ensembles. We presented a feature set, which is
best suited to automatically determine tumor malignancy.

For future work, we plan to apply our techniques to a
bigger study. Furthermore, we want to investigate how the
clinical expert could direct the clustering, i.e. set the clus-
tering’s parameters for a semi-automatic approach.
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