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Abstract. Classification of breast tumors in perfusion DCE-MRI solely
based on dynamic contrast enhanced magnetic resonance data is a chal-
lenge. Many studies employ grouping of voxels into regions via clustering
for further analysis. However, the clustering result strongly depends on
the chosen clustering algorithm and its parameter settings. In this paper,
we explain how spectral clustering can be adapted to breast tumor data
and suggest how the clustering parameters can be automatically derived
such that no pre-defined user input, e.g., cluster number, is necessary.
The presented spectral clustering approach has the great advantage of
generating spatially connected regions. Furthermore, it can be enabled for
automatic classification and yields similar results as previous approaches.

1 Introduction

For the evaluation of breast tumors, conventional X-ray mammography is in
some cases not sufficient or not diagnostically relevant, in particular in younger
woman where the dense breast tissue does not reveal pathologic masses. To con-
firm the malignancy or benignity of such unclear lesions as well as to detect
small metastasis in case of a known primary tumor, dynamic contrast enhanced
magnetic resonance imaging (DCE-MRI) is applied. DCE-MRI has a high sensi-
tivity when compared to X-ray, however, the specificity is only moderate. Thus,
in clinical research, the automatic classification of breast lesions based on their
DCE-MRI-based contrast enhancement and morphology is an active research
area [1]. In clinical practice, the radiologist defines a region of interest (ROI)
in the most suspect part of the tumor and analyzes the average relative con-
trast enhancement (RE) over time of this ROI. Based on washin and washout
characteristics from the RE curve as well as analysis of the tumor’s morphology,
the radiologist carries out a diagnosis. The manual ROI placement suffers from
intra- and inter-observer variability which can strongly hamper the diagnostic
result since a tumor is as malignant as its most malignant part. Furthermore,
when a ROI covers benign and malignant tumor tissue, the ROI’s average RE
curve may be not appropriate to assess the tumor’s malignancy. In spite of these
shortcomings, determination of the most suspect ROI and thus the most sus-
pect tumor part is important for further diagnosis like core needle biopsy. To
solve these problems, we introduce a spectral clustering approach to group voxels
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into homogeneous regions and to maintain spatial connectivity of these regions.
Then, the most suspect ROI can be identified and employed for automatic tumor
classification.

Our approach is based on our previous work [2], where density-based clus-
tering is employed to breast DCE-MRI lesions. Then, a most suspect region is
extracted that serves as ROI for further analysis. Similarly, region merging is
employed to group and identify suspect regions of DCE-MRI tumors in [3]. The
results were employed for automatic breast tumor classification based on tumor
heterogeneity by Preim et al. [4], yielding an increased heterogeneity for malig-
nant tumors. However, the spatial connectivity of the resulting regions can be
improved by our approach and we achieve similar or even better classification
results. Also related to our work is the study of Chen et al. [5]. They apply
fuzzy c-means clustering and extract the most characteristic RE curve for breast
tumor classification but they can not automatically determine a most suspect
ROI.

2 Material and Methods

2.1 Tumor Data

We tested our approach with a database consisting of 68 breast lesions from
DCE-MRI data. From the 68 lesions, 31 tumors are classified as benign lesions
and 37 as malignant lesions. The classification of the lesions was confirmed by
histopathology (60 cases) or follow-up examination after 6 - 9 months (8 cases).
The database only contains tumors that have been detected in MRI and that
cannot be detected in conventional x-Ray mammography. The identification and
delineation of the lesion from background was conducted by an experienced
radiologist. The MR image parameters include an in-plane resolution of ≈ 0.67×
0.67mm2 with an image matrix of ≈ 528× 528, ≈ 100 slices with a slice gap of
1.5mm acquired at five or six time steps, i.e. one pre-contrast and four to five
post-contrast images. MRI perfusion data sets suffer from motion artifacts due
to breathing and patient’s movement. Thus, an elastic registration was carried
out for motion correction [6]. The signal intensities values SIt of the data sets at
time step t were normalized with the pre-contrast signal intensity SI0 to extract
relative enhancement REt values; REt = (SIt −SI0)/SI0× 100. For each voxel,
the following descriptive perfusion parameters were extracted:

– MaxRE, the maximum of the RE values
– TMax, the point in time when REt equals MaxRE,
– washin, the value of RE2, where t = 2 is the first time step after the early

post-contrast phase,
– washout, the normalized difference between the last time step t = n and

t = 2, i.e. (REn −RE2)/(n− 2).

For further characterization, we assign each voxel’s RE curve to an 3TP class,
based on the three-time-point (3TP) method [7]. The 3TP method defines three
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types of initial RE enhancement (slow, intermediate and fast) and three types of
curve shapes (washin, plateau, washout) yielding 9 classes (see Fig. 1). It involves
three well chosen time steps: ta, the first point in time before the contrast agent
injection, tb, 2min after ta and tc, 4min after ta. Since our study contains five
to six time steps due to different scanning parameters, we assign the third time
t3 step to tb and the last time step tn to tc. The selection of parameters and the
adaption of the 3TP method is based on our previous work [2].
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Fig. 1. The nine
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the 3TP method [7].

2.2 Methods

Our approach consists of two steps: the adoption of spectral clustering for each
tumor and the feature extraction on which the classifier will be learned.

Step 1: Clustering in the Spectral Space. We apply a spectral clustering method
to divide each tumor into homogeneous and spatially continuous clusters based
on the normalized (via z-scoring) perfusion parameters MaxRE, TMax, washin,
and washout.

Spectral clustering employs graph cuts such that edges between different
groups (i.e., clusters) have very low weights and edges within the same cluster
have high weights. Such a graph cut can be easily found by using the eigenvec-
tors and eigenvalues of a specific matrix - the Laplacian matrix - to map the
original data points to a low dimensional space [8]. In this new representation,
clusters can be easier separated (regarding the high-dimensional space) by apply-
ing simple clustering techniques like k-means. A weighted, undirected graph is
constructed from the initial data set. Each node represents a data point and each
edge the similarity between two points with a symmetric and non-negative sim-
ilarity function. Based on this affinity matrix, a Laplacian matrix is constructed
and an eigenvalue decomposition is performed. The eigenvalues and eigenvectors
are used to map the original data points to the k dimensional vectors of the
spectral domain. For a more detailed review, we refer to [8].

We use the Ng-Jordan-Weiss Algorithm (see also [8]) to directly partition the
data into k groups. The similarity graph is constructed based on the descriptive
perfusion parameters. Each node of the graph represents a voxel of the corre-
sponding breast tumor. Hence, the tumor data are represented in an regular
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orthogonal 3D grid and each node is connected to its adjacent nodes within a
26-neighborhood. We use the Gaussian similarity function [8]:

s(xi, xj) = exp

(

−
dist(xi, xj)

2σ2

)

to represent the local neighborhood relationships. The distance d(xi, xj) be-
tween two points is measured by using the cosine similarity of the corresponding
perfusion parameter values [8]. The scaling parameter σ describes how rapidly
the affinity decreases with the distance between xi and xj . Instead of manually
selecting σ, we use the approach described in [9] to calculate a local scaling pa-
rameter for each data point. Although we still have to select the n number of
neighbors that should be considered to compute this scale, this selection is inde-
pendent of scale [9]. We applied three internal cluster validation measurements
[10]: the Davies-Bouldin index, the Dunn index, and the Calinski-Harabasz index
to empirically find an n that provides the best clustering result. We varied n in
the range of [3..11] and analyzed the corresponding validation indices yielding
the best result for n = 3. In spectral clustering, we also have to specify the
number of clusters k. For the presented method, the three validation indices are
applied again. Then, the best k is chosen via majority voting based on the values
of the validation indices. If no majority exists, we employ the Davies-Bouldin
index. For each data set, the spectral clustering is computed several times with
different clusters k (k = {3..9}) and the optimal k is selected according to the
validation indices. In summary, the distance function d(xi, xj) detects similar
descriptive perfusion parameter values and the 26-neighborhood yields the spa-
tial connectivity of voxels in a cluster. This is an advantage in comparison to the
density-based clustering approach presented in [2].

Step 2: Feature Extraction for Classification. Based on the spectral clustering
result, we extract features to compare the discriminative power of our clustering
result. Based on our previous work [2], we choose one cluster as most suspect
region. Therefore, we analyze the 3TP class of the clusters averaged RE curve
and again employ the 3TP class ranking: 7, 9, 8, 4, 6, 5, 1, 3, 2. Thus, if three
clusters exist, with average curves of 3TP classes 7, 4 and 8, we choose the cluster
with average RE curve classified as 3TP class 7.

We employ the following features for each tumor to learn a classifier:

– biological features, i.e., age and tumor size in mm3,
– features of the chosen cluster and it’s average RE curve, i.e., washin, washout,

and 3TP class, as well as the per centaged cluster size (when compared to
the whole tumor), and

– features characterizing the whole tumor clustering result, i.e. the number of
clusters, the separability (i.e., the inter-cluster variance), the homogeneity
(i.e. the averaged intra-cluster variance), and the similarity measures Purity,
Jaccard index and F1 score based on the comparison of the clustering result
and the 3TP method classification of all tumor voxels.
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The classifier was created with the Weka library, a Java software library that
encompasses algorithms for data analysis and predictive modeling [11]. Based on
our previous work [2], a decision tree was trained with the C4. 5 classification
algorithm [12]. It automatically selects features with high discriminative power.
It performs 10-fold cross validation and requires at least two instances (two
tumors) for each tree leaf. The best tree result is depicted in Figure 2.

3 Results

For the automatic classification of our database, we learned the decision tree,
depicted in Figure 2. It correctly classifies 56 of 68 tumors, i.e. 82.24%. Inherent
to decision trees, the most important features are at top levels, i.e., closer to the
root, since the splitting a larger set of tumors. Hence, the feature patient age was
employed as most important feature, however all other attributes characterize
the tumor’s heterogeneity and kinetic contrast enhancement behavior. Due to
the specialty of our database (only suspicious or malignant lesions but no typical
benign ones were included), we do not consider specificity or sensitivity, but the
number of correctly classified tumors. The results are similar to our previous
work [2], but we do only employ 10-fold cross validation instead of 5 folds.
However, the benefit is the improved identification of the most suspect ROI
w.r.t. the spatial connectivity, see Figure 3. Hence, no outliers are produced.
Nevertheless, the identified most suspect cluster has similar discriminating power
when applied for automatic classification as previous results [2].

4 Discussion

In this paper, we explained how spectral clustering can be successfully adapted
to breast DCE-MRI tumors. We carried out k-means in the spectral domain and
provide automatic parameter choices for the input parameters. The clustering
result produces spatially connected homogeneous regions as well as a most sus-
pect ROI, and achieves similar classification results as proposed in literature.
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important ones.
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Fig. 3. Five slices showing the clustering result for a small breast tumor.
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Our results are in particular promising, since the employed database comprises
only tumors that are very hard to differentiate into benign and malignant ones.
Hence, only histopathologic evaluation or follow-up could confirm the diagnosis.
For future work, a bigger study, 5-fold cross validation and the combination with
morphologic features should be carried out. Acknowledgments. We thank Myra
Spiliopoulou and Uli Niemann for fruitful discussions. This work was supported
by the DFG project SPP 1335 ”Scalable Visual Analytics”.
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