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a b s t r a c t 

Background and objective: In this work we propose a 3D vertebral body segmentation approach for 

clinical magnetic resonance (MR) spine imaging. So far, vertebrae segmentation approaches in MR spine 

imaging are either limited to particular MR imaging sequences or require minutes to compute, which 

can be hindering in clinical routine. The major contribution of our work is a reasonably precise segmen- 

tation result, within seconds and with minimal user interaction, for spine MR imaging commonly used 

in clinical routine. Our focus lies on the applicability towards a large variety of clinical MR imaging se- 

quences, dealing with low image quality, high anisotropy and spine pathologies. Methods: Our method 

starts with a intensity correction step to deal with bias field artifacts and a minimal user-assisted ini- 

tialization. Next, appearance-based vertebral body probability maps guide a subsequent hybrid level-set 

segmentation. Results: We tested our method on different MR imaging sequences from 48 subjects. Over- 

all, our evaluation set contains 63 datasets including 419 vertebral bodies, which differ in age, sex and 

presence of spine pathologies. This is the largest set of reference segmentations of clinical routine spine 

MR imaging so far. We achieved a Dice coefficient of 86.0%, a mean Euclidean surface distance error of 

1.59 ± 0.24 mm and a Hausdorff distance of 6.86 mm. Conclusions: These results illustrate the robustness 

of our segmentation approach towards the variety of MR image data, which is a pivotal aspect for clinical 

usefulness and reliable diagnosis. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Various evaluations in orthopedic and neuroradiological diagno-

is, ranging from scoliosis, stenosis, osteoporosis or vertebral frac-

ures to bone metastases, rely on non-invasive medical imaging

ike computed tomography (CT) and magnetic resonance imaging

MRI) [1] . Most of the related spine segmentation approaches fo-

ussing on CT or 2D X-rays [2,3] benefit from the high contrast

f bone tissue as well as the mostly isotropic high spatial res-

lutions. Addressing the cancer risk from radiation exposure in

T and X-ray, diagnostic MRI became an indispensable technique

n clinical decision-making. Besides, CT and X-ray imaging can-

ot adequately deal with some pathologies like bone tumors and

etastases. Therefore, MRI is often essential for diagnosis. How-

ver, some characteristics of routine spine MRI tremendously ham-

er the automation of segmentation approaches. Firstly, anisotropic

patial resolution often results in partial volume effects, result-

ng in blurred delineation between different tissue types especially
∗ Corresponding author. 
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o the lateral ends. Furthermore, bias field artifacts cause non-

omogenous intensities between central and marginal areas. Lastly,

he image quality and emphasis of different tissues is affected by

arious imaging parameters since standarized measurement units

ike Hounsfield units (HU) in CT do not exist in MRI. 

A robust segmentation of vertebral bodies is a major step to-

ards a precise and reliable diagnosis. Intervention and radio-

herapy planning and navigation could be enhanced by combin-

ng pre-interventionally segmented vertebral bodies with intra-

nterventionally acquired image data. However, different diagnos-

ic MRI sequences are used in clinical practices. A segmentation

ethod that is relevant in a clinical setting will have to deal with

his large variety of MRI sequences and parameter settings and

hould be reasonably fast. Previous works often shifted away from

he challenges of clinical settings by almost solely applying to only

 particular MRI sequence or requiring minutes to compute [4–7] .

omain knowledge for identifying and segmenting the vertebrae

ay be requested from the medical expert during segmentation,

ut user input should be minimal for not unduly interfering with

he clinical workflow during intervention. 

https://doi.org/10.1016/j.cmpb.2017.12.013
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The main motivation of this paper is to present an approach,

which supports wide-ranging clinical applicability referred to the

large variety of clinical routine spine MRI datasets. Typically, they

consist of different image acquisition parameters and sequences,

spatial resolution, spine section and healthy vertebrae as well as

pathologies like fractures and metastases. Therefore, we propose a

hybrid level-set-based approach and assembled an evaluation set

with clinical routine datasets as well as datasets for research pur-

poses. 

Some research has been carried out on spinal segmentation,

though most approaches were applied to mid-sagittal 2D images

[8] . Their main disadvantage lies in processing only discrete slices.

Thus, important information supporting reliable and precise mea-

surements and diagnoses are omitted. A few 3D segmentation ap-

proaches were presented for MRI, which we will discuss below. 

Hoad et al. [9] presented a combination of a thresholded

region-growing algorithm with morphological filtering and shape

masking for segmenting vertebral bodies and posterior structures

in isotropic (1 × 1 × 1 mm 

3 ) steady state precession acquisition se-

quence images. Their method was designed for this particular case

rather than for anisotropic clinical routine spine MRI. Their eval-

uation set contained 30 vertebrae, achieving an Euclidean surface

registration error of 1.25 ± 0.28 mm compared to a thresholded CT

segmentation of the same subject. 

Another segmentation strategy is based on deformable mod-

els, e.g., active contour models (ACM) [10,11] , active shape models

(ASM) [12] or finite element models (FEM) [13] . Davatzikos et al.

[14] trained a deformable shape model to register image data with

template images. A deformable model of the lumbar spine was ini-

tially placed in the test images and subsequentely deformed to

match image gradients. They achieved an average Dice similarity

coefficient (DSC) of 81.5 ± 3.6% on routine images of young healthy

volunteers with a spatial resolution of 0.93 × 0.93 × 3 mm 

3 . 

Štern et al. [5] also applied a model-based approach, while

optimizing 29 shape parameters by maximization of the dissim-

ilarity between inner and outer object intensities, guided by im-

age gradients. Their approach was initialized with one point per

vertebra and by estimating the size by specification of the spine

segment (upper/lower thoracic and lumbar). The evaluation set

contained 75 vertebral bodies of nine subjects, three of them

with resolution of 0.4 × 0.4 × 3 mm 

3 and six with isotropic voxels

(1 × 1 × 1 mm 

3 ). Their approach resulted in a radial Euclidean dis-

tance between segmented object surface and ground truth points

of 1.85 ± 0.47 mm. Processing time ranged from 1 to 15 min per

vertebra. 

Neubert et al. [4,15] used ASM to segment vertebral bodies

and intervertebral discs alike. They tested their fully automatic ap-

proach on 14 healthy volunteers with 132 vertebrae, acquired with

high resolution MRI (0.34 × 0.34 × 1 to 1.2 mm 

3 ) They obtained

a mean DSC of 91% and a mean Hausdorff distance of 4.08 mm.

However, the average run time per vertebra of 35 min [15] was

high. Hence, segmentation of an entire dataset required approxi-

mately 5 h computing time, although no pathologic data was in-

cluded. 

Ayed et al. [16] pursued the idea of formulating the segmen-

tation in MRI as a distribution-matching problem with a convex

relaxation solution. For efficient computation, they split their prob-

lem into various sub-problems, where each one could be solved via

convex relaxation and the augmented Lagrangian method. A mean

DSC of 85% was achieved, but was only determined on 2D mid-

sagittal slices. 

Zuki ́c et al. [17] combined edge and intensity-based features, i.e.

Canny edges and thresholded gradient magnitudes to a multiple-

feature-based model. Their approach was initialized by a previous

vertebral center detection step using a Viola-Jones detector. The

surface mesh of their model was enlarged by balloon forces and
onstrained by smoothness and the approximated vertebral body

ize. They achieved an average DSC of 79.3% and a mean surface-

o-surface distance of 1.76 ± 0.38 mm. The method was evaluated

n clinical routine datasets consisting of a large variety of MRI se-

uences including both healthy and pathological vertebrae. 

Athertya et al. [18] proposed a fuzzy C-means clustering for

ertebral body segmentation in T 1 -weighted MR images. They as-

essed their method on 16 cases resulting in a mean DSC of 86.7%

nd a Hausdorff distance of 5.40 mm. The fuzzy C-means cluster-

ng was followed by various morphological operations including a

hape ratio criteria to extract the vertebrae from surrounding tis-

ues. 

Chu et al. [6] fully automatically localized vertebral bodies to

efine ROIs for a subsequent segmentation step, where they were

sing random forest classification for estimating the fore- or back-

round likelihood of each pixel within the produced ROIs. The re-

ults were combined with a learned probability map to segment

ach vertebral body via thresholding. Chu et al. tested their ap-

roach on 23 T 2 -weighted images, without stating any pathologies,

chieving an overall DSC of 88.7%, a mean absolute surface distance

f 1.5 ± 0.2 mm and an average Hasudorff distance of 6.4 ± 1.2 mm.

he average computational time per data set was about 1.3 min. 

More recently Korez et al. [7] introduced a convolutional neural

etwork (CNN)-based approach in spine MRI segmentation. Their

ethod linked active shape models with likelihood maps of the

ertebral bodies and achieved an overall DSC of 93.4%, an aver-

ge Hausdorff distance of 3.83 mm and a mean symmetric surface

istance of 0.54 mm. Korez et al. trained and tested their meth-

ds on the 23 T 2 -weighted images made publicly available from

hu et al. [6] . 

Goankar et al. [19] presented a machine learning-based system

or vertebral body segmentation on clinical MR images of the lum-

ar spine. In contrast to Chu et al. and Korez et al. they exam-

ned the applicability of their method to different MRI sequences,

hough they trained only on T 2 -weighted images. The implementa-

ion of superpixels based multi-parameter ensemble learning was

ollowed by some morphological post-processing to increase seg-

entation scores. Goankar et al. had in total 48 sagittal T 2 and

5 T 1 MR scans and randomly selected 6 T 2 scans for training

rocedure. The spatial resolution varied in-plane from 0.34 × 0.34

o 1.1 × 1.1 mm and slice thickness was between 0.5 to 5.0 mm.

hile training and segmenting vertebrae on T 2 -weighted images

heir resulting mean DSC was 83%. Vertebrae segmentation on T 1 -

eighted images after training on T 2 -weighted images resulted ex-

ectably in lower DSC scores (average 75%). 

. Materials and method 

.1. Image data 

We assembled an evaluation set, which includes image data of

oth various clinical and research purposes. It consists of four dif-

erent databases, including 63 sagittal datasets with overall 419

ertebral bodies of the thoracic and lumbar spine, which differ in

ge, sex and presence of spine pathologies. The evaluation data

as acquired in different hospitals with various MRI scanners, by

hich means robustness of our method w.r.t. the diverse clinical

outine settings in spine MRI is assessable (see Table 1 ). Regarding

his, a key characteristic of most datasets is the high anisotropy

actor (slice spacing divided by in-plane pixel spacing), ranging

rom 1.6 to 8.19 (see Fig. 1 ). 

The first of our databases consists of pre-interventionally ac-

uired MRI data before radiofrequency ablations (RFA). This data

ncludes vertebral bodies with metastases from different primary

umours. Dependent on the origin, these metastases are of osteo-

lastic or osteolytic type and therefore differently affect vertebrae
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Table 1 

Characterization of all datasets used for our evaluation. MRI Seq - MRI sequence (SE - spin echo, TSE - turbo spin echo, TIRM 

- turbo inversion recovery magnitude), P x, y - pixel spacing in mm, S z - slice thickness in mm, M - acquisition matrix, F A - 

anisotropy factor, # V - number of segmented vertebral bodies, SpS - spine segment (C - cervical, T - thoracic, L - lumbar), 

Path. - predence of pathology (n.s. - not stated), R - reference segmentation by N (neuroradiologists resp. neurosurgeon) or T 

(trained field expert). The horizontal lines categorize the datasets according to their origin (first section - pre-interventionally 

acquired before RFAs, second section - publicly released by Zuki ́c et al. [17] , third section - publicly released by Chu et al. 

[6] , fourth section - part of the SHIP study [20] , T 1 / T 2 means, we evaluated both sequences from the same subject. 

Dataset MRI Seq P x, y S z M F A # V SpS R Path. Age Sex 

preRFA_1 T 1 TSE 0.5 3.3 640 × 640 × 20 6.6 5 C7 −T4 T − 54 F 

preRFA_2 T 1 TSE 0.78 3.3 512 × 512 × 20 4.23 7 T1 −T7 T + 70 M 

preRFA_3 T 1 TSE 0.68 3.3 512 × 512 × 20 4.85 6 T12 −L5 T + 61 M 

preRFA_4 T 1 TSE 0.49 3.3 528 × 528 × 17 6.73 7 T3 −T9 T + 76 M 

preRFA_5 T 1 TSE 0.49 3.3 528 × 528 × 15 6.73 8 T7 −L2 T + 74 M 

preRFA_6 T 1 TSE 0.46 3.3 640 × 640 × 17 7.17 5 T12 −L4 T + 76 M 

Aka2 T 2 FSE 0.70 4 512 × 512 × 15 5.69 8 T10 −L5 T + 21 F 

Aka3 T 1 FSE 0.70 4 512 × 512 × 15 5.69 8 T10 −L5 T + 21 F 

Aka4 TIRM 0.70 4 512 × 512 × 15 5.69 8 T10 −L5 T + 21 F 

Aks5 T 2 FSE 0.70 4 512 × 512 × 15 5.69 8 T10 −L5 T + 22 F 

Aks6 T 1 FSE 0.70 4 512 × 512 × 15 5.69 8 T10 −L5 T + 22 F 

Aks7 TIRM 0.70 4 512 × 512 × 15 5.69 8 T10 −L5 T + 22 F 

Aks8 T 1 FSE 0.70 4 512 × 512 × 15 5.69 8 T10 −L5 T + 22 F 

C002 T 2 TSE 1.12 3.3 448 × 448 × 31 2.96 12 T6 −L5 N + 74 F 

DzZ_T2 T 2 TSE 0.55 4.4 640 × 640 × 12 8.05 8 T10 −L5 T − 27 M 

DzZ_T1 T 1 TSE 0.68 4.4 512 × 512 × 12 6.44 8 T10 −L5 T − 27 M 

F02 T 2 SE 0.5 3.85 768 × 768 × 18 7.7 8 T10 −L5 N + 51 M 

F03 T 2 TSE 1.19 3.3 320 × 320 × 25 2.77 6 T12 −L5 N + 72 M 

F04 T 2 TSE 1.12 3 448 × 448 × 23 2.69 12 T6 −L5 N + 69 F 

S01 T 2 SE 0.47 3.85 640 × 640 × 16 8.19 6 T12 −L5 N + 65 M 

S02 T 2 SE 0.47 3.85 640 × 640 × 16 8.19 7 T11 −L5 N + 55 F 

St1 T 2 SE 0.5 3.85 704 × 704 × 20 7.7 7 T11 −L5 N + 71 M 

Chu (1–23) T 2 TSE 1.25 2.0 305 × 305 × 39 1.6 7 T11 −L5 T n.s. n.s. F, M 

SHIP (1–9) T 1 / T 2 TSE 1.12 4.4 448 × 448 × 15 3.67 5 L1 −L5 N, T n.s. 29–65 F, M 

Fig. 1. A sagittal (a, left) and reconstructed axial (a, right) slice demonstrate how 

partial volume effects caused by high anisotropy could hamper the distinction be- 

tween bony and surrounding structures. Furthermore, various types of metastases 

affect the signal intensities different, depending on the particular MRI sequence (b). 
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n their shape and visibility. While bony structures emit similar

ignals in T 1 - and T 2 -weighted MRI sequences, metastases could

onsiderably differ in image intensities. This tremendously compli-

ates automatic segmentation methods. 

Since the comparison of segmentation approaches and their

esults between entirely different datasets must be considered

s indirect, our evaluation set furthermore consists of overall 39

atasets made publicly available together with the related work of

uki ́c et al. [17] and Chu et al. [6] . Hence, we could match our re-

ults directly with those works. 

The database from Zuki ́c et al. [17] includes both healthy and

athologic datasets, e.g., with scoliosis, spondylolisthesis and ver-

ebral fractures. Their data was acquired in different hospitals, con-

isting of various MRI sequences and parameter settings. 

The third database comprises 23 T 2 -weighted turbo spin echo

R images of thoracolumbar spine of volunteers and is publicly

vailable [6] . It is not stated, whether it contains spine pathologies.

The fourth database comprises of epidemiological image data

rom the Study of Health in Pomerania (SHIP) [20] . It features spine

R images of volunteers, including T - and T -weighted sequences.
1 2 
his cohort study provides high anisotropic image data solely for

esearch purposes. Using this data in our study serves the purpose

o understand the limits of our method regarding spatial resolution

nd image quality, since MRI acquisition time in SHIP was limited

eading to images of lower quality. 

The reference segmentation of the ground truth was performed

anually either by neuroradiologists respectively neurosurgeons

r by trained field experts (see Table 1 ). For both, the pre-

nterventionally acquired and the SHIP datasets a second reader

roduced a reference segmentation to assess the impact of inter-

bserver variability on segmentation quality measures. 

.2. Methodology 

The major steps of our proposed method are as followed (see

lso Fig. 2 ): 

1. Initially a Gaussian filter-based intensity correction was imple-

mented as a pre-processing step to deal with bias field artifacts.

We set the filter kernel size to 120 × 120 × 30 mm 

3 and σ to

20 mm to estimate the bias field of each image volume. In or-

der to remove it, the original image was divided by the bias

estimation. Subsequently, each image was laterolateral upsam-

pled to the in-plane resolution to provide spatial isotropy. 

2. We initialized our method with three points in a selectable

mid-sagittal cross-section to approximate the size, center and

sagittal orientation of each vertebral body. For this purpose,

both corners of the superior endplate as well as the posterior

corner of the inferior endplate were marked. The lateral flec-

tion angle could be deduced from interpolating the landmarks’

z-coordinates of consecutive vertebral bodies. 

3. Intensity-based features, e.g., median and variance, were ob-

tained from a cube within the vertebral center and with vari-

able edge length, i.e., two fifths of the specific vertebral body

height and length. 
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Fig. 2. The pipeline of the presented methodology. 
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4. An abstracted vertebral body shape model was placed upon

each vertebral center with the approximate vertebral body

length, height and orientation. 

5. Within this shape, a pre-segmentation was performed based

on adaptive thresholding. The previously gained intensity-based

features ensure patient independence, as well as imaging se-

quence independence and therefore, avoid common difficulties

regarding thresholding in MR images. Subsequent the result

was morphologically filtered, at first by hole filling and dilat-

ing with a 3 mm-diameter ball structering element and remov-

ing objects smaller than 1 cm 

3 . To yield the vertebral body

probability map P , the resulting binary image was distance-

transformed by a Gaussian convolution (kernel size of 10 mm 

3 

and σ = 2 ) and multiplied with the source image. This smooth-

ing weakens local constrains at the boundaries of the pre-

segmented object and enables level-set convergence away from

disadvantageous placed shape models. 

6. Boundary feature maps G of each vertebral body were com-

puted via dilating the extracted boundaries of the fitted ver-

tebral body shape model, using a 3 mm-diameter ball struc-

tering element, subsequently distance transform them likewise

the probability map and multiplying them with the gradient

magnitude images. This feature ensured level-set convergence

towards object boundaries within the range of the model con-

tours. The probability map P and the boundary feature map G

define both terms of the hybrid level-set formulation (1) . 

The 3D hybrid level-sets approach is based on the work pre-

sented by Zhang et al. [21] and combines regional intensity and

boundary features with an approximative geometry of the target

object for steering and constraining the curve towards vertebral

body boundaries. The region information form a counterweight to

attenuate leakage problems frequently emerged in boundary-based

methods. The level-set-functional to be minimized is defined as: 

E(φ) = −α

∫ 
�

P · H(φ) d� + β

∫ 
�

G · |∇H(φ) | d�, (1)

where H ( φ) represents the Heaviside function, � is the image do-

main and the weights α and β were used to balance both terms.

We empirically determined the ratio of α to β with 4: 3. The prob-

ability map P encourages the level-set contours to enclose regions

of a specific per-vertebra intensity range and is defined as: 

P = g(I s ( x ) , σ ) · I( x ) , (2)

where I ( x ) is the pre-processed image from step 1 and g ( I s ( x ), σ ) is

the result of the distance transformed and morphologically filtered
re-segmentation I s ( x ) in step 5. The boundary feature map G is

he functional of the geodesic active contour term in the hybrid

evel-set formulation and is defined as: 

 = g(S c ( x ) , σ ) · |∇I( x ) | , (3)

here | ∇I ( x )| is the gradient magnitude image and g ( S c ( x ), σ ) is

he result of the distance transformation via Gaussian convolution

f S c ( x ), which represents a binary image of the extracted and di-

ated shape model contour. 

With φt defined as a signed distance function: 

t = αP + βdi v (G ∇ φ) , (4)

t could be derived as an simplified iterative approximation of a

artial differential equation (PDE) from the gradient flow applied

o (1) . Like Zhang et al. [21] initally proposed, each iteration step i

tarts with a re-initialization of φi , subsequent the embedded func-

ion φ evolves as an intermediate step with a predefined time step

sing: 

¯ i = φi + � t αP. (5)

After re-initializing φ̄i , it is updated to φi +1 by solving the PDE:

t = βdi v (g∇ φ̄i ) . (6)

.3. Evaluation 

Evaluation was done on an AMD Phenom II X4 955 processor.

round truth segmentations were available for each dataset, cre-

ted by radiologists or trained field experts. To match our results

ith as many related approaches as possible, we provide the aver-

ge DSC, the Euclidean surface distances and Hausdorff distances. 

. Results 

Inter-observer variability was assessed for the first and fourth

atabase, where two reference segmentations for each dataset

ere available. The average DSC between two reference segmen-

ations is 88.4% and therefore, similar to the result stated by Zuki ́c

t al. [17] . The mean Euclidean surface distance is 0.76 ± 0.4 mm.

urthermore, there is no essential difference regarding the overall

SC between two trained field experts and a neuroradiologist with

 field expert (88.7% to 88.1%), though the mean Euclidean surface

istance (1.33 ± 0.47 mm to 1.70 ± 0.97 mm) is somewhat higher

or the latter. These results are comparable with inter-observer
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Fig. 3. Overlay of our results and the reference segmentation of dataset F03 (top 

row) and preRFA_3 (bottom row). Red contours correspond to the reference seg- 

mentations and green overlays illustrate the segmentation results produced by our 

method. Mid-sagittal (a and b) and a random sagittal cross-section are shown (c). 

The mean DSC of those datasets were 84.3% and 86.7%, respectively. (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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ariabilities of segmentation tasks regarding other organs or struc-

ures [22,23] . Additionally, they must kept in mind, when assess-

ng results of segmentation methods, e.g., are DSC scores well over

0% still a quality increase or merely indications of overfitting, es-

ecially in learning based methods? 

The overall average DSC of our evaluation set is 86.0%, the mean

uclidean surface distance is 1.59 ± 0.24 mm and the mean Haus-

orff distance is 6.86 mm. Most discrepancies between the ref-

rence and our semi-automatic segmentation arose from lateral

lices, caused by the impact of partial volume effects, complicat-

ng the algorithmic detection of object boundaries (see Figs. 1 and

 ). Segmentation is typically a trade-off between data- and model-

riven terms, which is why we strengthened the latter at loca-

ions of weak image boundaries to avoid leakage problems, com-

on for level-set methods [21] . However, this increased the de-

endence of segmentation on model assumptions, for example the

patial extent of the vertebral body model, promoting under- or

versegmentation at such locations. The correlation of image data

nd model knowledge is a fundamental issue for any segmentation

ethod based on model knowledge [5,15,17] . To attenuate level-set

onvergence towards disadvantageously placed model boundaries,

e implemented distance-based features in both, the probability

nd the boundary feature map, in order to enable convergence to-

ards image gradients within the near surrounding. Additionally,

athologies like vertebral fractures or metastases hamper segmen-

ation approaches, according to deformations and atypical inten-

ities within and round vertebral bodies, especially if the cortical

ayers are affected. The latter manifests itself as weak or discon-

inuous delineations towards surrounding tissues, promoting leak-

ge problems, which could be compensated via strengthened local

odel terms. 

There is a slightly difference in the segmentation quality be-

ween T - and T -weighted sequences, where the latter suffers es-
1 2 
ecially from oversegmentation problems due to similar intensities

ithin the vertebral body and the cerebrospinal fluid of the ad-

acent spinal cord. Low spatial resolutions, as commonly used in

linical routine spine MR imaging promote this effect. 

Average per-vertebra computational time was 5.4 s , whereby the

xecution time strongly depends on the spatial resolution. This im-

act is apparent from the computational time differences between

atasets of Zuki ́c et al. with partially twice the spatial resolution

f those datasets of Chu et al. (see Table 2 ). 

. Discussion 

In this study a segmentation approach for vertebral bodies in

linical routine MRI was presented. We particularly placed impor-

ance on clinical requirements and settings, a focus most previous

orks shifted away from. Therefore, the major contribution of the

roposed work is a precise segmentation result, computed within

econds, despite the large variety of datasets and the presence of

athologies. 

With regard to clinical application the accuracy and precision of

egmentation approaches are of primary importance. In respect of

ccuracy the proposed method is comparable to the state-of-the-

rt (see Table 2 ), achieving mainly superior results [5,17,19,24,25] ,

ven though few works showed more precise segmentation results

7,15] . Most of the related work focused only on one particular

R sequence, however, clinical settings require an applicability for

arious imaging sequences according to the diagnostic purposes.

hose works from Korez et al. [7] and Neubert et al. [15] with a

ignificantly higher segmentation accuracy than ours, considered

nly T 2 -weighted images in their evaluation and therefore, missing

ut an important aspect of clinical settings. Furthermore, the high

uality of the work of Neubert et al. comes at a cost of a consider-

bly longer processing time per vertebral body of 35 min (vs. our

.4 s) on recent hardware. A 10-fold processing time reduction de-

reases their average DSC from 90.8% [15] to 85% [4] , which is on

 par with ours. Athertya et al. [18] achieved a mean DSC of 86.7%,

hich is comparable to our method (86.0%), however, their aver-

ge Hausdorff distance is slightly lower than ours (5.40 mm vs. our

.86 mm). They solely tested their method on T 1 -weighted images

nd the post-processing step including an area criterion to extract

he vertebra from oversegmented surrounding tissue raises doubts

bout applicability to pathologic altered vertebrae due to fractures,

etastases etc. The authors did not state any spatial resolution of

heir MR images, although it has been found to be of crucial im-

ortance for segmentation approaches in clinical settings. 

In addition to our comprehensively composed evaluation set,

nly Zuki ́c et al. [17] and Goankar et al. [19] tested their meth-

ds on multiple MR sequences, though both achieving worse

egmentation results than our proposed method. Goankar et al.

19] proofed robustness of their fully automated learning-based

ethod despite variation of scanning parameters. Their mean DSC

cores with 83% (trained and segmented on T 2 -weighted scans)

nd 75% (trained on T 2 -weighted scans, segmented on T 1 -weighted

cans) were lower than ours though. Futhermore, they did not

tate any computational times or distance measures. 

Nevertheless, a comparison of different segmentation ap-

roaches must be considered as indirect, since the evaluated

atasets differ from each other and therefore, should be inter-

reted cautiously. Though, we could compare our approach directly

ith the work of Zuki ́c et al. [17] , since they publicly provide

 large part of their evaluation data sets and corresponding re-

ults. Following results refer solely to these shared data. Both, in

ean DSC (79.4% vs. our 84.1%) and distance measures like mean

urface-to-surface distance (1.81 mm vs. our 1.68 mm) and Haus-

orff distance (12.36 mm vs. our 7.89 mm) our method is more 

recise. Nonetheless, their method did not inevitably require man-
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Table 2 

Previous and the presented work in comparison. MRI Seq - MRI sequence, # DS - number of datasets, # V - number of 

segmented vertebral bodies, SpS - spine segment (T - thoracic, L - lumbar), DSC - Dice similarity coefficient, ED - 

average Euclidean surface distance, HD - Hausdorff distance, t C - computational time, AD - all databases, Z - datasets 

publicly provided by Zuki ́c et al. [17] , C - datasets publicly provided by Chu et al. [6] . 

Works MRI Seq # DS # V SpS DSC [%] ED [mm] HD [mm] t C 

Štern et al. [5] T 2 9 75 T, L – 1.85 ± 0.47 – 1 −15 min 

Kadoury et al. [25] T 1 8 136 T, L – 2.95 ± 1.85 – –

Neubert et al. [15] T 2 14 132 T, L 90.8 ± 1.8 0.67 ± 0.17 4.08 ± 0.94 35 min 

Zuki ́c et al. [17] Z T 1 , T 2 17 153 T, L 79.3 ± 5.0 1.76 ± 0.38 11.89 ± 2.56 8.3s 

Schwarzenb. et al. [24] T 2 2 10 L 81.3 ± 5.1 – – 19s 

Chu et al. [6] C T 2 23 161 T, L 88.7 ± 2.9 1.5 ± 0.2 6.4 ± 1.2 –

Korez et al. [7] C T 2 23 161 T, L 93.4 ± 1.7 0.54 ± 0.14 3.83 ± 1.04 –

Athertya et al. [18] T 1 16 – T, L 86.7 ± 4.1 – 5.40 ± 1.12 5.6s 

Goankar et al. [19] T 1 , T 2 57 – T, L 79 ± 5.0 – – –

Ours AD T 1 , T 2 63 419 T, L 86.0 ± 3.9 1.59 ± 0.24 6.86 ± 1.06 5.4s 

Ours Z T 1 , T 2 17 153 T, L 84.1 ± 2.5 1.68 ± 0.24 7.89 ± 1.12 14.0s 

Ours C T 2 23 161 T, L 88.2 ± 1.9 1.66 ± 0.28 6.01 ± 1.01 1.3s 
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ual user input, but is based on the detection accuracy of a Viola-

Jones detector. Their mean execution time per vertebra is shorter

than ours ( ≈ 8.3 s vs. our ≈ 21.8 s), but one must consider that we

tested our approach on standard rather than on high-end hardware

likewise in clinical settings. 

Publicly provided datasets of Chu et al. [6] enabled the direct

comparison with both their results and those of Korez et al. [7] .

Following results refer solely to these shared datasets. Our results

are on a par with the work of Chu et al. [6] differing only in dec-

imal place of DSC or distance measures. Korez et al. [7] and their

deep learning-based method achieved superior results, but arouse

doubts about applicability in clinical settings concerning computa-

tional time and the variety of MR sequences. While not stating any

performance measures, we re-implemented their network to re-

view their approximate processing time. To predict a medium sized

patch under idealized conditions (with NVIDIA GeForce GTX 970)

it took about 3.75 min, while our approach required only 1.26 s

per vertebra. Furthermore, clinical applicability of CNN-based spine

MRI segmentation techniques still needs to be verified, with regard

to the variety of MRI sequences and pathologically altered verte-

brae. For a thorough assessment of segmentation results, inter- and

intra-rater variability should be taken into account, since the vari-

ability of manually produced ground truth data highly depends on

numerous factors including, e.g., the complexity of the anatomical

structure, the image quality and the rater’s expertise. Inter-rater

variability is known to range between mean DSCs of 88.4% and

91% [17] for thoracolumbar spine MR data. Our method has proven

robustness w.r.t. clinical settings while achieving encouraging seg-

mentation quality within reasonable computing time. 

5. Conclusion 

We comprehensively evaluated our hybrid level-set approach

for vertebral body segmentation in clinical routine spine MRI. It

combines regional intensity and boundary features to steer and

constrain level-set curves towards vertebral body boundaries. The

semi-automatic initialization with approximate vertebral body cen-

ter and size determination increases the robustness of segmen-

tation w.r.t. the spine section, imaging sequence and deforming

pathologies. Overall our evaluation set contains 63 datasets, differ-

ing in age, sex and presence of spine pathologies, including in total

419 vertebrae. Compared to related works this was the largest test

set so far. The average DSC of the evaluation set is 86.0%, while

a mean Euclidean surface distance 1.59 ± 0.24 mm and a Haus-

dorff distance of 6.86 mm was achieved. The major contribution

of the presented approach is its applicability to a large variety of

MRI sequences and parameter settings, while requiring only mini-

mal user input and providing results within seconds. Additionally,
he proposed method is suitable for image data with the presence

f pathologies like fractures, scoliosis or spinal metastases. These

re essential requirements for the clinical applicability. While most

elated works shifted away from the limitations of clinical set-

ings, our method proofs robustness and precision. In future work,

he segmentation should be combined with automatic initial ver-

ebrae detection and can be also employed as a prerequisite for

o-registration of multimodal images. 
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