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Abstract
Intravascular imaging provides new insights into the condition of vessel walls. This is crucial for cerebrovascular diseases
including stroke and cerebral aneurysms, where it may present an important factor for indication of therapy. In this work, we
provide new information of cerebral artery walls by combining ex vivo optical coherence tomography (OCT) imaging with
histology data sets. To overcome the obstacles of deflated and collapsed vessels due to the missing blood pressure, the lack of
co-alignment as well as the geometrical shape deformations due to catheter probing, we developed the new image processing
method virtual inflation. We locally sample the vessel wall thickness based on the (deflated) vessel lumen border instead of the
vessel’s centerline. Our method is embedded in a multi-view framework where correspondences between OCT and histology
can be highlighted via brushing and linking yielding OCT signal characteristics of the cerebral artery wall and its pathologies.
Finally, we enrich the data views with a hierarchical clustering representation which is linked via virtual inflation and further
supports the deduction of vessel wall pathologies.
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1. Introduction

With an increased rate of cerebrovascular diseases in the Western
civilized countries, the need for an advanced vessel wall analysis
increases as well. Usually, the contrast-enhanced vessel lumen data
are acquired to provide information about possible vessel stenoses
or pathologies such as cerebral aneurysms. However, the disease
is often manifested in the vessel wall causing a pathologic weak-
ening or thickening including arteriosclerotic plaque deposits. For
clinical research, intravascular imaging, e.g., intravascular ultra-
sound (IVUS) and recently optical coherence tomography (OCT),

provides new insights into the morphology of the wall and possi-
ble pathologic changes. IVUS and OCT are employed in clinical
routine for cardiology to assess stenoses and plaques with supe-
rior image resolution compared to tomographic imaging. OCT data
exhibit a spatial resolution of less than 15 μm with a limited pene-
tration depth of 3–4 mm, whereas tomographic images are limited to
0.2 mm spatial resolution. Due to restrictions of the medical board,
i.e., the catheters might not be small and flexible enough to guarantee
a safe use in cerebral vessels in vivo, an adequate imaging modality
for cerebral pathologic vessel wall changes is still missing.
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Figure 1: Ex vivo histology and OCT slice depicting the same vessel
part with varying shapes due to deflation.

To assess the potential of characterizing cerebral arteriosclerotic
plaque, OCT studies have been successfully carried out for the
larger carotid arteries [YKYea12] as well as for animal studies
or ex vivo studies [MSH*11]. Due to its ability to characterize
pathological vessel wall changes and its spatial resolution superior
to other intravascular imaging methods [TMF*12], it is expected
that OCT imaging of the cerebral vessels will be employed and
allowed for interventional use in the near future.

Our work focuses on the ex vivo evaluation of the Circle of
Willis (CoW), the cerebral arterial circle that supplies the brain with
blood. We correlate OCT imaging of the CoW containing plaque
with histologic imaging. The combination is hampered by a deflation
or collapse of the vessels due to the lack of an intact blood cycle
(see Figure 1). Due to the CoW’s numerous and particularly small
branchings, a sufficient flushing is not applicable. Further changes
of the vessel shape are caused by the ex vivo OCT catheter probing
(small vessels are reshaped due to the catheter’s size and stiffness)
and by the sectioning of the preparations for histologic imaging. To
overcome these limitations, we combine both image data modalities
via virtual inflation.

The virtual inflation method is embedded in a multi-view frame-
work for the interactive and simultaneous exploration of OCT and
histology data. To assess the accuracy of the combination, we pro-
vide a quantitative evaluation based on a finite-element simulation
creating a deformed virtual vessel wall model. Furthermore, we
provide a clustering of the cell nuclei in the histological image data
set for an adapted cluster visualization. We then combine the OCT
characteristics via brushing and linking with the features extracted
from histology. Finally, we transfer the cluster visualization to the
OCT data and provide novel information about the vessel wall com-
position. This work is an extension of our previous work [GHB*15].
The additional contributions of this paper are:

• We extend the virtual inflation framework by combining it
with a visual representation of clustered cell nuclei to allow
for an improved evaluation of OCT image data. We are able
to define and extract the spatial connectivity of the nuclei and
identify and automatically derive important attributes for a
dedicated visual representation. Thus, we can even transfer
more information from the histologic data to the OCT image.

• Based on the newly available information, we provide med-
ical findings which were extracted via combining OCT and
histology.

• For an improved evaluation of our method, we refine previ-
ously developed virtual vessel phantoms and include a Poisson
disk sampling for a quantitative evaluation.

2. Related Work

A lot of effort was spent in recent years on the visualization of
vascular structures [OP05, AMB*13, KGPS13]. These methods fo-
cused on the visualization of vessel walls by means of polygonal
meshes aiming at watertight surfaces, continuity and accuracy. For
the visualization of vascular pathologies manifested in the vessel
wall, these methods are not applicable. Direct volume rendering
with appropriate transfer functions [GOH*10] enabled the simul-
taneous visualization of plaques, stents and vessel walls and thus,
better serves diagnostic purposes. In contrast to the methods directly
operating on tomographic radiological image data, we consider in-
travascular imaging.

An intravascular imaging-based evaluation of the arterial wall is
mainly carried out in cardiology. Katouzian et al. [KKSea12] corre-
lated IVUS with histological imaging. They created a cage fixture
setup for an in vitro experiment. Also intended for the cardiological
use, Balzani et al. [BBBea12] introduced a 3D reconstruction of
geometrical models of arteriosclerotic arteries based on multimodal
imaging including IVUS, virtual histology data and angiographic
X-ray images. The reconstructed 3D model comprises the inner
wall with color-coded parameters describing stress distributions,
and a transparently rendered outer wall. In contrast, we are fo-
cusing on cerebral arteries. Thus, we deal with many particularly
small vessel bifurcations yielding deflated vessels in the ex vivo
imaging.

The analysis and the visualization of the vessel wall for cere-
brovascular diseases, including aneurysms, is a novel research area,
mainly motivated by intravascular imaging. In previous work, we
prepared an artificial porcine aneurysm, probed it with IVUS and
provided a visual representation of hemodynamic information as
well as the wall thickness [GLH*14]. The flat map [NGB*09] vi-
sualized near wall flow data which is mapped onto the cerebral
aneurysm surface. Instead of hemodynamic information, our virtual
inflation method allows for the mapping of histological information
onto the vessel wall.

Related to our analysis of the cerebral vessel wall, the cur-
vicircular feature aggregation [MMVea13] samples information
around the vessel’s centerline to provide pathologic changes of
blood vessels as an alternative to the curved planar reforma-
tion technique [KFW*02]. The curvicircular features allow for an
expressive visualization of vessels and highlight stenoses. Born
et al. [BSRea14] present the 2D stent map for aortic valve steno-
sis analysis, where generalized cylindric coordinates are extracted
from the vessel centerline to create a mapping of different stent
parameters, e.g., radial force or compression level. In contrast to
these approaches, we do not sample around the vessel’s centerline
but rather along the inner vessel wall. Their work is also based on
in vivo CT (angiography) imaging without deflated vessels. We de-
veloped the virtual inflation method to overcome the limitation of
collapsing vessels, which is distantly related to the active contour
and the balloon force concept [Coh91]. However, the active contour
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is allowed to move, i.e., it is attracted towards features such as edges.
Our approach assumes a fixed length of the contour.

Similar to our work, virtual inflation can be applied to organic
tissue instead of blood vessels. Such approaches were developed
for endoscopic views, where a virtual view is generated from a to-
mographic image data set. Bartrolı́ et al. [BWKG01] introduced a
virtual colon unfolding based on nonlinear ray casting and a non-
linear 2D scaling algorithm. The latter compensates distortions due
to the unfolding of the colon similar to the nonlinear magnifica-
tion fields used in information visualization. Hong et al. [HGQ*06]
presented the conformal virtual colon flattening including a topo-
logical denoising to cope with high genus surface meshes. Zeng
et al. [ZMG*10] applied a harmonic map registration to the confor-
mal virtual colon flattened images to co-register supine and prone
colon. Furthermore, the landmark-driven optimal quasiconformal
mapping presented in [ZY14] straightens the main anatomical land-
mark curves of the colon. For future work, an adaption for the whole
vessel, i.e., a virtual vessel flattening would be interesting.

Also related to our method is the medial axes approach, which
can be applied to measure the thickness of medical structures, e.g.,
the corpus callosum [HKW12]. In contrast, we focus on a thickness
measurement originating at the inner vessel wall and directed to the
outer vessel wall.

The evaluation of hematoxylin and eosin (H&E) stained data is
the standard method in histopathology and enables the pathologist to
recognize tissue alterations, e.g., diagnosis and grading of cancer.
Major trends for nuclei detection, segmentation, feature compu-
tation and classification techniques in digital histology data were
presented in the exhaustive overview by Irshad et al. [IVRR14].
For the delineation of touching nuclei, the watershed approach has
been successfully adapted for H&E data [LSP03, AM12]. Sertel
et al. [SCSG09] also applied the watershed algorithm and reduced
staining variations with anisotropic diffusion. Naik et al. [NDA*08]
automatically segmented nuclear and glandular structures in H&E
data based on three information levels: low-level information based
on pixels, high-level information based on relationships between
pixels for object detection and domain-specific information based
on relationships between histological structures. Our approach in-
cludes pixel information as well as high-level information such that
a neighborhood for each nucleus is determined and integrated in the
clustering. For a more general system dealing with various histolog-
ically stained image data, Kårsnäs et al. [KSD*15] provided a com-
prehensive software tool for extracting and quantifying sub-cellular
data. They especially account for biological and staining-induced
variations.

Multi-view frameworks are often employed in medical visual-
ization and analysis for data exploration [GRW*00]. Our proto-
type comprises two synchronized views of the cerebral vessels in a
multi-view framework. Our work includes brushing and linking, a
concept that was initially developed for highlighting data in scatter-
plots [BC87], to combine both views.

3. Image Data Acquisition

This section explains the image acquisition of the OCT data sets.
Afterwards, the histology-based data sets are described.

Figure 2: Illustration of the intravascular OCT image acquisition
based on the post-mortem dissected CoWs preparation yielding the
2D OCT image stacks.

3.1. OCT image acquisition

Three human CoWs were explanted post-mortem, fixated with for-
malin and probed with OCT aiming at the characterization of vascu-
lar wall structures (see Figure 2). All investigations were performed
in accordance with the local ethics committee. The specimens were
examined for pathological changes of the vessel wall, e.g., plaque
and aneurysms. The CoW preparations were flushed with isotonic
saline solution. They were fixated with needles on a silicon pad in
a container filled with saline solution for OCT image acquisition
with a TERUMO LUNAWAVET M console (Terumo Corporation,
Shibuya, Japan). The system is equipped with a near infrared laser
light source in the spectral domain. The OCT system’s pullback
speed was 20 mm/s over an average distance of 130 mm yielding
1,024 slices with a pixel resolution of 15 μm × 15 μm.

During image acquisition, a constant saline flush of the CoW
was started with an injector system. It reduced the deflation of the
vessels, but it could not be prevented completely due to small outlets
of the circle. Since only parts of the CoW could be acquired with one
setup, i.e., with one placement of the OCT catheter, different OCT
imaging setups were carried out for each preparation. As a result, we
obtain a set of OCT image series for each vessel part of the CoW that
exhibits vessel diameters large enough for catheter probing. Further
information of the OCT imaging setup can be found in [GHB*15,
HGBea16].

3.2. Histologic image acquisition

To assess vessel wall pathologies, we select certain vessel parts with
arteriosclerotic plaque as well as prominent bifurcations for orienta-
tion purposes (see Figure 3). Additionally, the specimen was marked
lengthwise doublesided with black and red ink. After paraffin em-
bedding, cross-sections of the specimen were cut using a microtome
with a thickness of 2 μm and a slice gap of 50 μm. The sections
were transferred to standard glass slides, H&E stained and cover-
slipped. The slides were digitized using a Hamamatsu Nanozoomer
(Hamamatsu Photonics, Hamamatsu, Japan) with a resolution of
.23 μm per pixel. The original proprietary file was formatted to
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Figure 3: From a dissected CoW (a), a specimen was taken, see
inlet (b). Black and red ink is employed for later co-registration
with OCT data (c and d). In the digitized H&E stained slice the red
and black ink is still visible (e).

JPEG2000 [KZSea08] and stacked into a volume for the processing
with our framework. The original data comprise approx. 11,000 ×
8,000 pixels per slice with a resolution of .92 μm per pixel.

4. Virtual Inflation for the Combined Evaluation of OCT and
Histology Data

In this section, we describe our workflow (see Figure 4),. starting
with the virtual inflation method. Afterwards, the clustering of the
nuclei and our framework are presented.

4.1. Virtual inflation

The virtual inflation method allows for the inflation of deflated
vessels. It can be applied to OCT and histology data since only the
contours of the vessel walls are required. The process is subdivided
in three steps (see Figure 4a).

Step 1: Extraction of equidistantly sampled contours. First, the
contours of the vessel lumen, i.e., the inner wall, and the vessel-
surrounding border, i.e., the outer wall, are required. We use man-
ually segmented binary masks and process each wall separately.
From the binary mask, all foreground pixels are selected forming
a point set. Then, an arbitrary starting point is chosen and its clos-
est, yet not visited, point is iteratively added to obtain a sorted list
of contour points. Next, the list is equidistantly resampled. The
amount of sample points is a user-defined parameter. Empirically
determined default values are 400 for an OCT slice with 600 × 600
pixels and 1,600 for a histology slice with approx. 11,000 × 8,000
pixels. The overall length of the contour is divided by the num-
ber of sampling points yielding a contour segment length. Then,
new sampling points are extracted as intersection points with the

connected contour list such that the distance between two subse-
quent sample points equals the contour segment length.
Step 2: Extraction of normals and wall thickness. For each point
pi of the inner vessel wall, the normal vector −→ni perpendicular to
the line spanned by pi−1 and pi+1 is extracted (see Figure 4a). The
normals are iteratively averaged as long as they intersect each other.
We approximate the wall thickness ti at pi as distance to the outer
wall by intersecting it with a ray originating at pi in direction −→ni .
Step 3: Transformation of vessel walls and sampling of intensi-
ties. We virtually inflate the inner wall by projecting the k equidis-
tantly sampled inner wall points p onto a circle with center m and
radius r . Hence, m equals the mean of the points p. We extract
r = c/(2π ), where c is the circumference of the inner wall. Ap-
proximating p′

i via:

p′
i = m + r ·

(
cos αi

sin αi

)
(1)

ensures equidistant points onto the circle, where αi = i ∗ 2π/n and
i = [1, k]. We remodel the outer wall by adding the stored values
for ti to p′

i in the direction −→mpi
′. As a result, we obtain the virtu-

ally inflated vessel walls. With linear interpolation, we can create
intermediate steps. For example, we translate the point pi only half
the distance between pi and p′

i of the virtually inflated circular in-
ner vessel wall (see the illustration for Step 3 in Figure 4a). The
interpolated virtual inflation is presented in Figure 5. It allows the
clinical expert an interactive inflation and exploration of the data.
The transition from original data to virtually inflated data can be
visualized in an animated manner, as well. The user defines how
many intermediate stages should be created. For the translation of
intensity values from the original image data to the virtually inflated
image, the rays −→ni are sampled (see Figure 6). We acquire a list
of samples for each pixel of the virtual inflated images (if k rays
cover the pixel, then k samples are obtained) and interpolate the
pixel’s intensity by averaging over the samples. If a pixel x with no
samples exists, the pixel’s intensity value I (x) is interpolated from
its neighborhood N (see Figure 6c):

I (x) =
q∈N∑

q

1

wq

∗ I (q). (2)

The sum of weights
∑

w drops below 1 if more than one pixel is
missing. In this case, we leave the missing pixels out and divide the
sum of the remaining pixels by

∑
w. To exploit as many samples as

possible, we first create a ranking of the pixels, based on their num-
ber of missing neighbors. Then, we interpolate all pixels with one
neighbor missing, followed by pixels with two neighbors missing
and so on. The interpolation is restricted to vessel wall pixels with a
point-in-polygon test based on the two walls. We empirically set the
step size for the sampling to .2 of the pixel’s width. Larger step size
values would gather less samples with more missing pixels. Smaller
values would result in more samples per pixel and slightly increased
computation time.

The runtime of the virtual inflation step depends on the number
of intermediate images. For the presented OCT data, the sampled
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Figure 4: Illustration of the proposed framework for exploration of the cerebral vessel wall with virtual inflation. The virtual inflation of the
OCT image data is depicted which comprises three steps (a). These steps are repeated for the histology data. The four steps for clustering the
histology data are depicted at the bottom (b). The virtually inflated images of OCT and histology data as well as the clustering result serve as
input for the interactive exploration within our multi-view framework (c). It allows for co-alignment of both modalities as well as brushing
and linking, which can be further combined with the cluster context view or the cluster representatives view.

Figure 5: Result (right) of the virtual inflation and the sampling of intensity values applied to a deflated vessel OCT cross-section view (left).
Intermediate steps are based on the linearly interpolated inner vessel wall points.

intensities are extracted in .5 s. The creation of the single virtually
inflated circular cross-section from the sampled intensities costs
3.7 s whereas the creation of 10 intermediate images costs 35.4 s
on a desktop PC with 8 GB RAM and an Intel(R) Core i5 CPU
(3.20 GHz).

4.2. Hierarchical clustering of nuclei

For the evaluation of vessel wall pathologies, the most important in-
formation extracted from the H&E stained histological image data
comprises the presence, arrangement and shape of nuclei. The nuclei
shape allows for a rough classification of cell types, e.g., elongated
nuclei often correspond to mesenchymal cells. Inflammations are

characterized by infiltrates of different types of cells, e.g., lym-
phocytes with small round nuclei. The clinical expert also takes
additional information into account, e.g., composition of the walls
by analyzing tissue types. Based on discussions with our patholog-
ical cooperation partners, we decided to focus on cell nuclei with
round and elongated shapes. A further requirement was the cluster-
ing of similar, spatially connected nuclei and thus, to provide a quick
overview representation. Therefore, we developed an extraction of
clusters (recall the clustering steps depicted in Figure 4b).

Step 1: Segmentation of nuclei. For the nuclei segmentation, we
convert the colored H&E stained histology image into a gray image
and invert it subsequently. To account for variations of intensities
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Figure 6: Illustration of intensity value sampling. Depiction of the
original image with the inner (green) and outer (blue) vessel wall
(a). The samples are accumulated along the rays to interpolate val-
ues (b). If no sample value was assigned, the intensity is interpolated
with the depicted filter (c).

and colors due to scanning, non-uniform illumination and staining,
we apply a contrast-limited adaptive histogram equalization which
works on small regions rather than on the entire image [Zui94].
Next, we automatically separate the nuclei from the background
with Otsu’s method [Ots79] which calculates an optimal thresh-
old by minimizing the intraclass variances of the foreground and
background class. Foreground objects smaller than ten pixels are
removed. As suggested in [SCSG09], we apply anisotropic diffu-
sion filtering [PM90] to smooth the histologic image data while
preserving the edge information. Finally, we apply the watershed
transform for a delineation of nuclei. This approach defines a group
of basins in the image domain such that ridges in between these
basins can be employed as borders to isolate the nuclei from each
other. Based on the borders, a binary mask is created which holds
the estimated boundaries for the nuclei.

Step 2: Determination of spatial connectivity. We determine the
position of each nucleus as mean of the associated pixels’ posi-
tions. Next, we approximate a neighborhood size Nε for the nuclei
depending on a user-defined minimum number of neighbors Min-
Points. Here, a default value of 5 yields suitable results for all
tested histological data sets. We build the k-distances graph (also
called elbow function) for the given MinPoints value, as suggested
in [EKSX96]. The graph maps the distance of each nucleus to its
k next neighbors (with k = MinPoints). A well-suited Nε can be
automatically detected at the elbow point. Nuclei with an Euclidean
distance smaller than Nε are neighbored.

Step 3: Extraction of attributes from nuclei shapes. We want
to differentiate between long, elongated nuclei and smaller, round
nuclei, e.g., from inflammatory cells. Therefore, we derive the fol-
lowing attributes (see Figure 7):

� the elongation is a customized parameter for characterization of
the roundness of the nucleus,

� the thickness describes the nucleus’ thickness, i.e., the number of
erosion steps (with a 3×3 rectangular kernel element) necessary
to completely remove the object, and

� the area describes the nucleus’ size, i.e., the number of pixels.

We extract the elongation e with a principal component anal-
ysis and subsequent evaluation of the eigenvalues λ1 and λ2

Figure 7: Examples of segmented nuclei pixels and their elongation
e (a–c). Next, a pixel set with its boundary (orange) is presented
(d). Two pixel sets are shown yielding similar values for e but with
distinct thickness values (e).

(see Figure 7). We normalize λ1 and λ2 with l1 = λ1/(λ1 + λ2),
l2 = λ2/(λ1 + λ2) and extract e:

e = max (l1, l2) − min (l1, l2) (3)

The main advantage of this measure compared to more conven-
tional parameters, such as compactness, is its direct extraction and
robustness. Since nuclei pixel positions are stored as binary masks,
we do not have round shapes or smooth boundaries. Hence, a time-
consuming extraction of the required information, e.g., the perime-
ter, the minimum bounding box or the longest chord, would be nec-
essary. Especially if the pixel masks are incomplete due to noise,
our elongation measure yields satisfying results. In case of round
nuclei, we can separate round shapes from curved objects with the
thickness parameter (see Figure 7e).

Step 4: Clustering of nuclei. We employ an agglomerative hierar-
chical clustering. Similar to region merging, each nucleus is forming
its own cluster at the beginning. Each cluster is neighbored to clus-
ters of corresponding nuclei within the distance Nε . Then, the most
similar neighbored clusters are merged into a new cluster and the
neighbor list is built up from the merged clusters. The similarity is
defined as Euclidean distance between the feature vectors, where
each cluster has a feature vector that contains the mean values of the
cluster pixel’s attributes. Prior to clustering, z-scoring is applied to
each attribute. From the cluster hierarchy we obtain cluster results
based on two parameters: the minimum cluster size and the ε-value
that defines the cluster division. We substitute the first one with
the MinPoints parameter, since the spatial connectivity is already
adapted to this value. The ε-value is empirically set to 1.0, but can
be adapted to obtain a coarser or finer cluster division.

4.3. Framework

First, we describe the multi-view framework and second, we explain
the included cluster views.

The multi-view framework. The virtual inflation and the clus-
tering are combined into a multi-view framework implemented in
MATLAB (MathWorks, Natick, USA) for the interactive explo-
ration of the OCT and histological data (recall Figure 4c). The
implementation is sped up by using vectorized data structures lever-
aging MATLAB’s implicit multithreading capabilities as well as
explicit parallel computing techniques and GPU computing. The
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Figure 8: Illustration of brushing and linking. Corresponding OCT and histology slices and their virtually inflated images are depicted. When
the user defines a brush (a), it is automatically converted to the inflated view (b), based on the distance of the vertices of the brush and their
distance to the vessel-lumen border (see inlets). The virtually inflated images of OCT and histology can be correlated (b and c). Analogously,
the brush can be translated from the inflated to the original image (d).

gpuArray command transfers data to the GPU memory. Subsequent
image processing methods are performed on the GPU and the re-
sults are transferred back using the gather command. Furthermore,
the parfor command distributes independent loop iterations across
multiple MATLAB sessions using a multi-core CPU.

An initial correlation of the vessels is carried out with two land-
marks, e.g., a vessel bifurcation, to determine a corresponding slice
in both modalities. Next, the data sets are co-aligned based on the
known slice distance of the OCT and histology data. If the user
scrolls to a slice in one view, the other view is updated accordingly.
For inspection of the data, virtual inflation is separately carried out
for the OCT image data and the H&E stained histology data (recall
Figure 4a). The user can qualitatively explore the vessel wall and
choose between different interpolation steps (see Figure 5). Thus,
the clinician can work with an intermediate image instead of the
virtually inflated one.

Based on the virtual inflation results, our framework allows for
brushing and linking for an interactive exploration (see Figure 8).
The user selects a set of points forming a polygonal region of inter-
est (ROI) – the brush. This brush is translated for each interpolation
step of the virtual inflation. Finally, a correlation between a brush
from the virtually inflated OCT image to the virtually inflated his-
tology image (or vice versa) is carried out. As a prerequisite, the
user selects two corresponding landmarks on the inner vessel wall
of the virtually inflated images, e.g., the small vessels (see cyan
circles) in Figure 8. The brush from the virtually inflated histol-
ogy image is translated to the original histology image. Thus, an
ROI defined in the original OCT image will be linked to its corre-
sponding ROI in the original histology image (or vice versa). The
clinician can correlate the image characteristics of a specific ves-
sel wall part. Our collaboration partners preferred the evaluation in
the original images by restricting the histology information to the
brush.

The cluster views. We included two cluster views in our frame-
work: a color coding of the clusters for context information – the
cluster context view – and the adapted visualization of the cluster
representatives – the cluster representatives view.

Figure 9: The bivariate colormap is used for the color-coding of
clusters (a). Examples of two clusters and their cluster represen-
tatives (b). The cluster context view provides context information
but visual clutter as well (c). The cluster representatives view yields
a sparse visualization (d), which will be further improved with the
adjusted positions (e).

The cluster context view maps the cluster average attributes (i.e.,
the average attributes of all cluster elements) to color with a bi-
variate color map (see Figures 9a–c). We employ orange and blue
to achieve a visual separation from the H&E stained image data.
The complementary colors work with red-green color blindness and
allow for an intuitive highlighting of the different shaped nuclei.
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For all segmented nuclei positions, we carry out a Delaunay trian-
gulation. Next, we identify inner triangles, i.e., triangles connecting
only nuclei included in the cluster. In addition, edges of the De-
launay triangulation which do not belong to inner triangles but are
spanned between two cluster elements, are selected. Inner triangles
and the selected edges are color-coded (see Figure 9c). To avoid
visual clutter, the cluster context visualization can be switched off
and replaced by the cluster representatives view (see Figure 9d).

The cluster representatives view shows color-coded glyphs rep-
resenting the cluster attributes inspired by choropleth maps. For the
initial positioning, we employ the position of the most likely cluster
element compared to the cluster’s attributes. For the extraction of the
glyph’s shape, we transfer the assigned pixel map of the most likely
cluster element into a polygon and slightly smooth the polygon’s
outline. We employ the bivariate color map and add a silhouette
with a slightly darkened color for an improved visual separation
from the remaining image. These glyphs are enlarged and mapped
at the cluster representatives’ positions.

Cluster representatives may overlap which hampers the visualiza-
tion result (see Figure 9d). Since the overlap-free positioning prob-
lem of these cluster representatives is not deterministically solvable
in polynomial time (NP-hard) [MS93], we developed a fast approxi-
mation consuming only a few seconds. We use an image buffer with
reduced size for the adaption of cluster representatives’ positions.
For the employed histological data, we achieved satisfying results
with a reduction factor of 1/30 yielding an image buffer of 370 ×
300 pixels. Then, we mask the corresponding pixels of the down-
scaled cluster representatives at its initial position in the image
buffer. If no overlap occurs, we store this position and proceed with
the next cluster. Otherwise, we move the pixel mask in the image
buffer one pixel to the left, right, top, and bottom yielding four
altered image buffers. Then, we select the image buffer where the
Haussdorff distance to the original position increased and the small-
est amount of overlapping pixels occurs. This prevents cyclic trans-
lations. We repeat this procedure until no pixels overlap and store the
translation. In peripheral areas, no valid position may be found due
to limited space. Hence, we stop the rearrangement of the current
cluster representative, if we reach the image buffer’s boundaries or if
the current translation exceeds a previously defined threshold (e.g.,
a Hausdorff distance of 100 pixels in the image buffer). In this case,
we place the cluster representative at its original position, accepting
an overlap. In Figure 9e, the adapted cluster representatives’ posi-
tions are presented. Lines connect adjusted cluster representatives
to their initial position in the original image (see inlets of Figures 9d
and e).

When employing the cluster result as brush, the clusters can be
linked to the OCT view. Therefore, the set of nuclei and their posi-
tions are interpreted as points of the polygonal brush and transferred
to the OCT data. Furthermore, the cluster view can be restricted to
clusters covered by the polygonal brush.

5. Evaluation

Our method is tailored to deflated vessels in OCT and histology
data. Due to the novelty of the medical application, a ground truth is
not available. To overcome this limitation, we designed a software

Figure 10: Depiction of the software phantom in the initial, stress-
free state (a). The local coordinate system is shown at the bottom.
The application of the load b yields P1 and P2, while the bottom
is fixated to prevent rigid body motion. Contour plots of the vector
displacement magnitudes for software phantoms P1 and P2 (b).

phantom (see Figure 10a), and applied two deformation configura-
tions via finite-element simulations yielding detailed positions and
displacements of the discrete elements. The finite-element method
is widely used to numerically simulate the relation of deformation,
mechanical strain and stress, based on the conservation of the mo-
mentum, which is solved locally for each finite element. Based on
this, we can conduct an evaluation taking into account the material
behavior in combination with known locations of each discrete ele-
ment. The static simulations considering large deflections and small
strains were carried out with ANSYS Mechanical (ANSYS, Inc.,
Canonsburg, USA).

The initial 2D model with a circular cross-section [GHB*15]
was extended to a more realistic one. The dimensions are carefully
matched to the properties of cerebral vessels, with an inner radius
of 2.2 mm and a heterogeneous vessel wall of .3 mm. The wall
thickness variations serve as anatomical landmarks for the virtual
inflation step. The numerical model consists of 96,000 tetrahedral
elements with quadratic basis functions to obtain high accuracy. To
induce deformation, a load b is applied as body force in positive and
negative y-coordinate direction, yielding the software phantoms P1

and P2, see Figure 10b). Fixating the displacement in y-direction at
the bottom edge and in x-direction at the bottom left vertex prevents
rigid body motion. The load causes mechanical stress in the model’s
inside and results in deformation depending on the specified linear
elastic material model. For investigation of the movement of the
cerebral vessel walls, the Young’s modulus is 1 MPa, the Poisson’s
ratio is 0.45 and the density is 1,000 kg/m3 [BHZea10].

The displacement of P1 and P2 ranges up to .5 mm. P1 and P2

consist of 195,000 indexed vertices, where the world coordinates and
displacements for each vertex are stored and employed as ground
truth. We build two DICOM files based on P1 and P2. We employ
an image size of 500 × 500 pixels, where 1 pixel covers .01 mm ×
.01 mm. The x-coordinates of P1 range from -.26 mm to 3.00 mm
and the y-coordinates from 0 mm to 4.62 mm. For P2, x-coordinates
range from -.96 mm to 3.15 mm and y-coordinates from -.01 mm to
3.76 mm. We extract for each vertex of P1 and P2 its pixel position
by translating the origin in the bottom left of the bounding box
yielding the images I1 and I2.

We load I1 and I2 into our framework and carry out brushing
and linking. Originally, we brushed 3 polygons as well as a random
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Figure 11: Depiction of the binarized images I1 and I2 and the
Poisson disk sample set. Via virtual inflation followed by brushing
and linking, the corresponding positions (red) were extracted and
compared with the ground truth (green).

point set comprising 100 points to compare the virtual inflation
results with the ground truth [GHB*15]. However, some of the ran-
domly placed points were too tightly packed together or too sparsely
distributed. We improved this quantitative evaluation by scattering
1,000 points which are Poisson disk sampled on the foreground
object of I1 forming our sample set, see Figure 11. Therefore, we
adapted the approach in [Tul08], which is based on [Bri07]. With
the Poisson disk sampling, a more homogeneously scanning of the
vessel wall is ensured.

For the quantification of displacement errors induced by the vir-
tual inflation, we compare the pixel coordinates of the correspond-
ing brushes obtained via brushing and linking with the coordinates
directly extracted from P1 and P2. Therefore, we carry out the fol-
lowing steps:

1. Extract the pixel coordinates for each sample point in I1.
2. Select the corresponding world coordinates of P1, i.e., transpose

the pixel coordinates into world coordinates.
3. Derive the corresponding world coordinates of these vertices in

P2 (known from the finite-element simulation).
4. Convert the vertices from P2 into pixel coordinates of I2.
5. Compare these pixel coordinates with the pixel coordinates from

I2 extracted via brushing and linking.

The resulting average displacement of the sample set compared
to the ground truth is 61.94 μm. This error is slightly larger than for
the initial, more circle-like software phantom [GHB*15]. Reasons
might be the more complex phantom as well as Poisson disk sam-
pling that yields many points close to the border of the outer vessel
wall. However, the result is satisfying. In relation to the image size
of 500 × 500 pixels, the displacement of 6.19 pixels equals 1.24 %.
Although the small displacement rate depends on the perfectly
matched software phantom and may differ for real preparations,
the virtual inflation allows for linking of a defined brush in one
image to the other image.

6. Medical Findings

We applied the virtual inflation to several OCT data sets of the CoW
and their corresponding histological images, including the basilar
artery with arteriosclerotic plaque. We discussed the results with a

neuroradiologist and a pathologist and provide the most important
findings in Figure 12.

In Figure 12a, the histologic evaluation revealed a fibrotic plaque
deposit in the pathologically thickened intima, i.e., the inner ves-
sel wall layer. When brushing the deposits, the linking to the OCT
slice reveals an area with dense plaque accumulation, see the dense
tissue parts with high attenuation (marked with *) yielding the low
attenuated areas behind. These findings are reflected by the cluster-
ing with blueish, circular shaped cluster representatives indicating
inflammatory areas compared to orange-colored cluster representa-
tives in healthy tissue.

In Figure 12b, the brush covers an accumulation of mucoid
plaque, which is typically loose. As it can be seen in the OCT
image, the brushed region is part of the plaque area with low signal
and low attenuation, but no specific differences can be extracted.
The cluster view restricted to the brush in the histology image does
not highlight any conspicuous nuclei shapes.

In Figure 12c, a small area with inflammatory cells, character-
ized by sharp, round cell nuclei, was selected. Inflammations often
vary and a precise prediction concerning their density values is not
possible. This is reflected in the small brush in the OCT image (Fig-
ure 12c, right), which reveals a small, heterogeneous area. Hence,
the cluster view, restricted to the brush that was linked to the OCT
image, comprises a sharp, round, blueish nucleus shape as well.

The brush in Figure 12d covers a part of the vessel wall which
was conspicuous during histology evaluation due to its increased
thickness. However, the analysis of the histologic image does not
confirm a plaque deposit. Probably, this area is caused by a cutting
artifact. In accordance, no change in the signal characteristics of the
OCT data occurs. This is also reflected by the clustering view that is
restricted to the brush. Hence, it does not contain any conspicuous
nuclei shapes.

The virtual inflation correlates the fibrotic plaque deposit to a
homogeneous signal-rich region in the OCT data which matches
findings in literature [KBBea06]. In case the vessels exhibit ellip-
soidal cross-sections as well as various elongated cross-sections due
to pathologies, an evaluation of the slightly virtually inflated vessel
was beneficial, recall Figure 5.

7. Discussion

The proposed virtual inflation supports a combined analysis of OCT
and histologic image data. The spatial differences between a brush
and the corresponding brush in the second modality were evaluated
based on finite-element simulations yielding a sufficient precision.
For the medical image data, the co-alignment could be further im-
proved by implanting some markers, e.g., a small thread, in the
preparations. Our data sets were probed ex vivo. Thus, a detachment
of the intima emerged, which typically occurs during decomposi-
tion. Hence, a larger study could provide more information about
artifacts such as conservation-based shrinking.

The pathologic expert rated the cluster primitives, especially their
accordance with the underlying morphologic features, as very use-
ful extension for a quick overview of nuclei shapes especially in
the OCT slices. Once an interesting vessel part was detected, the
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Figure 12: Examples for the correlation of histology and OCT images. For each example (a–d), the left and second from left columns represent
the histologic image including an enlarged view of pathologies. Brushes were defined in the histologic view and linked to the OCT view via
virtual inflation. The cluster representatives are shown for the whole vessel cross-sections (see inlays in a). The cluster view can be restricted
to the histological brush (b), as well as to the linked brush in the OCT view (c and d).

original histologic data set was evaluated for an in-depth analysis.
The combination of the ex vivo OCT and histologic properties pro-
vides new information about the cerebral vessel wall morphology
and its corresponding OCT imaging. Such findings can form the
basis for a solely radiology-based OCT image evaluation.

8. Summary and Future Work

In this paper, we presented a virtual inflation of ex vivo vessel
parts probed with OCT and acquired with histology to analyze
characteristics of the cerebral vessel wall. Our prototype requires
manual segmentation of the vessel-lumen and the vessel-
surrounding borders. It is adapted to intravascular imaging of
the cerebral vasculature. Our framework comprises multiple
coordinated views, which allows for brushing and linking between

the OCT image and the histological image. Our work provides
basic information for the radiologic evaluation of OCT signal
characteristics which are almost unknown for cerebral artery
walls.

Future work should include automatically segmented vessel walls
of the OCT data [TSDS*11]. We are also particularly interested
in a setup similar to the cage fixture [KKSea12] for an in vitro
setup. However, their work is based on IVUS, whereas OCT would
require different adaptions. Also, an analytic representation of the
inner vessel wall and the wall thickness values could be developed
to avoid averaging steps and reduce the calculation time. Finally,
our work has great importance for the fluid-structure interaction
regarding vessel wall and blood flow. The new wall information
based on virtually inflated images currently serves our cooperation
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partners to examine the effect of wall thickness on the hemodynamic
simulation.
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