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Abstract
For the evaluation of medical visualizations, a ground truth is often missing. Therefore, the evaluation of medical visualizations is often
restricted to qualitative comparisons w.r.t user preferences but neglects more objective measures such as accuracies or task completion
times. In this work, we provide a pipeline with statistical tests for the evaluation of the user performance within an experimental setup.
We demonstrate the adaption of the pipeline for the speci�c example of cerebral aneurysm surface visualization. Therefore, we developed
three visualization techniques to compare the aneurysm volumes. Then, we present a single-factor, within-subject user study, which
allows for the evaluation of these visualization techniques as well as the identi�cation of the most suitable one. The evaluation includes
a qualitative as well as a comprehensive quantitative analysis to determine statistically signi�cant di�erences. As a result, a color-coded
map surface view is identi�ed as best suited to depict the aneurysm volume changes. The presentation of the di�erent stages of the
evaluation pipeline allows for an easy adaption to other application areas of medical visualization. As a result, we provide orientation to
enrich qualitative evaluations by the presented quantitative analyses.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation � Line and curve
generation G.3 Probability and Statistics Experimental Design
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1 Introduction

Nowadays, many approaches for supporting the clinical expert as
well as the clinical researcher regarding diagnosis or therapy in-
volve a number of computer-supported segmentation, visualization
and evaluation steps. In this paper, we explain how to evaluate
comparative medical visualizations. Although many authors con-
duct a qualitative evaluation with medical domain experts, those
results are hardly reproducible. Often, these domain experts are
cooperation partners and co-authors of the presented work, where
a subjective bias is hardly avoidable. Nevertheless, their medical
knowledge is essential for speci�c application areas which may jus-
tify this procedure. Therefore, we do not neglect qualitative stud-
ies, but we want to include quantitative statistical analyses such
that they can be easily adapted by other medical visualization re-
searchers for a more comprehensive evaluation.
The segmentation of vessels with pathologic changes such as

aneurysms or stenoses is an important research area. To create
reproducible results as well as to reduce the work load of clinicians,
automatic segmentations of vascular structures are desired. Due
to patient-speci�c anatomies and pathologies, such automatic solu-
tions remain challenging, and aiming for a general automatic seg-
mentation framework is probably illusory [LABFL09]. Our appli-
cation area is the visualization of cerebral aneurysms. Aneurysms
bear the risk of rupture, which may cause severe consequences
for the patients. For an improved intervention planning, patient-
speci�c 3D surface models of the aneurysm and the surrounding
vascular tree are extracted. They allow for the simulation of the
internal blood �ow [CCA+05, BRB+15] or the extraction of mor-
phological parameters [LEBB09]. The results are included into the
minimally invasive surgical plan as well as the post-processing ap-
plications within the clinical environment.
Our application scenario does not focus on the segmentation

technique, but rather on the comparative visualization of di�er-
ent segmentation results. The employed surface meshes were ex-
tracted with a threshold-based segmentation, which can be suc-
cessfully used for cerebral aneurysms [GBNP15]. However, during
the segmentation process, the clinical expert requires feedback how
parameters in�uence the segmentation results since small param-
eter changes may induce enormous changes of the surface mesh.
To guide the clinical expert through the segmentation process, we
developed three di�erent comparative visualization techniques to
show surface mesh variations.
Our quantitative and qualitative evaluation allows for the iden-

ti�cation of the most suitable visualization technique. It comprises
the visualization of �ve cerebral aneurysms, each approximated
with three slightly di�erent surface meshes. Our conducted user
study determines which visualization technique is best suited to
evaluate the perception of small changes in the aneurysm volumes.
This is especially necessary when the clinical expert or medical re-
searcher tunes the parameters of the segmentation process and re-
quires feedback, whether the aneurysm extent increases or not. The
presented concepts comprising the experimental setup, the study
design, the study procedure as well as the statistical evaluation,
can be easily generalized and thus, transferred to other medical
visualization application areas. Our contributions are:

• We explain which statistical test is suitable for analysis of a

user study and order them into a general pipeline for the qual-
itative and quantitative evaluation of medical visualizations.

• We use the application scenario of cerebral aneurysms to pro-
vide three techniques V isA, V isB , and V isC for the visualiza-
tion of two similar but not identical aneurysm surface meshes,
which mutually penetrate and overlap.

• Based on this example, we demonstrate how to employ the
pipeline to determine which visualization technique is best
suited for this application.

2 Related Work

In this section, we discuss related work for the qualitative and quan-
titative evaluation of visualizations with focus on the application
area of aneurysms and vessels. We also refer to comparative visu-
alizations of surface meshes extracted from medical image data.
In recent years, �ndings from psychophysical studies were incor-

porated to enhance 2D and 3D visualizations [BCFW08] in�uencing
also the evaluation process of visualizations. For the assessment of
a visualization's suitability and performance, user studies o�er a
scienti�cally sound method [KHI+03]. Isenberg et al. [IIC+13] pro-
vide a systematic review of the evaluation practices in visualization.
They employ several evaluation categories and conclude that the
Qualitative Result Inspection was most often used by all reviewed
papers. Further emphasis on evaluation of algorithmic performance
as well as an increasing trend in the evaluation for user experience
and user performance were reported.
This �nding is also re�ected in medical visualizations. Often,

a user study is carried out, where the participants provide a sub-
jective rating of the novel algorithm. Gasteiger et al. [GNKP10]
carried out a user study for their aneurysm visualization based
on the participant's grade of satisfaction w.r.t. depth perception,
spatial relationships, �ow perception and surface shape. Subse-
quently, a more quantitative evaluation was presented by Baer et
al. [BGCP11] for this visualization technique amongst two others.
They conducted three controlled, task-based experiments and were
able to determine statistically signi�cant di�erences for the visual-
izations. Borkin et al. [BGP+11] also includes a formal quantitative
user study to determine which visualization technique of the en-
dothelial shear stress of coronary arteries is best suited. Hence, the
experimental study provided by Díaz et al. [DRN+15] comprises a
test setup to evaluate di�erent shading techniques for volume data
sets. Their evaluation included a quantitative statistical analysis
as well. Also, perceptually motivated medical visualizations often
include quantitative evaluations [PBC+16]. However, they focus
on abstract information, e.g., depth perception, rather than com-
paring visualization techniques for a speci�c medical application
area.
Visualizations of vessels are often depicted as 3D surfaces due

to their complex and patient-individual shape [BFLC04, SOBP07,
PO08]. Furthermore, overview visualizations are possible, e.g., the
CoWRadar visualization for cerebral vessels [MMNG15]. Since we
intend to employ aneurysm surface meshes for subsequent compu-
tational �uid dynamics (CFD) simulations and morphological anal-
yses, we focus on 3D surface visualization methods. The depiction
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of cerebral aneurysms mostly involves the visual representation of
hemodynamic parameters, e.g., scalar parameters are displayed via
color-coded surface views [CSP10]. Gasteiger et al. [GNKP10] de-
veloped an illustrative visualization of aneurysms using a Fresnel
shading to reveal the embedded blood �ow. This work strongly
motivated our visualization technique V isB .
Our comparative visualization is inspired by the image-based ren-

dering of intersecting surfaces [BBF+11]. This technique is based
on the approach by Weigle and Taylor [WT05]. Next to the inte-
gration of additional local distance cues, they enabled interactive
manipulation of the surfaces. Geurts et al. [GSK+15] employed a
visual comparison of medical segmentation results to allow for an
evaluation of the segmentation quality. They provided additional
information with landmark-based clustering to detect similar seg-
mentation results. For the visualization itself, a color-coding of the
surface was employed. There also exist illustrative approaches, e.g.,
the visualization presented by Carnecky et al. [CFM+13]. How-
ever, we aim at a fast comparison of cerebral aneurysm volume.
Therefore, we want to reduce the visual complexity and choose the
concepts provided by Busking et al. [BBF+11] as inspiration for
our technique V isC .
Our visualization techniques show di�erent segmentation results

from the same patient which can be also interpreted as uncer-
tainty visualization. Grigoryan and Rheingans [GR04] presented
point-based probabilistic surfaces, which visualize surface models
of medical structures such as tumors. Hence, the surface points
are displaced to re�ect the uncertainty at that point. The method
by Pöthkow and Hege [PH11] comprises a feature-based visualiza-
tion for isosurfaces with uncertainties. Their approach employs
color-coding, glyphs and direct volume rendering. A taxonomy
of uncertainty visualization approaches is provided by Potter et
al. [PRJ12].

3 Medical Background and Image Data

Cerebral aneurysms are pathologic dilatations of the cerebral artery
walls which may rupture and cause a subarachnoid hemorrhage
with severe consequences for the patient. Treatment is carried
out via endovascular intervention or neurosurgical clipping. How-
ever, the treatment itself may cause complications such as hem-
orrhages. The mortality rate associated with treatment is re-
ported to be higher than the rupture rate of small asymptotic
aneurysms [Wie03]. Thus, rupture risk assessment is an active
clinical research area.
Rupture risk factors in clinical practice mainly comprise the

aneurysm's morphology as well as the type of aneurysm, i.e.,
asymptomatic or symptomatic [WvdSAR07]. Hence, extraction of
surface meshes for aneurysms provide additional information such
as the evaluation of the ostium area (i.e., the ori�ce between the
aneurysm sac and the parent artery) [LEBB09]. Further research
directions involve the simulation of the internal blood �ow since
unstable and complex blood �ow was correlated with increased
rupture risk [CCA+05,XNT+11]. Again, a patient-speci�c surface
mesh is the prerequisite for volume grid extraction and a subse-
quently CFD simulation.
For diagnosis of cerebral aneurysms, rotational angiography

(RA) is considered as gold standard imaging method [GLR+09]
due to the high spatial resolution. Based on RA data, the 3D
digital subtraction angiography (DSA) data sets are reconstructed.
To obtain the slightly similar surface meshes, we exploit the re-
construction process of the RA data from the DSA suite (Siemens
Artis zeego, Siemens Healthcare GmbH, Erlangen, Germany). Five
patient-speci�c cerebral aneurysm data sets (D1-D5) were re-
constructed using three di�erent kernels: Houns�eld unit (HU)
smooth, HU normal and HU sharp. The �ve aneurysms stem from
�ve female patients with mean age of 49 years (range 45-59 years).

One cerebral aneurysm was located at the anterior communicating
artery, one at the posterior communicating artery, two at the seg-
ment of the internal carotid artery, and one at the bifurcation of the
middle cerebral artery. Their size varied from 2.5mm to 11.2mm.
All patients were treated with endovascular coiling.

4 Segmentation and Comparative Visualization

of Cerebral Aneurysms

In this section, the aneurysm and ostium segmentation is explained.
Afterwards, the three visualization techniques V isA, V isB and
V isC are presented.

4.1 Segmentation of Aneurysm and Ostium

For each patient's RA data set, the three di�erent reconstruction
kernels yield three di�erent DSA data sets. For each patient, a
threshold-based segmentation was carried out for the HU normal
reconstructed DSA image data. The resulting surface meshes are
depicted in Figure 1. Next, the remaining reconstructions of the
same patient were carried out such that they exhibit similar con-
tours in a representative slice covering the aneurysm (see Fig. 2).
Based on each threshold, the iso-surface is extracted and converted
into the triangle surface mesh. Data inspection, threshold segmen-
tation and mesh generation was carried out in MeVisLab 2.7 (MeVis
Medical Solutions AG, Bremen, Germany). Hence, the segmenta-
tion was not the focus of our work and depending on the medi-
cal application, a fully automatic segmentation can be employed
as well. For the purpose of our study, we required similar, but
not identical aneurysm surface meshes, which could be successfully
extracted with the threshold-based segmentation from di�erent re-
constructed RA data sets.

3D DVR View

2D Slice

Aneurysm

2D Slice View

S1 2 3S S

2D Slice View

Figure 2: Segmentations of patient P1. On the left, a direct volume
rendering of the DSA data set is depicted. A 2D slice covering the
aneurysm is shown on the right, its position is also highlighted in
the 3D view. Thresholds for segmentations S1-S3 are selected such
that similar segmentations are achieved, see bottom right. The
resulting segmentation masks are color-coded.

Our visualizations focus on the comparison of the volume of each
aneurysm without the surrounding vessel tree. Therefore, visual
separation between aneurysm and parent vessel has to be provided.
The ostium was manually extracted by de�ning a closed cutting
line along the aneurysm surface mesh using Blender 2.74 (Blender
Foundation, Amsterdam, The Netherlands). This cutting line was
employed twice. First, we create a closed ostium surface by trian-
gulating the cutting line. The aneurysm surface was cut with this
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Patient P5Patient P4Patient P2 Patient P3Patient P1

Figure 1: Surface meshes of �ve patient data sets P1-P5 reconstructed with the HU normal kernel are shown.

P2 S1 P2 S2 P2 S3

Figure 3: For patient P2, the three resulting segmentations S1, S2

and S3 based on the di�erent reconstruction kernels (HU normal,
HU sharp, HU smooth) are depicted.

surface to extract the aneurysm's volume for our evaluation. Sec-
ond, the cutting line's vertices were extruded to create a ru�-like
structure, which supports the participants of our user study. An
automatic ostium segmentation was not the focus of this paper, but
interested readers are referred to Neugebauer et al. [NLBP13].

4.2 Comparative Visualization Techniques

To evaluate di�erences of the aneurysm volume, we developed three
visualization techniques: the iso-surface view V isA, the boundary-
enhancing shading view V isB , and the color-coded map surface
view V isC . Each technique shows two aneurysms, where the �rst
one is referred to as ARef , i.e., the reference aneurysm, and the
second one as AComp, i.e., the aneurysm for comparison. Note that
the ordering of the aneurysms is important, and employing ARef

�rst and AComp second yields a di�erent visualization result than
the usage of AComp �rst and ARef second. In the following, the
visualization techniques will be described in more detail.

4.2.1 The Iso-Surface View - V isA

The iso-surface view is a rather straightforward direct visualization
of the two surface meshes of the aneurysms ARef and AComp. It is
realized in MeVisLab using the Open Inventor Library. For ARef

an orange, and for AComp a cyan transparent surface mesh is simul-
taneously visualized with opacity values of 0.5 (see Fig. 4). Beyond
mesh extraction, no further preprocessing is required.

4.2.2 The Boundary-Enhanced View - V isB

The second visualization technique V isB (see Fig. 5) is based on
the Fresnel shading approach, which was successfully employed for
aneurysm visualization comprising an inner blood �ow visualiza-
tion [GNKP10] or the outer vessel wall revealing the color-coded
inner vessel wall [GLH+14]. This technique is also referred to as
ghosted view or x-ray shading. Although we do not include addi-
tional information yet, e.g., the inner blood �ow, we do integrate

Ostium

Figure 4: Depiction of the iso-surface view V isA. In case the sur-
face mesh of ARef exceeds the surface mesh of AComp, the orange
surface becomes visible. Otherwise, the cyan mesh is visible. The
ru�-like structure provides information about the ostium.

this visualization technique in our user study since we are inter-
ested in a possible extension of the visualization with the above-
mentioned information in the future.

The opacity o for each surface mesh is assigned in the fragment
shader and depends on the normal n and the viewing vector v:

o = 1− (~n · ~v)f ,

where f serves as edge-fall-o� parameter. This parameter strongly
in�uences the visualization of possible inner structures. We use
an empirically determined value of f = 0.7. The visualization
technique is realized in MeVisLab using the Open Inventor vertex
and fragment shader modules, where the user can directly provide
shader codes as input.

4.2.3 Map-Surface-View - V isC

In contrast to V isA and V isB , the map surface view visually pro-
vides quantitative information for the distance between ARef and
AComp. For the gathering of the distance information, the estima-
tion of the nearest vertex pairs from ARef and AComp is carried
out. We calculate the normals of the ARef surface mesh and ap-
proximate the distance based on the intersection with AComp. The
normals of ARef point inwards. If AComp is larger than ARef , the
intersection in negative normal direction is nearer to ARef 's vertex
than the intersection in positive normal direction and the distance
value is stored as negative value.
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Ostium

Figure 5: Depiction of V isB . The mesh extents become best visible
at the boundary of the aneurysm (see circular inlay), which requires
an interactive exploration of the 3D scene. The visualization shows
a larger volume of Aref at the aneurysm itself, but not at the
aneurysm neck (see rectangular inlay and arrows).

For visual representation, we transfer the extracted distance val-
ues to the interval [0, 1] since we want to store them as texture
coordinates. Therefore, we clamp the original distance values to
the interval [−0.1, 0.1]mm and rescale them to [0, 1]. Thus, tex-
ture values of 0.5 are assigned to parts where the surface meshes
of ARef and AComp have a distance of almost 0mm. Finally, we em-
ploy the color map depicted in Figure 6 as texture and obtain V isC
by using the Open Inventor Vertex Attributes module provided in
MeVisLab. The color map is designed such that areas where ARef

is larger than AComp are mapped to orange, whereas the quantita-
tive distance information is provided by the hue's saturation. Blue
areas indicate a larger local extent of AComp.

5 Comparative Study

In this section, we present our pipeline for a qualitative and quanti-
tative evaluation. Afterwards, we describe our experimental setup
and the user study in more detail.

5.1 A Pipeline for the Evaluation of Medical Visual-

izations

Based on the studies presented and discussed in Section 2, as well as
discussions with statistical researchers, we created a generalizable
pipeline, see Figure 7. The pipeline is reduced to the scenario
of a single-factor study with one independent variable. For our
application, the independent variable is the visualization with levels
V isA, V isB and V isC . For generalization, the independent variable
is provided by the medical visualization.
First, the researcher decides whether to carry out a qualitative

analysis, e.g., the participants attitude towards a technique, or a
quantitative analysis, e.g., to provide statistically signi�cant re-
sults, or both. Second, user performance tasks have to be de�ned.
Most often accuracy, e.g., the number of correct answers, and task
completion time are chosen. Also the study type, i.e. between-
subject design (aiming at di�erences between the participants) or
within-subject design (aiming at the variability of a particular value
for individuals in a sample), has to be chosen, which depends on
the available participants. Advantageously, between-subject stud-
ies avoid learning e�ects and the evaluation time is reduced for each
participant compared to within-subject studies. However, groups
of similar participants (w.r.t. age, experience, knowledge, etc.)

Ostium

-0.1mm+0.1mm 0mm

A     > ARef Comp A        > ARefComp

Figure 6: Depiction of visualization V isC . The inlay highlights the
aneurysm surface.

have to be recruited. Especially in the medical domain, these pre-
requisites are not easily met. On the other side, within-subject
studies avoid interpersonal di�erences. However, they may su�er
from learning or sequence e�ects and intrapersonal di�erences.

After acquiring the user performances, a test is carried out to
check for a normal distribution. We can use the Shapiro-Wilk test
for this purpose. This stage is a prerequisite to choose the appro-
priate test in the next step. We analyze whether there is a signif-
icant di�erence between the levels of our independent variable via
an analysis of variance (ANOVA). If we can assume normal dis-
tribution, i.e., the data is parametric, a one-way ANOVA (due to
our single-factor study) is carried out. Otherwise, we employ the
Friedmann test for the non-parametric data. If there is a signi�cant
di�erence between the metrics, we can examine this di�erence in
more detail with a pairwise comparison. For example, a pair-wise
comparison of the non-parametric test result for a within-subject
study can be carried out with the Wilcoxon signed rank test. If no
signi�cant di�erences exist, we also obtained an important infor-
mation. We can furthermore provide descriptive results such as the
mean µ, the median m or the standard deviation σ to compare the
results. Hence, interpretation of σ should take the data's distribu-
tion into account. In addition, a box plot visualization provides an
important overview including information about the distribution.

Based on the in�nite con�guration of user studies, this pipeline
is presented with no claim to completeness. However, it can be
easily generalized to various application scenarios, i.e., after deter-
mining the user performance, a check for normal distribution is
carried out. Next, a check for signi�cant di�erences (based on one
or more independent variables) and a subsequently pairwise com-
parison (based on one or more independent variables and within-
and between-subject study design) is applied.

5.2 Experimental Setup

The whole study was realized with MeVisLab. Thus, each partic-
ipant was presented with a graphical user interface (GUI), which
guided the participants through the study. The user interface was
created with a TabView object using hidden tabs. Each time the
participant answered a question via clicking a button, the next
tab was shown. At �rst, the TabView comprises slides for medi-
cal background information. Since all visualization techniques were
implemented in MeVisLab, they could be easily integrated in the
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Figure 7: The proposed pipeline represented as decision tree for the qualitative and quantitative evaluation.

TabView GUI as well. Selection of visualization techniques and
data sets for the participants was automatically carried out via
Python scripts. Also, the logging of user inputs and time required
for each task, i.e., the task completion time, were stored as text
�les.

5.3 Study Design

For the comparison of the 3D visualizations, we design a single-
factor and within-subject study. The independent variable (i.e.,
the single factor) is the visualization technique which has three
levels: V isA, V isB and V isC . The two dependent variables for each
visualization are the task completion time and accuracy. Accuracy
is de�ned as the number of correct answers, i.e., the number of
right decisions whether aneurysm ARef or AComp is larger. Each
experiment is carried out via a within-subject design such that
each participant is confronted with each visualization technique six
times. Thus, the amount of di�erent visualization techniques shown
is balanced.

Basically, we repeat the same question whether Aref is larger
than Acomp 18 times. To reduce the in�uence of confounder vari-
ables, e.g., training or sequence e�ects, we change the order of
the shown visualization techniques as well as the employed pa-
tient and segmentation data with a-priori pseudo randomization.
The pseudo randomization is listed in detail in Tab. 1, Tab. 2 and
Tab. 3. For example, for the �rst test T1 and the �rst question q1,
the user is provided with V isA of the data sets from patient P1,
whereas S1 is employed for the reference aneurysm ARef and S2

for the comparison aneurysm AComp. In general, for the i-th test
Ti with questions q1-q18, each visualization V isA, V isB , and V isC
was shown six times in the pseudo-randomized order. The patient
data P1 − P5 was alternated (see Tab. 2) as well as the segmen-
tations (see Tab. 3). Since the order of the shown data sets was
important, each test is repeated for switched segmentation combi-
nations, i.e., T1 is identical to T2 w.r.t. visualization technique and
patient but not segmentation.

The pseudo-randomization ensures that each user evaluates dif-
ferent data sets with varying segmentations, i.e., the user does not
see the same visualization technique with the same data sets for
ARef and AComp twice. This also holds for the demonstration
of visualizations during the introduction (see Sec. 5.4), where the
combinations of patient data and visualization techniques were not
identical to the ones used in the test.

Table 1: Pseudo-randomization for the visualizations. For the test
Ti with questions q1-q18, V isA, V isB , and V isC were shown six
times in the depicted order. Each test is repeated for switched
segmentation combinations. After T12, the sequence is repeated.

q1-q6 q7-q12 q13-q18
T1 V isA V isB V isC
T2 V isA V isB V isC
T3 V isA V isC V isB
... ... ... ...
T5 V isB V isA V isC
... ... ... ...
T7 V isB V isC V isA
... ... ... ...
T9 V isC V isA V isB
... ... ... ...
T11 V isC V isB V isA
... ... ... ...
T13 V isA V isB V isC
... ... ... ...

Next to the users' choices regarding the aneurysm volumes, we
logged the task completion time as well as the answers to the fol-
lowing questionnaire:

• the age,

• the sex,

• whether the user is familiar with 3D visualizations,

• whether the user is familiar with 3D medical image data,

• a rating for V isA, V isB and V isC whether the technique was
suitable to analyze which aneurysm was larger, and

• a rating for V isA, V isB and V isC how much the user liked it.

The ratings were assessed with a 5-point Likert scale ranging
from −− (i.e. not suitable at all or not preferable at all) to ++
(i.e. very suitable or very preferable).

5.4 Procedure

The GUI was presented to each participant, starting with a slide
for the medical background information. Afterwards, the three dif-
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Table 2: Pseudo-randomization for the patient data. For the test
Ti with questions q1-q18, the patient data P1 − P5 was alternated,
starting with P1 for q1 - q3 and the segmentations S1-S2, S2-S3,
S3-S1 (see Tab. 3). The ordering of patients is repeated after T10.

q1-q3 q4-q6 q7-q9 q10-q12 q13-q15 q16-q18
t1 P1 P2 P3 P4 P5 P1

t2 P1 P2 P3 P4 P5 P1

t3 P2 P3 P4 P5 P1 P2

... ... ... ...
t5 P3 P4 P5 P1 P2 P3

... ... ... ...
t7 P4 P5 P1 P2 P3 P4

... ... ... ...
t9 P5 P1 P2 P3 P4 P5

... ... ... ...
t11 P1 P2 P3 P4 P5 P1

... ... ... ... ... ... ...

ferent visualizations V isA, V isB , and V isC were shown. Each of
the visualizations as well as the interaction, e.g., zooming and ro-
tating, was explained in detail by the supervisor. The user was also
encouraged to explore the scene and get familiar with the user in-
terface for 3D exploration provided by MeVisLab. The test number
ti was assigned to the i-th user. The user had to answer 18 ques-
tions q1-q18 and decide, which aneurysm possess the larger volume.
Finally, the users answered the questionnaire.

6 Results

This section describes the participants and lists the results of the
user study including quantitative and descriptive analyses, based on
our evaluation pipeline (recall Fig. 7). Afterwards, the qualitative
subjective ratings w.r.t. suitability and preferability are discussed.

6.1 Participants

The participants were recruited from visitors of the Long Night of
Sciences. During this event, scienti�c institutes show experiments
and tests to the general public. The majority of our participants
were from the university's computer science and medical engineer-
ing departments. As a result, we were able to conduct a user study
with 34 participants comprising 5 female and 29 male users, aging
from 16 - 66 years. When asked if the users have experiences with
medical visualizations, 10 users declined and 24 a�rmed. Regard-
ing the experience with 3D visualizations, eight users stated they
have no experience. We did not include domain experts or prospec-
tive users since we were only interested in a perceptual evaluation
of volume change. Hence, no medical knowledge was required.

Table 3: Pseudo-randomization for the segmentations. For the test
Ti with questions q1-q18 two di�erent segmentations of the same
patient were employed. For example, S1-S2 indicates segmentation
S1 for ARef and segmentation S2 for AComp. Since the order of
the shown data sets was important, the order of segmentations is
reversed for odd tests.

q1,4,7,10,13,16 q2,5,8,11,14,17 q3,6,9,12,15,18
T1 S1-S2 S2-S3 S3-S1

T2 S2-S1 S3-S2 S1-S3

T3 S1-S2 S2-S3 S3-S1

... ... ... ...

Table 4: Data from the user study. For each user U1-U34, the
number of correct answers for V isA, V isB and V isC is extracted.
This value ranges from 0 to 6, since each participant was confronted
with each technique six times. Also, for each user the average
time tA, tB and tC (provided in seconds) to answer a question is
collected.

Correct answers Average required time

V isA V isB V isC tA tB tC
U1 5 2 5 22 s 20.17 s 17.67 s

... ... ... ... ... ... ...
U34 5 4 5 17.83 s 10.67 s 15.33 s

6.2 Evaluation

The data collection provided by the conducted user study is listed
in Table 4. The participants' answers form the set of observations
for V isA, V isB and V isC . We also collect the set of averaged task
completion times tA, tB , and tC , each participant needed for V isA,
V isB and V isC . All statistical tests were carried out with SPSS
22.0 (IBM, New York, USA). Our statistical analysis comprises
three stages (recall Fig. 7):

1. We determine whether there is a signi�cant di�erence between
the visualizations w.r.t. accuracy.

2. In case the visualizations are signi�cantly di�erent, we fur-
ther analyze which visualization technique is best suited w.r.t.
accuracy and task completion time by pairwise comparison.

3. Finally, we provide a descriptive analysis.

6.2.1 Statistical Analysis Regarding the Accuracy

First Stage. The �rst analysis stage determines whether there
is signi�cant di�erence between the three visualization techniques
w.r.t. the amount of right answers, recall Tab. 4. Box plots for the
accuracy for V isA, V isB and V isC are provided in Figure 8. Ini-
tially, we employ the Shapiro-Wilk test separately for V isA, V isB
and V isC to determine whether the amount of right answers is nor-
mally distributed. Hence, the null-hypothesis H0 of the test states
a normal distribution of the random variable:

H0 : The random variable is normally distributed.

The Shapiro-Wilk test yields the following signi�cance levels:

• 0.003 for V isA, and

• 0.037 for V isB , and

• 0.000 for V isC .

Since H0 is rejected, if the signi�cance level is smaller than 0.05,
the accuracy signi�cantly deviates from a normal distribution for
each visualization technique. The next step comprises the analysis,
whether the visualization techniques are signi�cantly di�erent. We
chose the Friedmann test, since this test provides an ANOVA for
random variables that are not normally distributed. We de�ne the
hypothesis:

H0 : All visualization techniques achieve similar results.

Advantageously, the Friedmann test is based on ranks and not the
actual scores. The Friedman test reveals that the accuracies sig-
ni�cantly di�er for the three visualizations, with χ2(2) = 25.382,
p < .05, and the hypothesis H0 must be rejected.
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Second Stage. In the second analysis stage, we compare the
visualization techniques to identify the best one w.r.t. accuracy.
Based on the previous results, i.e., the amounts of right answers
are not normally distributed and are signi�cantly di�erent, we
carry out a pair-wise comparison of the visualizations. Since we
deal with non-parametric data, we apply the Wilcoxon signed-rank
test for V isA, V isB and V isC . A correction with the Bonferroni
procedure [Sha95] was applied, since we carry out multiple tests
on the participants' responses. Thus, all e�ects are reported at
a .0167 level of signi�cance, i.e., a third of 0.05. The amount
of correct answers were signi�cantly higher for V isA (m = 4.5 )
than for V isB (m = 3.0), U = −3.76, p < .0167, where m de-
notes the median. Also, the amount of correct answers was sig-
ni�cantly higher for V isC (m = 5.0) than for V isB (m = 3.0),
U = −4.07, p < .0167. However, there was no signi�cant di�erence
between V isA (m = 4.5) and V isC (m = 5.0), U = 0.95, p = .354.
The resulting box plots for V isA, V isB and V isC are provided in
Figure 8.
Since V isB signi�cantly di�ers from V isA and V isC , we analyzed

how it competes with guessing, where guessing would result in three
correct answers. Hence, a Wilcoxon signed rank test yields a signi�-
cant di�erence (U = −2, 094, p < .05 with µV isB<µguessing). Thus,
V isB may systematically in�uence the users to provide wrong an-
swers.

Third Stage. When using V isC (µ = 4.47, σ = 1.16) and V isA
(µ = 4.06, σ = 1.67), the participants achieved a higher accuracy
than with V isB (µ = 2.41, σ = 1.52). Comparison of the mean
values of V isA and V isC indicates the superiority of V isC .

6.2.2 Statistical Analysis Regarding the Required Time

For each visualization technique, the task completion time was
logged. We averaged the task completion time for each question,
i.e., we extract the average time tA, tB and tC required by the
users for a single question using V isA, V isB , or V isC , respectively
(recall Tab. 4). The boxplots are depicted in Figure 9. Similar
to the previous analysis, we �rst determine whether there is a sta-
tistically signi�cant di�erence between tA, tB and tC . We employ
the Shapiro-Wilk test to determine whether the required times are
normally distributed yielding the following signi�cance levels:

• 0.029 for tA, and

• 0.007 for tB , and

• 0.006 for tC .

Hence, all three variables signi�cantly deviate from a normal dis-
tribution (p < 0.05).
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Figure 8: Box plots of the accuracy for V isA, V isB and V isC
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Figure 9: Box plots of the averaged task completion times tA, tB ,
and tC including the median m, the mean µ and the standard
deviation σ.

As proposed for statistical analysis of V isA, V isB and V isC
w.r.t. the accuracy, the second stage determines whether tA, tB
and tC are signi�cantly di�erent. Therefore, we carry out the
Friedmann test, since this test provides an ANOVA for random
variables that are not normally distributed. The corresponding
null-hypothesis is:

H0 : The task completion time di�ers for V isA, V isB and V isC .

As a result, the Friedman test reveals no signi�cant di�erence, i.e.,
χ2(2) = 2.8, and p > 0.05. Thus, H0 cannot be rejected.

Second Stage. Since no statistically signi�cant di�erence could
be shown by the Friedmann test, we do not carry out a pairwise
comparison of the task completion times.

Third Stage. Comparing the box plots and test statistics of tA,
tB and tC , the participants performed the tasks in average faster
with V isC (µ = 20.54, σ = 8.83) compared to V isA (µ = 23.80, σ =
11.06) and V isB (µ = 24.04, σ = 10.17). Comparing the mean
values of tA and tB , the users required more time to ful�ll the
tasks with V isB .

6.2.3 Qualitative Evaluation of Suitability and Prefer-

ability

When analyzing the suitability and preferability ratings, the same
trends are re�ected, see Figure 10. Furthermore, the mode value,
i.e., the answer (−−,−, 0,+,++) that was given most often for
each question, as well as the amount of users that provide answer
++ and + is provided. Hence, users mostly rated V isC with ++
for suitability as well as preferability, V isA with + for suitability
as well as preferability and V isB with − for suitability as well as
preferability. The amount of users rating V isC as suitable and very
suitable (i.e., answers are + or ++) was highest with 27, followed
by 21 for V isA and 9 for V isB . Similarly, the amount of users
rating V isC as preferable and very preferable (i.e., answers are +
or ++) was highest with 29, followed by 16 for V isA and 11 for
V isB .

7 Discussion

The statistical analysis revealed a signi�cant di�erence of V isA,
V isB and V isC w.r.t. accuracy. The pair-wise comparison identi-
�es V isB as poorest choice. It does not only achieve lower mean
values compared to V isA and V isC , but signi�cantly di�ers from
both as well. V isC is not statistically signi�cant di�erent from
V isA, however, due to the higher mean values compared to V isA,
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Figure 10: Evaluation results of the participants regarding suit-
ability and preferability of V isA, V isB , and V isC . The mode value,
i.e., the answer that was given most often for each question, is
marked. Furthermore, the sum of answers ++ and + is provided.

it is declared as the best visualization to compare the volume of two
aneurysms. A possible conclusion might be that a derived quantity,
i.e., the distance, improves the identi�cation of the larger aneurysm.
Furthermore, mean and median values of tC were smaller than the
values of tA and tB . Although no signi�cant di�erence occurred,
these test results rate V isC as best visualization w.r.t. task com-
pletion time.
Remarkably, V isB even achieved a lower success rate than guess-

ing. This is interpreted as indication that the users did not fully
understand the design of V isB and that V isB is very inappropriate
for comparison of surfaces. We assume that users wrongly inter-
pret the ghosting view and thus, do not focus on the border areas
but instead on areas with surface normals parallel to the current
viewing direction. These areas are pre-dominantly color-coded in
cyan, since the AComp aneurysm is always drawn after the orange
ARef aneurysm.
When analyzing the suitability and preferability ratings, we

found overwhelming preference for V isA and V isC over V isB which
further indicates the inappropriateness of the latter. There was also
a small trend towards preferring V isC over V isA, identifying V isC
as favorite visualization.

8 Conclusion

Researchers involved in medical applications are often confronted
with visualization techniques, which are rather di�cult to evalu-
ate. Many times, medical visualization papers lack a quantitative

evaluation at all. With our proposed user study, a pipeline was
presented, which allows the comparative evaluation for three dif-
ferent visualization techniques for the speci�c application of cere-
bral aneurysm volume assessment. With focus on accuracy and
task completion time, this concept can be easily applied to various
scenarios to support qualitative �ndings with quantitative results.
For the evaluation of the aneurysm volume, the visualization

should be reduced to basic information, i.e., no ghosted view tech-
niques should be employed. Providing a color-coded surface visual-
ization with quantitative distance information such as our new visu-
alization technique V isC , helps the users to decide which aneurysm
exhibits the largest volume. This was re�ected by a statistically sig-
ni�cant higher accuracy, a smaller task completion time as well as
a better user rating.
For future work, di�erent approaches can be pursued. The vi-

sualizations can be improved, for example by including depth cues
such as ambient occlusion. From the statistical point of view, a
systematic analysis of the in�uence of the volume change could be
carried out. Hence, a visualization technique may be well-suited for
the depiction of large volume changes, but rather improperly suited
for small volume changes with a second visualization technique ex-
hibiting the opposite behavior. Finally, we chose the employed
colors to prevent false interpretations due to red-green color blind-
ness. In future, di�erent color blindness types should be considered
and assessed with the questionnaire.
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