
Expert Systems With Applications 113 (2018) 147–160 

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

A framework for expert-driven subpopulation discovery and 

evaluation using subspace clustering for epidemiological data 

Tommy Hielscher a , ∗, Uli Niemann 

a , Bernhard Preim 

b , Henry Völzke 

c , Till Ittermann 

c , 
Myra Spiliopoulou 

a 

a Otto-von-Guericke University Magdeburg, Department of Technical and Business Information Systems, Universitätsplatz 2, Magdeburg D-39106, Germany 
b Otto-von-Guericke University Magdeburg, Department of Simulation and Graphics, Universitätsplatz 2, Magdeburg D-39106, Germany 
c University Medicine Greifswald, Institute for Community Medicine, Walter Rathenau Str. 48, Greifswald D-17475, Germany 

a r t i c l e i n f o 

Article history: 

Received 19 September 2017 

Revised 11 June 2018 

Accepted 2 July 2018 

Available online 2 July 2018 

Keywords: 

Subpopulation discovery framework 

Constraint-based subspace clustering 

Cohort study data 

Hepatic steatosis 

Goiter 

a b s t r a c t 

Objective: We propose an intelligent system that assists epidemiology experts in analysing the data of a 

population-based epidemiological study, in identifying relevant variables for an outcome and subpopula- 

tions with increased disease prevalence, and in validating the findings concerning variables and subpop- 

ulations in a further, expert-specified cohort. At present, the study of an outcome on a population-based 

cohort is hypothesis-driven, i.e. the expert must specify the variables to be studied. Our approach rather 

operates in a data-driven, semi-automated way, enabling the expert to identify variables of relevance and 

generate hypotheses on them. 

Methods: Our system DIVA supports the D iscovery, I nspection and VA lidation of subpopulations with in- 

creased prevalence of an outcome, without requiring parameter tuning. DIVA takes as input the cohort 

of an epidemiological population-based study with all variables specified in the study’s protocol, as well 

as inputs from the expert on the similarity of a small number of cohort participants. DIVA uses semi- 

supervised subspace clustering and subspace construction to identify sets of variables – subspaces –

that promote participant similarity with respect to the outcome and with respect to the expert inputs, 

and then discovers subpopulations with increased outcome prevalence in those subspaces (DIVA module 

“DRESS”). DIVA uses visual analytics techniques to assist the expert in juxtaposing, filtering and inspect- 

ing the characteristics of these subpopulations (web-based DIVA module “D-INSPECTOR”). If the expert 

has access to a second cohort on a comparable population, DIVA aligns the cohort used for discovery to 

this second cohort, and then checks whether the subpopulations found in the original cohort are also 

present in the second one (DIVA module “VALIDATOR”). 

Results: We applied DIVA to the third wave (SHIP-2) of the SHIP-CORE cohort of the Study of Health in 

Pomerania (Völzke et al., 2011) for the liver disorder “hepatic steatosis”, and on the first wave (TREND-0) 

of the SHIP-TREND cohort of the same study for the thyroid gland disorder “goitre”. We found that most 

of the subpopulations extracted automatically, and subsequently ranked and filtered by the modules of 

DIVA, had significantly higher disease prevalence than the general population. We varied the amount 

of inputs needed from the expert to drive the subpopulation extraction process and found that a very 

small amount of information, namely the outcome of as few as 4 cohort participants, is sufficient for 

the identification of several relevant variables and subpopulations. We used a subset of TREND-0 for the 

validation on goitre and the complete TREND-0 for the validation on hepatic steatosis and found that the 

significant difference in prevalence for the identified subpopulation also holds in the validation data. 

Conclusions: We have shown that DIVA discovers subpopulations and variables of importance with respect 

to an outcome, while requiring a very small amount of expert inputs. Each combination of variables and 

each subpopulation corresponds to a hypothesis, the validation of which would have required substantial 
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1. Introduction 

Researchers in epidemiology collect population-based cross-

sectional and longitudinal cohort data, from which they strive to

derive insights on pathogenesis, disease pathways and responses

to different kinds of treatments ( Preim et al., 2016 ). Similarly to

randomized clinical trials, a study on a population-based cohort

involves an in/exclusion protocol and a carefully specified set of

variables, whose impact on the outcome (e.g. on a disease) is to

be investigated. Unlike randomized clinical trials, for which a co-

hort is prospectively recruited, studies on a population-based co-

hort are retrospective: the cohort has already been recruited with

a protocol that typically involves a substantially larger number of

variables. For example, the original protocol of the Study of Health

in Pomerania encompassed 8854 variables ( Völzke et al., 2011 ):

analysis in such a high-dimensional space is prone to the curse of

dimensionality, hence methods for focussed analysis in subspaces

are necessary. In this study, we propose DIVA , an intelligent system

with which the epidemiologist can semi-automatically, with min-

imal interaction, identify subsets of variables with potential rele-

vance to a given outcome, can study automatically derived subpop-

ulations that are described by these variables and exhibit consider-

ably higher or lower prevalence of the outcome, and can juxtapose

the significance of the prevalence difference in a validation cohort.

The task of supporting epidemiology experts with intelligent IT

is being intensively investigated for years. Thew et al. (2009) elab-

orate on instruments with which epidemiologists can express and

share domain knowledge among themselves. Such instruments are

designed for hypothesis refinement. However, hypothesis genera-

tion, which comes before refinement, calls for decision with re-

spect to (w.r.t.) the selection of the variables to be taken into ac-

count. 

The selection of a small number of variables for hypothesis

formulation from a huge set of variables has been studied by

Zhang, Gotz, and Perer (2014) in the context of “cohort specifica-

tion” from Electronic Health Records. Their system CAVA contains

an interactive mechanism with which a clinical expert can select

variables manually and study their impact on the outcome, as well

as modules for automated management of the data in databases

and for machine learning. Further systems in this category include

SeekAView ( Krause, Dasgupta, Fekete, & Bertini, 2016a ), INFUSE

( Krause, Perer, & Bertini, 2014 ) and PROSPECTOR ( Krause, Perer,

& Ng, 2016b ), all of which include utilities for interactive variable

selection before machine learning. However, the manual selection

among hundreds or thousands of variables seems rather restrictive,

since it enforces the expert to concentrate on the variables whose

impact on the outcome is known or expected. 

In this study, we propose a semi-supervised, self-tunable intel-

ligent system that automates the construction of sets of variables

potentially worth exploring, discovers subcohorts characterized by
ws f or a more effective exploitation of population-based data, not fully

pert and without the need for technical parameter tuning. 

 is the demand of a specific type of expert inputs, namely “constraints”

rticipants. Currently, we generate the constraints with a naive utility that

but we work on the development of an interactive algorithm that would

to inspect a small choice of study participant and give statements on their

onsiders a single wave of the cohort data, ignoring the evolution of the

of the study. Hence, subspace and subpopulation discovery do not take

rtance of variables. We currently work on the incorporation of algorithms

 from the longitudinal data and use them in the Discovery module. 

© 2018 Elsevier Ltd. All rights reserved.

hese variables, assists the expert in inspecting them, and validates

hem automatically in an independent cohort, if any is available.

ur system DIVA consists of following modules: 

• Discovery module: Our core algorithm DRESS + discovers sub-

populations by exploiting little background knowledge in the

form of pairwise constraints that contain knowledge about

the similarity between study participants. Thus, the algorithm

avoids the necessity of large quantities of labeled data by utiliz-

ing knowledge that can be derived from a limited set of labels

or provided by a medical expert. 
• Inspection module: Our interactive web application D-Inspector

provides means to analyze the discovered subpopulations, i.e.,

juxtapose multiple subpopulations, study the distribution of

corresponding variables w.r.t. the medical outcome, and query

the set of subpopulations by custom filtering and sorting func-

tionalities. 
• Validation module: Our Validator checks to what extent the

clusters and subspaces found by DRESS + can be reproduced

in an independent cohort. 

The paper is organized as follows. In the next two sections we

iscuss first related work and then basic underpinnings of the in-

elligent, semi-supervised technologies we use. In Section 4 we

escribe the three components of our approach. In Section 5 we

resent our results for the disorders fatty liver (hepatic steatosis)

nd goiter, using data from two cohorts of the Study of Health in

omerania (SHIP) ( Völzke et al., 2011 ). We close the paper with a

iscussion and outlook in Section 6 . 

. Related work 

Relevant literature for our work encompasses advances on intel-

igent systems for the support of the human expert in the medical

omain, as well as advances on the functionalities covered by the

odules of our system DIVA. We discuss them hereafter. 

.1. Interactive intelligent systems for cohort analysis 

Without providing an integrated workflow to validate and in-

pect the findings, medical researchers remain skeptical towards

he machine learning methods. Cummins (2012) describes that

uch criticism of the medical community on data mining models

s due to the contrast between the sequential process of traditional

edical research and the iterative and interactive approach of KDD

rocedures. To overcome this criticism, scholars should consider (i)

nvolving domain experts into the model generation, (ii) assessing

he model’s quality by applying it on unseen data, and (iii) calibrat-

ng the model for different target populations ( Cummins, 2012 ).

ost of the systems described hereafter focus on expert involve-

ent in requirement (i), while quality assessment is incorporated
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n the model learning phase. As we explain at the end of this sub-

ection, the Validation module of our system DIVA covers the last

wo requirements. 

Intelligent systems that support the expert for interac-

ive cohort analysis include the visual cluster analysis system

f Gotz, Sun, Cao, and Ebadollahi (2011) , the systems CAVA

 Zhang et al., 2014 ), INFUSE ( Krause et al., 2014 ), PROSPECTOR

 Krause et al., 2016b ), SeekAView ( Krause et al., 2016a ) and

ur earlier system IMM ( Niemann, Völzke, Kühn, & Spiliopoulou,

014 ) and its extensions ( Niemann, Spiliopoulou, Preim, Itter-

ann, & Völzke, 2017; Schleicher, Ittermann, Niemann, Völzke, &

piliopoulou, 2017 ). 

Gotz et al. (2011) present a system that takes as input a pa-

ient’s Electronic Health Record (EHR) as query and identifies sub-

ohorts that are similar to that patient. After an automatic cluster

nalysis, experts can split and merge found subcohorts at will to

efine the generated results. Authors recognize that “Refinement is

aluable because cluster analysis algorithms detect statistical pat-

erns, often with little or no a priori semantic knowledge.” Instead

f requiring the expert to manually refine mediocre clusters in

indsight, DIVA exploits partially labeled data already during the

lustering process to obtain useful results right away. 

Zhang et al. (2014) propose CAVA, a system for interactive co-

ort construction and automated learning on EHR. CAVA encom-

asses tools for interactive refinement of the cohorts and for sub-

ohort customization, including powerful visualization techniques.

achine learning is automated; the expert can also choose among

redefined workflows. In contrast, the step of cohort construction,

ncluding the choice of variables to be included in the analysis,

s the task of the expert. Our proposed system DIVA also encom-

asses automated analysis of the cohort data, but the main empha-

is is on the semi-automated, rather than manual selection of the

ariables for the analysis. Moreover, unlike the aforementioned two

ystems, we analyse existing cohorts of population-based studies

nd not EHR, hence cohort construction from EHR is beyond our

cope. 

Similarly to DIVA, the systems INFUSE ( Krause et al., 2014 ),

ROSPECTOR ( Krause et al., 2016b ) and SeekAView ( Krause et al.,

016a ) encompass powerful mechanisms for variable selection as

art of the cohort preparation for the analysis. However, the em-

hasis of these mechanisms is on supporting the expert, who is

alled to choose the most promising variables. In contrast, DIVA

ses subspace discovery for the identification of promising vari-

bles, thereby exploiting expert inputs in a semi-automated, rather

han manual fashion. 

In an earlier work, we introduced the Interactive Rule Miner

 Niemann et al., 2014 ), which encompasses a module for auto-

ated classification, as well as an interactive tool for the in-

pection of classification rules. This system has been designed

or the analysis of cohorts and has been used to identify high-

isk subpopulations w.r.t. a medical outcome in epidemiological

ata. The extensions presented in ( Niemann et al., 2017; Schle-

cher et al., 2017 ) focus on pattern inspection after the automated

attern discovery: Schleicher et al. (2017) propose a workflow for

attern drill-down and the visualization of subpopulations char-

cterized by one or two variables. Niemann et al. (2017) pro-

ose mechanisms for clustering the discovered patterns (classi-

cation rules), identifying cluster representatives and visualizing

hem. These systems consider all variables of the cohort to be anal-

sed and rely on the learning mechanism for the identification

f potentially interesting subpopulations. This has the shortcom-

ng that the learning mechanisms, which are either subgroup dis-

overy Atzmüller (2015) ; Herrera, Carmona, González, and Del Je-

us (2011) ; van Leeuwen and Knobbe (2012) or conventional clas-

ification rules Niemann et al. (2014) , produce a very large number

f patterns, thus calling for functions that can assess the “interest-
ngness” of the found subpopulations ( Atzmüller & Puppe, 2006;

rosskreutz, Rüping, & Wrobel, 2008; van Leeuwen & Knobbe,

012 ). The system we propose, DIVA, reduces the input set of vari-

bles in a semi-supervised way, and thus allows for a broader

hoice of algorithms for the machine learning step. 

Moreover, epidemiologists are interested in finding generaliz-

ble results that hold true also beyond the small fraction of the

opulation they study. Confirming findings on independent cohorts

s mandatory to verify their significance. To the best of our knowl-

dge, our framework DIVA is the first to employ automatic valida-

ion capabilities when an independent cohort dataset is given by

pproximating the region of the feature space of discovered sub-

opulations in a second dataset, and comparing the outcome dis-

ribution of the original subpopulation with the approximated one.

hese subpopulations can be of arbitrary shape through the use

f a density-based cluster definition. DIVA neither explicitly (e.g.

iemann et al. (2014) with hyper-rectangular shaped rules), nor

mplicitly (e.g. Gotz et al. (2011) by scoring the quality of clus-

ers with centric-based measures) assumes that subpopulations are

ound to have a specific shape. At last, our framework does not

equire any inputs from the expert other than instance-level con-

traints. Parameters at the algorithmic level are calculated with the

elp of the data density within subspaces of the feature space to

ain one reasonable clustering per subspace. 

.2. Supervised feature selection 

When large quantities of labeled data are available, feature se-

ection methods could be used to derive relevant dimensions. Clas-

ical feature selection approaches are either wrapper-, filter- or

mbedded methods striving to find subsets of weakly associated

eatures that are highly associated to the target variable (highly

elevant and not redundant) ( Guyon, Weston, Barnhill, & Vapnik,

0 02; Hall, 20 0 0; Kohavi & John, 1997 ). In DIVA, we aim to min-

mize the number of labeled instances that are used for feature

election, because these instances must be excluded from the sub-

equent task of machine learning. We therefore focus on semi-

upervised methods on the basis of subspace construction. 

.3. Automated and semi-automated mechanisms for subspace 

onstruction 

The discovery module of our framework utilizes subspace clus-

ering with constraints to identify subpopulations and relevant fea-

ures w.r.t. a medical outcome. In subspace clustering the aim is to

etect clusters within subsets of the original dimensions ( Parsons,

aque, & Liu, 2004; Sim, Gopalkrishnan, Zimek, & Cong, 2013 ).

ailing et al. present a general subspace search procedure with the

lgorithm RIS ( Kailing, Kriegel, Kroeger, & Wanka, 2003 ). RIS uses

ensity-based bottom-up subspace clustering and a custom unsu-

ervised quality function based on density properties to score and

ank subspaces. In RIS the structure of the subspace is considered

uring subspace evaluation without taking external knowledge into

ccount. Contrary to RIS, the DIVA framework exploits background

nowledge in the form of constraints that provide information re-

arding the similarity of pairs of study participants. 

When using constraints in clustering algorithms the aim is to

nd clusters such that the different kinds of constraints are satis-

ed ( Ruiz, Spiliopoulou, & Menasalvas, 2007 ). They reflect limited

ackground knowledge and may guide the clustering algorithm in

nding clusters by adjusting the objective function or learn a cus-

om metric over the dataset. 

Because constraints can be defined by domain experts,

onstraint-based methods fit well to medical scenarios. For exam-

le, Liu et al. report on an application of constraint-based clus-

ering to remove the negative impact of confounding factors and
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thus to find clinically relevant groups of multiple sclerosis patients

( Liu, Brodley, Healy, & Chitnis, 2015 ). 

Subspace clustering algorithms that exploit constraints are Con-

strained K-Means ( Wagstaff, Cardie, Rogers, & Schrödl, 2001 ),

SMVC ( Günnemann, Färber, Rüdiger, & Seidl, 2014 ) and DRESS

( Hielscher, Spiliopoulou, Völzke, & Kühn, 2016 ). Constrained K-

Means uses instance-level constraints to assign an instance x to

the closest cluster so that the assignment decision does not lead

to a violation of the constraints related to x . SMVC models mul-

tiple clusterings and related dimensions (views) of the data with

the help of a Bayesian framework. Because views define different,

alternative clusterings of the data, the algorithm does not nec-

essarily drop views that violate many constraints. These meth-

ods exhibit some undesired characteristics w.r.t. our application

setting, e.g. prior assumptions about number and shape of sub-

populations within subspaces or the focus on alternative cluster-

ings. An algorithm we extend within DIVA is Discovery of Relevant

Example-constrained SubSpaces (DRESS) ( Hielscher et al., 2016 ).

DRESS evaluates subspaces according to the similarity of contained

objects and found clusters. Here, subspaces which might be rel-

evant regarding the medical outcome are scored and ranked ac-

cording to a custom quality function that considers the distance

and cluster membership of study participants under different kinds

of constraints. However, clusters cannot be further analyzed and

extracted. We therefore extend DRESS to return clusters that are

associated with relevant subspaces and incorporate it into a fully-

fledged framework for further inspection and validation of the dis-

covered subpopulations. 

3. Foundations 

Our framework is based on principles of subspace clustering

and constraint-based clustering to find groups of similar partici-

pants w.r.t. the medical outcome. Because cohort study data is of-

ten high-dimensional, they may dilute clusters that can only be

found in lower-dimensional spaces. Dedicated subspace clustering

methods are required to detect the groups of proximal data points

in spaces that contribute most to their similarity. 

In context of cohort study dataset D with associated feature set

F , we denote any subset S ⊆F as a subspace. For each participant

x ∈ D , their respective projections onto S are denoted as π S ( x ) and

the set of participant projections is D S . Then, a goal of subspace

clustering is the discovery of clusters C ⊆D S in one or more S . 

While useful at first glance, pure subspace clustering is not fea-

sible when looking for potential subpopulations. Without any guid-

ance of the subspace search, any groups of participants that are

similar in a number of features are found. This leads to an enor-

mous result space and complexity. For example, groups of partici-

pants with similar shoe size and height may be identified regard-

less of any association with the medical outcome. 

To guide the subspace search algorithm w.r.t. the medical out-

come our framework also incorporates principles of constraint-

based clustering. We adopt two kinds of instance-based constraints

for our purpose: must-link (ML) and cannot-link (NL). Such con-

straints are used to provide knowledge regarding the similarity of

objects. In our framework, we define a ML and NL constraint as a

set of two participants { x, y } ⊆D , with x � = y and the respective con-

straints supersets as ML and NL . Further, if a clustering of n clusters

 = { C 1 , . . . , C n } is discovered in D , then C satisfies a ML constraint

{ x, y } if x and y are member of the same C i ∈ C , i.e. { x, y } ⊆C i holds

true. On the other hand, clustering C satisfies a NL constraint { x,

y } if x and y are not member of the same cluster, i.e. ¬∃ C i ∈ C : { x,

y } ⊆C i holds true. 

Assume a study participant dataset and the target concept di-

abetes: Here, a ML constraint could be given between a pair of

participants with diabetes and a NL constraint between a pair of
articipants with and without diabetes. Then, the expected result

f a constraint-based subspace clustering algorithm is a subspace

onsisting of informative features and clusters w.r.t. the separation

etween participants with and without diabetes, that is a subspace

onsisting of several groups of similar participants which share

ome key characteristics associated to their diabetes status. 

. Methods 

Building on the aforementioned methodologies, the goals of our

ramework are as follows: 

(1) Given cohort dataset D and a set of ML/NL constraints, find

groups of participants within subspaces which best describe the

concept, as reflected in the constraints, where “best” refers to

participant similarity/separation and constraint satisfaction. 

(2) Given these groups (subpopulations), provide ways to

identify and analyze the most distinct ones w.r.t. to the med-

ical outcome. 

(3) Enable experts to investigate whether discovered sub-

populations are generalizable or not. 

Fig. 1 shows the framework DIVA of our proposed approach

o D iscover, I nspect and VA lidate subpopulations in cohort study

ata leveraging constraint-based subspace clustering methodolo-

ies. The complete DIVA framework uses two cohort study datasets

s input which share the same feature space: one dataset for

he discovery of subpopulations, hereafter denoted as discovery

ataset DD , and one dataset for the validation of discovered sub-

opulations, hereafter denoted as the validation dataset VD . During

he preprocessing step an initial matching of DD and VD on covari-

tes is executed, to provide the discovery module ( Fig. 1 (A)) with

he matched discovery dataset and the validation module with the

atched validation dataset.Then, within the discovery module the

RESS + algorithm uses constraints to guide a bottom-up subspace

earch and clustering technique to discover sets of promising clus-

ers representing subpopulations which are potentially associated

ith a medical outcome. After selecting the clusters with highest

uality, the inspection module ( Fig. 1 (B)) exploits the application

-Inspector that provides mechanisms to investigate and juxtapose

he subpopulations, and the validation module ( Fig. 1 (C)) checks

hether subpopulations are existent in independent cohort study

ata ( VD ) and similarly associated with the medical outcome. 

Note that in the case that a fully independent validation dataset

s not available, experts may split their existing dataset in a dis-

overy set and validation set using a suitable sampling strategy or

erform stratified cross-validation. 

In the next sections we will describe example methods how to

enerate constraints, the preprocessing step and each module of

IVA. 

.1. Constraints generation 

There are many ways experts can generate constraints. Con-

traints should reflect similarity w.r.t. the medical outcome under

tudy between participants. One of the simplest method to gener-

te such constraints is to ask the expert to label a random number

f healthy and ill participants and then automatically generate a

L constraint between each pair of labeled participants with the

ame medical outcome, and a NL constraint between each pair of

abeled participants with different medical outcome. As an alter-

ative, assume that a number of labeled instances already exists.

he expert is presented with two instances, x and y of different

ut known class and a third instance z . Then, the expert is asked

o assign z to either x or y , the one that is in his opinion more

imilar to z . This can be repeated multiple times and from each
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Fig. 1. The DIVA framework: subpopulation discovery, inspection and validation. 
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xpert assignment a ML constraint may be derived, as well as a NL

onstraint from the preselected instances of different class. 

Basically, there is no strict protocol an expert has to follow in

rder to derive a number of constraints. All that is necessary is the

ecision of the expert on what he deems to be similar w.r.t. the

edical outcome and the study participants. 

.2. DIVA Preprocessing 

In the case that a validation dataset VD is available to DIVA, the

rst step of the framework is to match VD and DD to enable fair

omparisons between subpopulations found in DD and their coun-

erparts within VD . The preprocessing step accounts for significant

ifferences in covariates between DD and VD , e.g. the participants’

ge and sex. It reduces any potential bias of the covariates on the

alidation measure score by employing nearest neighbor propen-

ity score matching ( Ho, Imai, King, & Stuart, 2011 ). First, the orig-

nal DD and VD are combined to learn a logistic regression model

here the dichotomous target variable indicates whether a par-

icipant is member of DD or VD . For each participant, the model

alculates a probability (propensity score) for dataset membership.

ach DD participant is then matched to the VD participant with the

ost similar propensity score yielding two datasets with the same

umber of participants: First, all participants in DD and VD are un-

agged. Then, in each iteration one unflagged DD participant x is

elected. If for x no unflagged VD participant falls within the maxi-

um propensity score threshold, x is removed from DD . Otherwise,

 is flagged and the respective VD participant is flagged. After each

etained DD participant has been flagged, each unflagged VD par-

icipant is removed. Output of the preprocessing step is the set of
emaining participants in DD (matched discovery dataset) and the

et of remaining participants in VD (matched validation dataset).

he preprocessing step requires the expert to specify a maximum

ropensity score distance threshold. A higher threshold leads to

 larger number of matched participants, whereas the similarity

.r.t. the covariates might be lower than for a lower threshold. 

.3. DIVA Discovery module 

The first module of DIVA discovers interesting subpopulations

.r.t. a specific concept (i.e. a medical outcome) without requir-

ng large quantities of labeled data. To do so, we use DRESS + ,

hich extends our constraint-based subspace clustering algorithm

RESS (Discovery of Relevant Example-constrained SubSpaces)

 Hielscher et al., 2016 ). 

We assume that if given constraints reflect the separation be-

ween the medical outcome of participants rather well, then we

an find subpopulations in the data (natural clusters) for whom we

an generalize this knowledge as well as the variables (subspaces)

hat contribute most to this separation. DRESS + translates this

ssumption by searching for subspaces where ML-constrained par-

icipants have high pairwise similarity and NL-constrained partici-

ants exhibit high pairwise dissimilarity. 

The general workflow of DRESS + is shown in Fig. 1 (A). As

nput, DRESS + requires the study participant data from which

ubpopulations should be derived as well as a set of ML and NL

onstraints between pairs of participants. Constraints can be given

y a medical expert, stating whether two individuals are similar or

ifferent regarding the medical outcome. For example, if the goal

s to find subpopulations of study participants that exhibit hep-
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atic steatosis, a medical expert may define ML constraints between

participants that are known to have hepatic steatosis and NL con-

straints between participants with and without hepatic steatosis.

As an alternative, constraints may also be derived from small quan-

tities of labeled data (for example between same- and different-

class participants). 

Using such constraints, DRESS + executes a forward-selection

(starting with subspaces of cardinality one) to find subspaces that

contain relevant clusters, i.e. finding subspaces that score bet-

ter than previously visited subspaces according to its underlying

quality function. In each iteration the “best” subspace S candidate is

chosen and removed from the set of candidate subspaces. Then,

DRESS + extends S candidate with the remaining candidates to cre-

ate the set of potential candidate subspaces (merging step). To re-

duce complexity, the filtering step drops subspaces that are un-

likely to exceed the current quality threshold. Afterwards, the al-

gorithm computes the complete quality scores of the remaining

potential candidate subspaces by clustering. If the quality of a sub-

space exceeds the highest yet observed quality q best , DRESS + re-

tains it as a candidate subspace for further extension, updates q best 

and stores all contained clusters. Each time a successful subspace

merge yields a new candidate subspace, the subspaces used for

merging are removed from the candidate set. DRESS + terminates

as soon as the candidate subspace set is empty and returns the

set of all stored clusters. The quality computation and clustering

are adopted from the original DRESS algorithm. They are explained

in Section 4.3.1 and Section 4.3.2 based on the work presented

in ( Hielscher et al., 2016 ). “Merging” and “Filtering” are extended

from the contribution in Hielscher et al. ( Hielscher et al., 2016 ) to

allow the storage of clusters and are explained in Section 4.3.3 . 

4.3.1. Scoring subspace quality 

DRESS + evaluates subspaces in a semi-supervised way as it

investigates the structure of the complete study data in the sub-

spaces and only requires a small number of instance-level con-

straints , i.e. background information w.r.t. the medical outcome

from a small number of study participants. The quality function

used to score (and rank) candidate subspaces in DRESS + is based

on the clustering results within the respective subspace and takes

the following criteria into account: (1) whether the data exhibits

a satisfactory structure within a space w.r.t. the given constraints

and 

(2) the proximity between constrained participants in the sub-

space. Criterion (1) is necessary to drop spaces without satisfac-

tory clusters. DRESS + assumes that if the dimensions of a space

are associated with one or more relevant subpopulations, a corre-

sponding cluster in this space can be found that separates study

participants of this subpopulation from the remaining participants.

These clusters should be distinct, meaning that reasonable param-

eter settings of the clustering algorithm should lead to their detec-

tion, i.e. no parameter optimization should be necessary. Because

the constraints reflect background knowledge regarding the simi-

larity of the participants’ medical outcome, good subspaces should

contain clusters with objects under ML-constraints, and separate

objects under NL-constrains (putting them in different clusters).

For (1), DRESS + calculates how the participant clusters satisfy the

provided constraints: Given subspace S , let ML sat ( S ) be the set of

satisfied ML constraints and NL sat ( S ) be the respective set for the

NL constraints. Then 

q cons (S) = 

| ML sat (S) | + | NL sat (S) | 
| ML | + | NL | (1)

defines the constraint satisfaction within S . 

By exclusively relying on q cons , DRESS + faces the problem of

ignoring the continuous similarity between the constrained par-

ticipants. Imagine a number of spherical clusters in two different
ubspaces that satisfy the same constraints, where in one sub-

pace the ML constrained participants have almost identical fea-

ure values and in the other subspace these participants lie on op-

osite border regions of the same cluster. In this scenario, q cons for

oth subspaces is identical. But in reality the first subspace should

e scored better than the latter. This problem is avoided by ac-

ounting for criterion (2) and defining a q dist , that incorporates

he similarity between participants under constraints in a subspace

hrough distance calculations. We define q dist as the difference in

he average distances between NL and ML pairs of participants in

he respective subspace: Let d ( S, x, y ) be the distance between par-

icipant x and y in S . DRESS + computes q dist of S as 

 dist (S) = d a v g (S, NL ) − d a v g (S, ML ) , (2)

ith d a v g (S, NL ) = 

∑ 

{ x,y } ∈ NL 

d(S, x, y ) / | NL | , 

and d a v g (S, ML ) = 

∑ 

{ x,y } ∈ ML 

d(S, x, y ) / | ML | . 

q. 2 promotes subspaces where ML constrained participants are

loser (i.e. more similar) to each other in comparison to NL con-

trained participants. However, to compute q dist we must deal with

he heterogeneity of the cohort study data. This is accomplished

y utilizing the Heterogeneous Euclidean Overlap Metric (HEOM)

s distance function. HEOM can deal with continuous and nominal

eatures ( Wilson & Martinez, 1997 ): Let s ( x ), s ( y ) be the values of

eature s ∈ S for participants x, y ∈ D S . Then: 

(S, x, y ) = 

√ ∑ 

s ∈ S 
δ(s (x ) , s (y )) 2 (3)

here 

(s (x ) , s (y )) = 

{ 

0 if s (x ) = s (y ) and s is nom., 
s (x ) − s (y ) if s is continuous, 
1 otherwise. 

Note that when using Eq. 3 , continuous features must be nor-

alized into interval [0,1] beforehand. The final quality function of

RESS + for subspace scoring is then given as 

 (S) = q cons (S) · q dist (S) . (4)

.3.2. Clustering 

DRESS + uses the density-based clustering algorithm DBSCAN

 Ester, Kriegel, Sander, & Xu, 1996 ). DBSCAN exhibits a number of

dvantages for the application on cohort study data: outliers which

ight have special characteristics regarding the medical outcome

an be detected. Additionally, the number and size of clusters is

ot required to be specified as parameter. Further, DBSCAN is not

imited to linear boundaries but discovers arbitrarily shaped clus-

ers, so that no assumptions on the variable distributions within

 subpopulation have to be made. DBSCAN identifies dense re-

ions in the data space and marks them as clusters. It uses the pa-

ameters eps and minPts . The eps parameter defines the neighbor-

ood around a data point/study participant, and minPts is the min-

mum number of neighbors a point must exhibit to be considered

 core point. The neighborhoods of each set of inter-connected core

oints define a dense region and form a cluster. For each (poten-

ial) candidate subspace S , DRESS + invokes DBSCAN on D S . To per-

orm clustering, DRESS + exhibits self-tuning capabilities by auto-

atically calculating a set of “reasonable” parameter settings. The

inPts parameter is fixed to minP ts = round(ln (| D S | )) , according to

 Ester et al., 1996 ). Given the fixed minPts , the eps parameter is

alculated separately for each S by using the “knee-point” method

 Niemann, Hielscher, Spiliopoulou, Völzke, & Kühn, 2015 ): 
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Fig. 2. Screenshot of D-Inspector . Using the sidebar panel on the left, a clustering 

result file can be loaded. The distribution of a selected subspace cluster variable 

in comparison with the remaining instances is visualized by a mosaic chart in the 

bottom left. Users can sort and filter the set subspace clusters by size, χ 2 -test p- 

value, odds ratio or custom queries to search for variables or cutoffs of interest. The 

results on both DD and VD are displayed. 
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1 http://shiny.rstudio.com/ 
2 https://datatables.net/ 
Given m = minP ts, let nn ( x, m, S ) denote the m -nearest neighbor

f participant x in D S . First the distance d ( S, x, nn ( x, m, S )) of each

articipant x ∈ D S to its m -nearest neighbor is computed. These dis-

ances define the necessary eps -value regarding each specific par-

icipant to be considered as core point in S . Let (x 1 , . . . , x n ) be the

rdered list of participants according to their m -nearest neighbor

istance (in ascending order) and i ∈ { 1 , . . . , n } denote the posi-

ion of each participant within the list. DRESS + creates an empty

wo-dimensional real-valued space and inserts one datapoint per

articipant, i.e. ∀ i ∈ { 1 , . . . , n } the algorithm inserts the point z i =
(i − 1 , d(S, x i , nn (x i , m, S))) . The resulting graph is denoted as the

 -dist graph. After that, a line line ( z 1 , z n ) between the points

 1 = (0 , d(S, x 1 , nn (x 1 , m, S))) and z n = (n − 1 , d(S, x n , nn (x n , m, S)))

n the m -dist graph is computed (the points associated with the

rst list element x 1 and last element x n ). and ∀ i ∈ { 1 , . . . , n } the

hortest euclidean distance, denoted as Euclid ( line ( z 1 , z n ), z i ), be-

ween line ( z 1 , z n ) and z i is calculated. Finally, the eps -value is set to

ps = d(S, x i , nn (x i , m, S)) , correspondent to participant x i with the

ighest Euclid ( line ( z 1 , z n ), z i ) (knee-point), i.e. DRESS + chooses the

 ( S, x i , nn ( x i , m, S )) as the eps value that belongs to the participant

hat maximizes the shortest distance between line ( z 1 , z n ) and its

 -dist graph point. 

For the given minPts , this heuristic ensures that DBSCAN detects

unique” participants (exhibiting a relative high distance to others)

n sparse regions of the data space and flags them as outliers while

reserving a number of dense regions (clusters). 

.3.3. Merging and filtering of subspaces for cluster discovery 

DRESS + initializes the set of candidate subspaces with all

paces of cardinality one and the empty set of subspace clusters

s depicted in Algo. 1 . Let F be the set of all features in the origi-

al study participant dataset D , the initial candidate set S is de-

ned as S = { S| S ⊆ F ∧ | S| = 1 } . During initialization, the quality

 ( S ) of each subspace S ∈ S is calculated, stored and all resultant

lusters are saved in C. For the general subspace candidate gen-

ration and filtering process see Algo. 2 : Here, q best is initialized

s the highest observed quality among the initial set of candi-

ate subspaces (which is given by Algo. 1 ). Then, DRESS + it-

ratively chooses the subspace S cand id ate ∈ S that has the highest

uality q () among the subspaces in S and sets S = S \ S cand id ate 

cleaning). DRESS + builds new potential candidate spaces S new 

=
 cand id ate ∪ S ∗ by merging S candidate with all remaining subspaces

 

∗ ∈ S in an effort to find subspaces with a q () that beat q best . To

imit the number of subspaces that must be fully scored (calcu-

ating both q cons and q dist ), DRESS + uses a filter condition that

revents the clustering of merged subspaces that probably do not

ontribute to a improvement w.r.t. the full quality q (): For each

ew potential subspace candidate S new 

DRESS + picks the subspace

 dist ∈ { S ∗, S candidate } with higher q dist , 

 dist = 

{
S cand id ate , if q dist (S cand id ate ) ≥ q dist (S ∗) , 
S ∗, otherwise , 

nd performs clustering in S new 

iff the following condition is satis-

ed: 

( �( S new 

, S dist , NL ) − �( S new 

, S dist , ML ) ) > 0 , 

ith �( S new 

, S dist , X ) = d a v g ( S new 

, X ) − d a v g ( S dist , X ) , 

This condition checks whether the dissimilarity in the new

pace between NL constrained participants increases more than

or ML constrained participants, i.e. if the space leads to a better

eparation between them. If a new potential candidate subspace

 new 

satisfies this condition, DRESS + commences with cluster-

ng in it, computing its complete quality q () in the process, and

tores all found clusters C S by setting C = C ∪ C D S new 
. After the full
uality assessment, if it is found that S new 

= S cand id ate ∪ S ∗ satis-

es q ( S new 

) > q best , DRESS + sets S = S \ S ∗ to eliminate the lower

uality subspace (preventing further merging with it) and adjusts

he current best quality value to q best = q (S new 

) . Newly discovered

igh-quality subspaces are inserted in the candidate set S for fur-

her merging, setting S = S ∪ { S new 

} . DRESS + terminates when the

andidate set is empty, i.e. no S new 

with higher quality than the

urrent q best is found. 

.4. DIVA Inspection module 

The inspection part of our framework is used to explore any

dentified subpopulation and is depicted in Fig. 1 (B). For this we

eveloped the web application D-Inspector that provides various

eans to get useful insights on the clusters found by DRESS + .

ig. 2 shows the main view of D-Inspector . Here, each subpopula-

ion is described by the number of included participants and the

ssociated feature space (including mean and standard deviation

or continuous and distinct values for nominal features). Users can

ccess statistics of the subpopulation w.r.t. the medical outcome

hich includes size, χ2 -test p-value and odds ratio. In the case of

 validated subpopulation, the statistics between the cluster found

n DD and the matched cluster within VD can be compared. Vari-

us filter mechanisms allow to reduce the number of shown sub-

opulations to the most interesting ones. They include filtering ac-

ording to a subpopulation’s desired size, medical outcome statis-

ics and whether the comprising features of a subpopulation are

istributed significantly different compared to the remaining par-

icipants. As shown in Fig. 2 , D-Inspector enables experts to further

xplore subpopulations by providing methods to analyze and com-

are the distribution of each comprising feature with boxplots (for

ontinuous features) and mosaic charts (nominal features) to the

espective distribution within the complete population. 

D-Inspector is build upon the R web application framework

hiny 1 and uses the DT package, an R interface to the JavaScript li-

rary Datatables 2 which adds sorting, filtering and server-side pro-

essing functionality to HTML tables. 

http://shiny.rstudio.com/
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Table 1 

Characteristics of the cohorts SHIP-2 and TREND-0. 

SHIP-2 TREND-0 

Participants 1878 4400 

Variables 70 492 

Age [years] 58.1 ± 13.5 51.0 ± 14.1 

Sex [% female] 53.3% 51.7% 

Hep. Stea. 163 pos., 564 neg. 462 pos., 1464 neg. 

Goiter - 1390 pos., 3010 neg. 

Table 2 

Matching of the hepatic steatosis datasets SHIP-2 and TREND-0 with DIVA prepro- 

cessing. 

SHIP-2 TREND-0 p-value 

BEFORE matching 

n 727 1926 - 

Age [years] 56.1 ± 12.6 50.1 ± 14.1 < 0.001 

Sex [% female] 53.2% 51.7% 0.512 

Hep. Stea. [% pos.] 22.4% 24.0% 0.426 

AFTER matching 

n 694 694 - 

Age [years] 55.5 ± 12.1 55.5 ± 12.1 1.0 0 0 

Sex [% female] 53.5% 53.5% 1.0 0 0 

Hep. Stea. [% pos.] 21.5% 21.5% 1.0 0 0 
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4.5. DIVA Validation module 

A desirable goal of medical research is that acquired insights

are generalizable ( Cummins, 2012 ). The validation module of DIVA

investigates whether subpopulations identified by the discovery

module are existent in independent cohort study data. DIVA trans-

fers subspace clusters found on one dataset ( DD ) on a second

dataset ( VD ), to ultimately assess the agreement w.r.t. class distri-

bution and significance. The general workflow of the involved tasks

for validation is depicted in Fig. 3 . For each subpopulation C found

in DD , the following procedure is executed individually: First, the

neighborhoods are extracted from the core points of C by storing

the position of each core point, the eps parameter of the cluster-

ing that produced C and the subspace S where C was found. Then,

these neighborhoods are transferred by projecting VD onto S , thus

creating VD S , and inserting into VD S one dummy point p on each

position of an original core point in C . Following this, the matched

subpopulation C ∗ is created: For each VD participant x the module

checks if there exists at least one dummy point p where the dis-

tance between x and p is less or equal than eps , i.e. d S ( x, p ) ≤ eps .

All VD participants that satisfy this criterion form the cluster coun-

terpart C ∗ of C . At last, for each C , it’s class distribution and signif-

icance is compared to C ∗ and presented by the validation module. 

5. Experiments & results 

In this section we show findings and evaluate the transferability

of our framework’s results, i.e. whether identified subpopulations

can be discovered in independent datasets. We further evaluate the

impact of different DRESS + parameter settings on the results and

provide an overview about relevant examples of subpopulations.

For this we utilize two real-world cohort study datasets on two

different medical conditions. 

5.1. Cohorts data 

Analyzes are based on data from two independent cohorts of

the Study of Health in Pomerania (SHIP), conducted in Northeast

Germany ( Völzke et al., 2011 ). In the first cohort (originally called

SHIP, later called SHIP-CORE to distinguish from the second co-

hort), 4308 individuals participated in the baseline examinations

(SHIP-0) between 1997 and 2001. In the present analysis we used

data from the second follow-up SHIP-2, in which 2333 individuals

aged 30–93 years were examined between 2008 and 2012. Paral-
el to SHIP-2, a second cohort (SHIP-TREND) was established in the

ame study region where 4420 individuals aged 20–84 participated

n the baseline examinations (TREND-0). 

We concentrate on the disorders hepatic steatosis and goi-

er that serve as case studies to explore the feasibility of our

pproach. Hepatic steatosis, also known as fatty liver, is a liver

isorder which is present in approximately 30% of all adults

 Völzke et al., 2011 ). Although not harmful per se, possible fol-

owup diseases like steatohepatitis and liver cirrhosis can cause

evere harm ( Völzke, 2012 ). Presence of hepatic steatosis for study

articipants in both cohorts is indicated through a discretized vari-

ble based on the proportion of fat within the liver as measured

hrough Magnetic Resonance Tomography (MRT). Liver-fat MRT re-

ults were available for 727 SHIP-2 and 1926 TREND-0 individuals.

atering to the workflows presented in ( Niemann et al., 2015 ) and

 Hielscher, Spiliopoulou, Völzke, & Kühn, 2014 ), a binary variable

H” marks participants which exhibit more than 10% of fat accu-

ulation within their liver as “positive” and the remaining partici-

ants as “negative”. Table 2 shows the resulting distribution within

HIP-2 and TREND-0. 

As second disorder we study goiter, which refers to an en-

argement of the thyroid gland that may be defective. The preva-

ence of goiter is especially high in iodine-deficient regions of the

orld, reaching up to 80 % ( Vanderpump, 2011 ). In TREND-0, 1390

ut of 4400 participants exhibit goiter which is defined by a thy-

oid gland volume of more than 25 ml for men and 18 ml for

omen measured by ultrasound, according to ( Gutekunst, Becker,

ehrmann, Olbricht, & Pfannenstiel, 1988 ). Table 1 depicts general

haracteristics of the cohort datasets SHIP-2 and TREND-0. 

.2. Experimental setup 

In the first part of the evaluation, we investigate whether sub-

opulations that are identified by our framework also exist in inde-

endent cohort data. To do so, DIVA matches the datasets accord-

ng to their distribution in age, sex and medical outcome. Regard-

ng hepatic steatosis, the matched SHIP-2 dataset is used for the

dentification of subpopulations and the matched TREND-0 dataset

or their validation. For goiter, we only utilize TREND-0 which we

plit into one matched dataset for the identification of subpopula-
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Fig. 4. Ranking of the χ2 -test p-value median over 20 runs for subpopulations 

found in the hepatic steatosis DD compared to their VD counterpart. Ordering of 

the subpopulations in DD is mostly preserved in VD . The p-values are mostly com- 

parable. 

Fig. 5. Median RSD and RCDD for the 25 best ranked subpopulations found in the 

hepatic steatosis dataset. 

Fig. 6. Ranking of the χ2 -test p-value median over 20 runs for subpopulations 

found in the goiter DD compared to their VD counterpart. Ordering of the subpop- 

ulations in DD is not fully preserved in VD . However, p-values are very low and 

similar for all subpopulations. 
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ions and one for their validation. The dataset where the subpop-

lations are identified is the discovery dataset DD and the dataset

here the subpopulations are validated is the validation dataset

D . Then, the discovery module uses DRESS + to identify sub-

opulations using five ML and five NL constraints that are chosen

t random from two constraint pools. For each medical condition,

hese pools are made up by the set of all participant pairs with

he same medical outcome (ML constraints pool) and the set of all

articipant pairs with different medical outcomes (NL constraints

ool) in the respective DD . We conduct three measurements for

ach subpopulation C DD discovered in DD and its reconstructed

ounterpart C VD in VD : 

• p-value: p-value according to a χ2 -test on the medical out-

come distribution within the subpopulations compared to the

remaining participants in the respective dataset. We call a sub-

population “significant” if its p-value is below a predefined

level α = 0 . 05 . Ideally, significant subpopulations found in DD

should also be significant in VD . 
• Relative Size Difference (RSD): measurement of the relative dif-

ference in size between a subpopulation in DD and its recon-

structed counterpart in VD . The RSD is calculated as 

RSD (C DD , C V D ) = 

abs (| C DD | − | C V D | ) 
1 
2 

· ( | C DD | + | C V D | ) . (5)

Ideally, subpopulations should have similar sizes on both

datasets so that the RSD is low. 
• Relative Class Distribution Difference (RCDD): measurement of

the difference in the relative prevalence of the positive medical

outcome of a subpopulation in DD that is reconstructed in VD .

The RCDD is calculated as 

RCDD (C DD , C V D ) = 

P (C DD ) /P (DD ) 

P (C V D ) /P (V D ) 
, (6)

with P ( C DD ) as the fraction of participants with a positive class

label in C DD and P ( DD ) as the fraction of participants with a

positive class label in DD . Ideally, subpopulations should have a

similar distribution in the medical outcome on both datasets so

that the RCDD is low. 

Since we do not have real instance-level constraints available,

e assess the estimated impact of random choices of constraints

n the results. To obtain a sufficiently accurate quality estimate of

ur subpopulations, we repeat the experiments with 20 different

andomized constraint settings. We decided for no less than 20 tri-

ls so that we can rely on mean and standard deviation. 

In the second part of the evaluation, we vary the number of

onstraints to analyze how the proportion of significant clusters

hanges. For this, we calculate the number of subpopulations that

re significant ( α = 0 . 05 ) in relation to all found subpopulations,

iven a fixed number of random constraints. Ideally, more con-

traints lead to the discovery of more subpopulations that are sig-

ificant compared to all discovered subpopulations. 

.3. Transferability of identified subpopulations 

Table 2 shows the distribution of the datasets before and after

atching. Fig. 4 and 6 show the median χ2 -test p-value of the 25

est subpopulations discovered in the DD (left part of the figure),

nd the associated subpopulations in VD (right part of the figure),

or hepatic steatosis and goiter over 20 runs. Considering hepatic

teatosis, up to rank 16 the p-value between a subpopulation found

n DD and its VD counterpart deviates little. Subpopulations up to

ank 16 are significant and subpopulations from rank 23 to 25 are

ot significant in both datasets, which indicates that the results

f our framework are transferable. Although, the subpopulations
rom rank 17 to 22 were found significant in DD but not signifi-

ant within VD , in many instances these ranks were close to the

ecision border (i.e., 17, 18, 19, 20). Another favorable result comes

rom the order of the subpopulations. The ordering is mainly pre-

erved in VD with the exception of rank 14 and 18, which indi-

ate stability of our framework. Fig. 5 presents RSD and RCDD on

he hepatic steatosis data. RSD shows some variability but is gen-

rally low with a median of ≈ 12% in the worst and ≈ 1% in the

est cases. For large subpopulations a RSD of 12% corresponds to

n approximate size difference of 15 participants between a sub-

opulation found in DD and that is reconstructed in VD . RCDD is

ow across all subpopulations, exhibiting median values between

.5% and 3.5% most of the time. 

For goiter the picture changes slightly. All of the 25 subpop-

lations are highly significant on both DD and VD . Although, be-

inning with rank 15, the p-values increase slightly on VD , they

emain considerably below 0.01. It is notable that here the order-

ng is not fully preserved in VD , though the absolute deviation in
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Fig. 7. Median RSD and RCDD for the 25 best ranked subpopulations found in the 

goiter dataset. 

Fig. 8. Percentage of significant subpopulations for different numbers of constraint 

pairs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Description and statistics of selected subpopulations. 

Hepatic Steatosis 

ID Subspace features Size [%] p-value OR 

H#1 age , diabetes 10.0 1 . 7 e −09 3.01 

H#2 female , smoking 11.0 5 . 4 e −09 0.31 

H#3 abstain , physact , smoking 9.9 2 . 3 e −09 2.06 

H#4 ATC_CO7A 21.9 2 . 7 e −09 2.70 

Goiter 

ID Subspace features Size [%] p-value OR 

G#1 ges_sf12_02 , waiidf 33.6 1 . 8 e −09 0.47 

G#2 edyrs , metsyn 26.9 7 . e −09 1.55 

G#3 ges_sf12_03 , plaque 16.0 3 . 4 e −09 1.60 

G#4 ffs , marit 4.4 8 . 2 e −09 2.07 

5
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p-value is very low, especially in comparison to the hepatic steato-

sis data. Median and absolute median deviation of the RSD and

RCDD are shown in Fig. 7 . The median RSD is low, never exceeding

≈ 10%, except for the best ranked subpopulation. However, there is

no medical outcome distribution difference for the rank one sub-

population. In general the RCDD is very low with the median never

exceeding ≈ 5% which indicates good transferability of the discov-

ered subpopulations. 

5.4. Varying the number of constraints 

Fig. 8 shows the relative proportion of significant subpopula-

tions ( α = 0.05) when varying the number of constraint pairs given

to DRESS + on the matched SHIP-2 DD (c.f. Tab. 1) . Constraint

pairs were chosen at random, with the number of ML and NL con-

straints being equal, i.e. providing one to 20 ML and NL constraints.

For each constraint pair, we performed ten runs and show median

and median absolute deviation. Fig. 8 indicates an increase in the

relative proportion of significant subpopulations when increasing

the number of constraints. While the median for one ML and NL

constraint is ≈ 20%, it goes as high as ≈ 47% (19 pairs) and ≈
38% (20 pairs). The data also shows some variability. Median abso-

lute deviation is moderately high but constant over the constraint

pairs. This is due to the random nature of the chosen pairs. The

constraint selection is solely based on the medical outcome of par-

ticipants. It does not take the participants’ similarity w.r.t. specific

(relevant) characteristics into account. This can lead to the selec-

tion of bad constraints, for example must-link constraints between

highly dissimilar outlier participants that have the same medical

outcome but are not representative for their specific condition. In

a real setting, an expert with sound domain knowledge who de-

fines such small number of constraints by hand is unlikely to base

constraint decisions exclusively on the outcome. 
.5. Discussion on the results 

In Table 3 , we depict four of the subpopulations found to have

ignificantly different prevalence than the overall population for

he outcome hepatic steatosis, respectively for the outcome goi-

er. All eight subpopulations are highly significant with α = 0 . 01

nd high odds ratios. For each subpopulation, the distributions of

he included features compared to the remaining participants are

epicted in Fig. 9 (hepatic steatosis) and Fig. 10 (goiter). A brief

Algorithm 1: DRESS + candidate subspace initialization. 

Data : Dataset D , original feature set F 

Result : Set of subspace clusters C, set of candidate subspaces 

S , set of subspace quality values Q 

Initialize empty set C; 

for each f ∈ F do 

C f ← DBSCAN( D f ); // cluster 
C ← (C ∪ C f ) ; // store initial clusters 
S ← (S ∪ { f } ) ; 
// store subspace candidate 
Q ← (Q ∪ calcQuality (D f )) ; 

// store subspace quality 
end 

escription of each feature is provided in Table 4 . 

ubpopulations with significant prevalence differences on hepatic

teatosis. As can be seen in the upper part of Table 3 , H#1 in-

ludes participants with diabetes and a rather high relative age

hat have a much more skewed distribution w.r.t. hepatic steatosis

han the complete cohort. These associations are supported in nu-

erous publications such as ( Roden, 2006 ) and ( Völzke, Schwarz,

aumeister, & et, 2007 ). Participants of H#2 exhibit a very low

dds ratio, they are all female and current smokers, whereas H#3

as high odds ratio and is made of participants which stated that

hey were not abstinent to alcohol in the last 12 months, did less

han one hour of sports per week (or did not state anything) and

re ex-smokers. Correlated features like body mass index or waist

ircumference were found important in ( Hielscher et al., 2014 ) and

 Niemann et al., 2015 ) regarding fatty liver. The subpopulation H#4

s comprised of all participants under beta-blocker medication. The

iagnostic score on hepatic steatosis by Meffert et al. (2014) used

his feature on rare occasions. 

ubpopulations with significant prevalence differences on goiter. As

an be seen in the lower part of Table 3 , G#1 consists of mainly

on-goiter study participants that have no impairments when per-

orming moderate tasks ( ges_sf12_02 = 3) and without cen-
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Fig. 9. Distribution of subspace cluster features w.r.t. hepatic steatosis in selected subpopulations that were found by DRESS + . H#2 represents approx. 10% of the population 

containing considerably older and diabetes-afflicted participants with a higher prevalence of a positive hepatic steatosis outcome. Participants in H#3 are ex-smokers that 

are less alcohol-abstinent and less physically active than the rest of the population, and hepatic steatosis is also more prevalent for this subpopulation. 

t  

D  

h  

y  

i  

g  

m  

w  

(  

w  

p  

i  
ral obesity according to the categorization by the International

iabetes Federation (IDF). The subpopulation G#2 encompasses a

igher proportion of participants with (relative) few educational

ears who suffer from the metabolic syndrome. In literature, stud-

es on independent cohorts found a relationship between somato-

raphic variables and goiter, associations with the presence of
Table 4 

Description of selected features. 

name description 

abstain Abstinence from alcohol (12

age Age of participant 

ATC_CO7A Intake of beta-blocker 

diabetes Suffers from diabetes 

edyrs Number of educational year

ffs Food Frequency Score 

ges_sf12_02 Impaired performing moder

ges_sf12_03 Impaired walking multiple 

marit Marital status 

metsyn Suffers from metabolic synd

physact Leisure time physical activit

plaque Plaque 

smoking Smoking status 

waiidf Waist 

circumference 
etabolic syndrome and borderline significance on associations

ith the educational level ( Zheng, Yan, Kong, Liang, & Mu, 2015 ),

 Rendina, De Filippo, Mossetti, & et, 2012 ). In G#3 participants

ith plaque are present. However, associations between goiter and

laque are not yet confirmed. The included ges_sf12 features

n G#1 and G#3 define a specific subgroup of participants, rather
values 

 months) 0: no 

1: yes 

numeric 

0: no 

1: yes 

0: no 

1: yes 

s numeric 

numeric 

ate tasks 1: severe limitation 

2: slight limitation 

3: no limitation 

stairs 1: severe limitation 

2: slight limitation 

3: no limitation 

1: single 

2: married or relationship 

3: separated or divorced 

4: widowed 

rome 0: no 

1: yes 

y 0: < 1h phys. act./week 

1: ≥ 1h phys. act./week 

0: no | 1: yes 

0: never smoked 

1: ex-smoker 

2: current smoker 

0: < 80 cm (men: 94 cm) 

1: ≥ 80 cm (men: 94 cm) 
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Fig. 10. Distribution of subspace cluster features w.r.t. goiter in selected subpopulations that were found by DRESS + . Participants in G#4 , accounting for 4.4% of the study 

population, are widowed and adhere to a more favorable diet than the rest but are more likely to exhibit goiter. G#1 contains 33.6% of the study population and shows that 

a preferable waist circumference reduces the probability of having goiter despite the participants’ severe limitations while performing moderate activities such as moving a 

table, vacuuming, bowling. 

Algorithm 2: DRESS + subspace processing and cluster gen- 

eration. 

Data : Dataset D , set of subspace clusters C, set of candidate 

subspaces S , set of subspace quality values Q 

Result : Set of subspace clusters C 
S cand id ate ← pickBest(S, Q ) ; // pick best 
q best ← q (S cand id ate ) ; 

// init. best quality value 
S ← (S \ { S cand id ate } ) ; 
// clean candidate subspaces 
while |S| > 0 do 

for each S ∗ ∈ S do 

S new 

← (S ∗ ∪ S cand id ate ) ; // merge 
if q dist (S cand id ate ) > q dist (S ∗) then S dist ← S cand id ate ; 

else S dist ← S ∗; 

q dist (S new 

) ← calcDistQual(D S new 
) ; 

if q dist (S new 

) > q dist (S dist ) then 

// filter criterion 
C D S new 

← DBSCAN( D S new 
); 

C ← (C ∪ C D S new 
) ; 

Q ← (Q ∪ calcQuality (D S new 
)) ; 

if q( S new 

) > q best then 

q best ← q (S new 

) ; 

S ← (S ∪ S new 

) ; 

S ← (S \ { S ∗} ) ; // clean 
end 

end 

end 

S cand id ate ← pickBest(S, Q ) ; 

S ← (S \ { S cand id ate } ) ; // clean 
end 
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ealthy and “fit” ( G#1 ) compared to having mild difficulties as-

ending multiple stairs ( G#3 ). In the data, these variables are cor-

elated to the somatographic ones, and therefore contain some re-

undant information. 

imitations on the identified subpopulations. As pointed out by

ummins (2012) , calibration of the model for different tar get pop-

lations and validation on unseen data are essential steps towards

vercoming the scepticisms of medical experts towards machine

earning methods. The Validation module of DIVA has been de-

igned to address this scepticism, but the validation is limited by

he availability of comparable populations. In particular, a second

ndependent cohort was only available for hepatic steatosis. For

oiter, we rather had to reserve part of TREND-0 for validation,

ather than use the SHIP-CORE, because the differences in age and

odine exposition between the two cohorts did not permit match-

ng. This affects the transferability of the identified subpopulations

o other populations. 

Moreover, the constraints for subspace construction were not

elivered by the medical expert. Rather, we generated them, using

he class labels as sole criterion. It is likely that a medical expert

ould consider additional information when defining constraints,

nd thus may have lead DIVA to the discovery of different subpop-

lations. 

. Concluding discussion on DIVA 

Our system DIVA encompasses a Discovery module that con-

ains semi-supervised and fully automated utilities, an Inspection

odule for model visualization and a Validation module for cohort

atching and model validation. In comparison to existing systems,

IVA is unique in the exploitation of similarity constraints for

emi-automated subspace construction, automated learning and

alidation of the learned models in a second, independent, auto-

atically matched population. The constraint-based subspace dis-
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overy method DRESS ( Hielscher et al., 2016 ), on which DIVA

uilds, has the same subspace construction mechanism but is not

 complete system. Our results have shown that DIVA discovers

ubpopulations that are significantly different than the population

ith respect to the outcome, although it uses a small amount of

xpert information. 

ubspace construction. The subspaces derived by DIVA cannot be

ompared to the sets of variables chosen interactively with help of

ystems like CAVA ( Zhang et al., 2014 ). It must be expected that

he human expert will choose variables wiser than a system that

xploits only a small fragment of the expert’s medical knowledge,

specially when the expert is supported by elaborate visualizations

s offered in Zhang et al. (2014) . We see DIVA as complementary

o such interactive systems, since DIVA minimizes the demand on

he expert’s availability and can select variables that the expert did

ot think of. 

A limitation of this functionality in DIVA is due to the absence

f a mechanism that reads and incorporates expert-defined con-

traints. While designing a rudimentary constraint reader is trivial,

he design of an interactive environment that is appropriate for the

edical expert is a major challenge. Studies on medical expert -

ntelligent system interaction, as by Thew et al. (2009) , stress dif-

erent forms of interaction but the specification of similarity con-

traints between study participants is less of a focus. However, rep-

esentations of a patient’s EHR, as in ( Gotz et al., 2011; Zhang et al.,

014 ), are a good starting point, on which we intend to capitalize

n cooperation with the epidemiology expert. 

earning. The machine learning part is fully automated in the Dis-

overy module of DIVA . This is in contrast with the many tun-

ng options offered in a typical machine learning environment and

specially in an interactive one. Since DIVA is a self-tuned sys-

em, it exhibits a trade-off between execution speed and model ro-

ustness, since robustness demands extensive hyperparameter op-

imization. In the current version of DIVA , self-tuning was kept to a

inimum, so efficient workflows for hyperparameter optimization

re an urgent future task to ensure robustness. 

With respect to diversity of algorithms, the Discovery module of

IVA is richer than our earlier system ( Niemann et al., 2017; Nie-

ann et al., 2014; Schleicher et al., 2017 ). Moreover, the workflow

f DIVA allows for the inclusion of further, more elaborate machine

earning algorithms, albeit the self-tuning will require substantial

xtensions. 

A current limitation of the Discovery module of DIVA con-

erns the exploitation of temporal information. Advances on time-

eries analysis are not applicable in our context of population-

ased studies, since the cohorts are observed for a few timepoints

hat constitute tiny sequences rather than multivariate timeseries.

till, methods that incorporate temporal information into the high-

imensional feature space should be exploited. We are currently

onsidering ways of expanding DIVA with modules that exploit

emporal data during subspace construction ( Hielscher et al., 2014;

iemann et al., 2015 ) and model learning. 

isualizations. The Inspection module of DIVA is more limited in

ts functionalities than typical interactive systems in support of

he medical expert, including the systems of ( Krause et al., 2016a;

rause et al., 2014; Krause et al., 2016b; Zhang et al., 2014 ). How-

ver, this is due to the focus of DIVA on model inspection and

omparison rather than cohort construction. With respect to model

rill-down, the D-Inspector is less sophisticated than the method

f Niemann et al. (2017) , but has the advantage of comparing the

odels delivered by the Validation module in a seamless way. 
utomated model validation. The Validation module of DIVA is

nique. Obviously, any interactive system for cohort construction,

ncluding those cited earlier, can be used to build a second cohort

ith similar properties than the studied one, and use this second

ohort to validate the learned model. However, DIVA takes a cohort

nd builds a matched subcohort automatically and then automati-

ally validates the learned model learned using this matched sub-

ohort. We expect that this functionality will speed up the stren-

ous task of model validation, and we plan to investigate this fur-

her by comparing the quality of models validated on matched

ubcohorts to the quality of models validated on manually chosen

sub)cohorts. 
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