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Abstract—Epidemiological studies comprise heterogeneous data about a subject group to define disease-specific risk factors. These
data contain information (features) about a subject’s lifestyle, medical status as well as medical image data. Statistical regression
analysis is used to evaluate these features and to identify feature combinations indicating a disease (the target feature).

We propose an analysis approach of epidemiological data sets by incorporating all features in an exhaustive regression-based anal-
ysis. This approach combines all independent features w.r.t. a target feature. It provides a visualization that reveals insights into the
data by highlighting relationships. The 3D Regression Heat Map, a novel 3D visual encoding, acts as an overview of the whole data
set. It shows all combinations of two to three independent features with a specific target disease. Slicing through the 3D Regression
Heat Map allows for the detailed analysis of the underlying relationships. Expert knowledge about disease-specific hypotheses can be
included into the analysis by adjusting the regression model formulas. Furthermore, the influences of features can be assessed using
a difference view comparing different calculation results. We applied our 3D Regression Heat Map method to a hepatic steatosis data
set to reproduce results from a data mining-driven analysis. A qualitative analysis was conducted on a breast density data set. We
were able to derive new hypotheses about relations between breast density and breast lesions with breast cancer. With the 3D Re-
gression Heat Map, we present a visual overview of epidemiological data that allows for the first time an interactive regression-based

analysis of large feature sets with respect to a disease.

Index Terms—Interactive Visual Analysis, Regression Analysis, Heat Map, Epidemiology, Breast Cancer, Hepatic Steatosis

1 INTRODUCTION

Epidemiology aims to characterize health and disease conditions in de-
fined populations (cohorts). Insights about risk factors allow to charac-
terize disease-specific high-risk groups [11]. Furthermore, the insights
can be used to derive recommendations regarding a healthy lifestyle or
to provide information about widespread diseases. During the standard
workflow, physicians transform observations into hypotheses. The hy-
potheses are depicted using epidemiological features and are then sta-
tistically analyzed.

An important epidemiological tool for deriving such features are co-
hort studies, such as the Study of Health in Pomerania (SHIP) [42]. To
reduce any selection bias, subjects are randomly invited without a fo-
cus on a specific disease. Hence, a wide range of features is acquired.
Social and lifestyle factors, prior or current diseases and medications
as well as medical parameters, such as blood pressure, are gathered.

Testing features for associations with diseases using regression
models is one of the most important epidemiological tools. Using
regression analysis to assess the statistical resilience of a hypothesis
rarely involves more than three features due to the higher dimensional
problem and the required subject count. Due to the amount of data
and only limited overview visualizations, possible correlations may be
missed. Explorative analyses and overview visualizations of the data
set as presented in prior work [23], are not tailored to a specific target
feature. They mostly highlight correlations between features, which
are known to the domain expert (e.g., correlation between body size
and spine shape). We incorporate the regression analysis, which is fa-
miliar to the domain experts, into overview visualizations to support
a hypothesis-free analysis or an analysis w.r.t. a specific disease or
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hypothesis. For this purpose we provide template regression formu-
las, which are applied to all potential feature combinations. Since the
notation is familiar to epidemiologists, they can rapidly include their
domain knowledge into the analysis process. Difference views be-
tween regression formulas allow to assess the influences of individual
features on the process. Our contributions are:

e An overview visualization design based on feedback of epidemi-
ological domain experts to support hypothesis generation w.r.t. a
target feature using regression models.

e Incorporation of prior domain knowledge by using freely ad-
justable regression formulas.

e Metrics selection for analyzing regression models and for
details-on-demand representations.

e An open-source web application that can be used with data of
different application domains.

2 EPIDEMIOLOGICAL BACKGROUND

This section covers the epidemiological workflow, epidemiological
data in general and the SHIP in particular.

2.1 Epidemiological Workflow

Epidemiological research is performed by experts from different aca-
demic disciplines, such as epidemiologists, physicians, statisticians,
and medical computer scientists focusing on biometrics and image
segmentation. Their goal is to derive disease-specific risk factors by
assessing epidemiological features with statistical methods. As de-
scribed by Thew et al. [38], the epidemiological workflow is divided
into these different steps:

1. Clinicians/epidemiologists derive hypotheses via clinical obser-
vations, experimental studies or literature research.

2. Epidemiologists compile a list of features depicting the hypoth-
esis and include confounding features.

3. Statisticians assess the association of the derived features w.r.t
the investigated disease.

Relative risks can be determined if a statistical resilient association of
features with a condition is extracted. Derived absolute risks indicate
the per-subject chance of developing the disease. Reproducibility of



results is an epidemiological key requirement and guides all analysis
steps. Statistical programs, such as SPSS, are used to analyze the data
regarding the classical sequential epidemiological workflow. Hence,
images are mostly used for the communication of results, rather than
for providing insight into the data.

We described an Interactive Visual Analysis approach for image-
centric cohort study data, which connects to the feature listing step
[23]. The methods aim to derive hypotheses through analysis of the
data and observations about previously unknown feature correlations.
Hypothesis generation benefits from overview visualizations of fea-
ture correlations, which are not supported by standard statistical pro-
cessors. In this work, we focus on a similar approach to derive insight
and even new hypotheses through the data rather than only using it for
a confirmatory analysis.

2.2 Epidemiological Data

There are many epidemiological instruments available to acquire data.
We focus on population studies, which impose the largest data sets and
yield a highly heterogenous and incomplete information space. Sub-
ject data are collected either regarding specific diseases or with the
widest range possible. The latter allows the data set to be assessed
w.r.t. different diseases. The feature space comprises information
about lifestyle, somatometric features, medical parameters, genetic
data as well as medical images. These features are gathered through
questionnaires, medical examinations and laboratory analyses. Many
features are sparse, such as follow-up questions about a medication
or treatment of a certain disease. Other features are exclusive for a
sub-group, such as women-specific questions, e.g., number of born
children or period status. Medical status features or lifestyle factors
are primarily of dichotomous (binary) type. Continuous data are often
discretized (e.g. 10 year steps for age) to equalize the feature types
and to simplify the method selection. However, this reduces the infor-
mation space and introduces an information bias, as assumptions are
modeled through the discretization.

Medical image data are also analyzed in modern population studies.
We incorporate image-derived features, but do not focus on analyzing
image data. More discussions of population study data types and char-
acteristics can be found in the works of Preim et al. [34] and Toennies
et al. [39].

Features influencing the exposure as well as the outcome of an anal-
ysis are called confounders and have to be specially treated. The analy-
sis model has to be adjusted by normalizing all included features w.r.t.
the confounder. Age is included as confounder in almost any epidemi-
ological analysis, since most diseases are more likely for older sub-
jects. It also influences the general body condition and thereby almost
all features acquired through population studies. Another important
confounder is gender. Confounders have to be selected by epidemiol-
ogists specific to the investigated condition.

The Study of Health in Pomerania (SHIP). The SHIP, located
in Northern Germany, aims to characterize health and disease in the
widest range possible [42]. Unique for the SHIP is the acquisition
of medical image data. A second cohort, SHIP-TREND, was started
in 2012. Data for both cohorts are examined in a 5-year time span.
New parameters are added in each iteration, extending the range of
investigated diseases. Most examinations occur in all stages and are
performed according to the same instructions to enable comparisons
over the different stages of the study.

2.3 Regression Analysis

Regression analysis is the most important statistical tool when analyz-
ing epidemiological data and is the basis of this work. A regression
analysis assesses the influence of one or more (independent) features
to one target (dependent) feature. The regression model yields a func-
tion describing the target feature by weighting the independent fea-
tures. Different metrics, such as the weightings itself and associated
p values, describe the resulting function (the model). The Akaike In-
formation Criterion (AIC) metric estimates the quality of a model by
estimating its information loss of modeling the underlying data and is
suited for comparing models [2]. A small AIC value indicates a higher

quality model. R? values describe the quality of the fit; in other words
how well the dependent features describe the target feature. The value
ranges between [0, 1], where 1 encodes a perfect fit.

Regression Analysis Notation. Regression formulas are usu-
ally denoted as follows: Dependent ~ Independent; + ... +
Independent,. An example of a regression formula would be
KidneyDisorder ~ Smoking + Obesity. The most commonly used
regression operators comprise:

e -+ — inclusion/exclusion of the variable (e.g. x +y),

e :inclusion of interactions between the variables (e.g. x : y),

e s inclusion of the variables as well as their interactions (e.g. x*Yy)
e | (conditioning) inclusion of variable x, given y (e.g. x|y)

Due to the different meaning of operators in regression formulas, fea-
ture transformations are not available within this notation. The class
of the target feature restricts the regression type. Different regression
types are available; we focus on the following for describing linear
relationships:

Linear Regression for Continuous Target. The basic type is
the linear regression, creating a linear map from the space comprising
the independent features to the dependent features. The dependent
variable has to be of continuous type. Linear regression models can
also be described using the adjusted R2, which considers the number
of dependent features. It yields lower values, when features with little
entropy w.r.t. the target feature are included. The f-statistic measures
the improvement of the model if independent variables were added.

Logistic Regression for Dichotomous Target. Logistic regres-
sion implies a dichotomous target variable. The target is described by
fitting a logistic function. Logistic models, as opposed to linear mod-
els, do not allow for extracting an R? quality of fit value. Therefore,
pseudo-R? values are extracted, such as the Nagelkerke R? [29], which
mimics the behavior of the R2. Nagelkerke R* behaves different than
R? values extracted from the linear regression model. Comparisons
have to be handled with care.

3 PRIOR AND RELATED WORK

Tukey already stated in 1977 that data are too often analyzed solely
using a confirmatory data analysis [40]. He emphasized the need to
use data to derive hypotheses, which can then be tested again. In this
section, we present prior and related work trying to achieve this goal.

Parameter space analysis using regression models. Sedl-
mair et al. [35] presented a conceptual taxonomy of parameter space
analysis. Based on their input parameter taxonomy, we are visualizing
model parameters based on environmental parameters in a global-to-
local navigation strategy. We solve a fitting task by aiming to find
models well suited for describing the input data. The approach of
Miihlbacher et al. [28] is closest to ours. They provided a framework
for qualitative analyses of relationships and ranking features for nu-
merical target features with regression models. Existing regression
models can be validated and compared using 3D views and 2D slice
views. Miihlbacher et al. focused on a smaller number of features,
which can be assessed in more detail, yielding a plot matrix view,
while we cover more features by abstracting the models.

Similarly, Piringer et al. [33] proposed methods for visualizing re-
gression analysis results and properties for developing car engines.
Their main goal is to assess the pairwise influence of independent fea-
tures w.r.t. the target feature using a plot matrix displaying models as
contours. Linked views of model deviations allow to select outliers.
This limits the method to comparing a few models at once, as the plot
matrix gets complex with increasing feature number. Guo et al. [13]
presented multi-space visualizations to find linear relationships in the
data with focus on extracting groups of best fit. The data space is vi-
sualized using a scatter plot matrix. Linear models are calculated by
defining dependent and independent features. The model view allows



for assessing different models by color-coding distances to the line-
of-fit. The model parameters can then be fine-tuned using line graphs,
histograms and model projections. Chan et al. [7] propose the ‘Re-
gression Cube’, an extension of the 2D scatter plot representation of
a linear regression model (incorporating solely metric features) to a
3D Cube. They group subjects using a set of interaction techniques
as well as clustering algorithms to calculate sub-groups, which can
then be compared using their cube representation. Similar to Piringer
et al. [33], they focus on highlighting details of the included models
rather than comparing models consisting of different features. Insight
is derived by subject grouping, which spawns new cube correlations
and therefore allows drilling down to the data. Piringer et al. [33], Guo
et al. [13] and Chan et al. [7] focus on finding and tuning a model for
a specific relationship, while we search for models w.r.t. all combina-
tions in the data set. Instead of analyzing one complex model in detail,
we process a large amount of models in terms of different features.

Visual analysis of epidemiological data. The work of Zhang
et al. [12, 43] is closest to ours regarding the application of a visual
analysis of population study data. They present Cohort Analysis via
Visual Analytics (CAVA), a framework that distinguishes three major
elements of a cohort study data analysis: cohort data (and its manipu-
lation using operations), views and analytics. They use the system to
find longitudinal pathways for diseases on the basis of health records.
We incorporate their requirements, which consist of a flexible and it-
erative analysis. Angelelli et al. [4] visualize image-derived an non-
image data using cube data structures with focus on comparison and
knowledge extraction. They use Pearsson’s r to characterize relation-
ships with target features and employ list views and scatter plots to
visualize and rank them. In contrast, we focus on a fast large scale
correlation analysis incorporating many features to derive insights.

Steenwijk et al. [36] focus on the hypothesis-free exploration of co-
hort data. They employ a framework consisting of feature extraction
and visualization to derive dependencies between image- and non-
image features. They incorporate linked views using scatter plots, bar
charts, parallel coordinates as well as time plots to display and brush
the data. The techniques are useful for selected features or a data set
with a small number of features due to their increase in complexity
with every additional parameter. Maries et al. [26] proposed GRACE,
a framework for visually exploring correlations of features with spatial
and non-spatial geriatric data. Sparse Partial Least Squares Regression
and Tikhonov Regularization are used to produce predictor subsets and
quantify correlation strengths. A multiple view system links spatial
with non-spatial data and correlation coefficients are visualized using
Kiviat diagrams, correlations are plotted using p-values in the other
views. Instead of applying several linked views, we focus on one view
of abstracted data.

Generalized pairs plots (GPLOM’ S) extend the concept of scatter
plot matrices by the pairwise depiction of heterogeneous data using
type-combination-dependent visualizations [10, 19]. Dai et al. [9] in-
corporate a GPLOM-like visualization using choropleth maps mapping
spatial data, such as mortality rates together with scatter plots aug-
mented with Pearsson’s r values. A concept map summarizes features
related to a specified disease. Time-dependent epidemiological data
are visualized by Chui et al. [8] using multi-panel graphs highlighting
risk factor differences with age and gender with regard to influenza-
and salmonellosis-associated hospitalizations. We incorporate the idea
of the arrangement of feature combinations as matrix as well as assess-
ing confounding features.

Statistical analysis. Bertini et al. [5] present an overview of qual-
ity metrics describing high-dimensional data. Their refer to their re-
search agenda in our design. Namely, we apply aspects of perceptual
tuning with human pattern recognition of important aspects, scalabil-
ity between different data set sizes and application testing with domain
experts. Ahmadi et al. [1] define the Sparse Regression Cube that par-
titions sparse high-dimensional data into subspaces, which are then
described by their most reliable linear regression model. They focus
on an algebraic representation for efficient regression model calcula-
tion to find the best fit for a subspace.

Albuquerque et al. [3] present an interactive exploration framework
displaying quality metrics of high-dimensional data sets with brushing
facilities to create subsets. They analyze subsets using a drilling-down
approach by incorporating scatter plot matrices (SPLOM’ S) of quality
metrics. Turkay et al. [41] follow a similar approach by using both
descriptive metrics for features as well as the features themselves and
incorporate them into linked plots.

Niemann et al. [31] investigate risk factors of hepatic steatosis us-
ing decision trees with interactive data mining tools. They extract
classification rules that serve as basis for our proof-of-concept tests.
Niemann et al. [30] improved the classification performance by gener-
ating features (called evolution features) that describe latent temporal
information across the study waves. We try to reproduce their results
and further investigate findings presented by Niemann et al. [31].

Prior work. 1In our prior work, we analyzed the healthy aging
process of the lumbar spine. We defined an Interactive Visual
Analysis workflow for image-centric population study data [23]. We
extended the feature selection step (recall Sec. 2) with an iterative
analysis loop incorporating group selection using expert input as well
as clustering methods. Information visualizations of population study
features were augmented with extracted image data, yielding linked
views with both image and non-image information. The 2D heat
map [23] highlights the pairwise correlation between features without
a target disease by depicting the Cramér’s V contingency values.
Its great popularity among our domain experts was the inspiration
for this work. The presented techniques were well received by the
epidemiological experts, but the explanatory power w.r.t. back pain
was limited. It yielded an analysis based on image-derived features,
such as extracting and analyzing curvature, torsion and angle of the
lumbar spine [22]. We concluded that the model quality is insufficient
to characterize back pain.

The difference of the presented approach in comparison with
related work is twofold. (1) We focus on the large-scale analysis of a
vast number of linear and logistic regression models by assessing their
quality-of-fit using descriptive metrics. (2) The analysis is conducted
w.r.t. a target feature and incorporates expert knowledge via the
regression model definition rather than subdividing the underlying
data.

4 3D REGRESSION HEAT MAP ANALYSIS OF POPULATION
STUuDY DATA

The 3D Regression Heat Map is designed to provide an overview visu-
alization to support hypothesis generation. Hence, it is associated with
step 1 and 2 of the epidemiological workflow (recall Section 2.1). Re-
lationships observed using such techniques are subject of detailed sta-
tistical testing by statisticians with background in epidemiology using
statistical processors, such as SPSS.

4.1 Iterative Design Based on Expert Feedback

The 3D Regression Heat Map design was developed iteratively based
on feedback of epidemiologists by using the prototype in joint anal-
ysis sessions on their data sets. The idea emerged from analysis ses-
sions of a previous project, which contained a 2D heat map showing
pairwise feature correlations based on Cramér’s V contingency values
[23]. It allowed them to reproduce their knowledge about relation-
ships by observing correlations they would expect as well as discov-
ering new correlations. In epidemiology, these relationships are also
of interest, but rather w.r.t. their explanatory power on the target fea-
ture. This target often indicates the presence of the investigated dis-
ease. The domain experts wanted to model knowledge about the inves-
tigated condition, such as confounding features (e.g., age or gender).
For explorative analysis, they preferred an approach which highlights
associations w.r.t. various target features to both check for medical
soundness of the data as well as detecting unexpected relationships.
Additionally, due to the sensitive nature of population study data, the
data has to be handled securely. Technical measures to enable a secure
transfer and storage are described in Section 5.



Regression analysis is the statistical tool of choice for analyzing
relationships in epidemiological data (recall Sect. 2.3). A regression
model is based on expert knowledge. There is no rule how to apply
models to a given set of features. Thus, they have to be applied with
care.

4.2 Regression Heat Map Description Using Regression
Formula Notation

Expert knowledge modeling is carried out using regression formu-
las. The formula input influences the type of the chosen regression
method as well as the independent features describing the target (re-
call Sect. 2.3).

Since we want to associate the regression analyses with an overview
visualization, we are interested in all possible combinations of (two or
more) independent features describing a target. We achieve this by in-
troducing dynamic variables X, Y and Z into the regression notation.
Our method replaces the dynamic variables with all features in the data
set. In a data set with n (e.g., 100) features, the regression formula
Cancer ~ X +Y yields n? (10,000) regression models, describing all
combinations of two features describing Cancer. This notation is nat-
ural to anyone familiar with regression analysis, since it is the standard
way of expression. With simple adjustments to the formula, different
results can be achieved:

e Z ~ X +Y calculates all combinations of two features w.r.t. all
possible target features.

o Cancer ~ X +Y + BodyWeight includes the BodyWeight feature
into all regression models as feature with Cancer as target.

e Cancer ~ X +Y +Z calculates all combinations of three features
w.r.t. the Cancer target.

The problem with this approach lies in its complexity. The number of
calculated regression models exponentially increases for each dynamic
variable added. If we assume a data set with 100 features and the
formula Z ~ X +Y, we obtain 1,000,000 regression models. When
each regression takes about 50 ms of calculation time, the calculation
lasts roughly 14 h.

4.3 Target-Variable-Dependent Dimension Reduction

In epidemiological studies, manifold recordings lead to an abundance
of features and thus a high-dimensional feature space. In general,
many of them exhibit a low or no correlation at all w.r.t. the target fea-
ture. Identifying irrelevant features and excluding them from the fea-
ture space considerably reduces computational costs and yields a com-
prehensible 3D Regression Heat Map representation. The correlation-
based feature selection (CFS) [15] aims to find a feature subset that
maximizes the merit value Mg, which is the ratio between the aver-
age feature-class and feature-feature dependencies in the feature set
F. The dependency of a set of features utilizes the entropy-based in-
formation gain to measure the explanatory power w.r.t. the target fea-
ture. Starting with an empty set of features F, the CFS algorithm iter-
atively adds the feature f to F that leads to the highest new merit value
Mpy and halts when no feature is left that would increase the merit.
For example, if the body weight has a strong explanatory power w.r.t.
the target, it is likely that BMI or waist circumference exhibit similar
correlations to the target. However, they strongly correlate with each
other. The CFS algorithm will select the feature which has the largest
explanatory power and discards the other features.

We apply the CFS algorithm for each target feature in a regression
formula with dynamic variables. The formula Cancer ~ X +Y would
yield one initial CFS information space reduction. For Z ~ X 4 Y the
CFES algorithm is applied to the data every time Z is replaced with
another feature.

The number of features calculated by the CFS algorithm is depen-
dent on the information entropy in the data. In our epidemiological
data, we usually observed a number of 10 to 30 features. The number
of selected features using the CFS algorithm reflects their information
entropy on the target. A large list of features is an expression of low

correlation to the target feature. The tradeoff involved using the CFS
algorithm is the potential removal of interesting features for the do-
main expert. This problem is discussed in the next subsection as part
of the 3D representation of the regression results.

With this method, we are able to derive the interesting regres-
sion models in a reasonable time span (seconds to minutes instead of
hours). The next section shows ways of abstracting the results to make
them visually feasible.

4.4 Abstracting Regression Results
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Fig. 1. (a) Overview visualization using a 2D heat map of the formula
Z ~ X +7Y, where Z assumes the feature age. The R* metrics extracted
from the regression model are mapped to color saturation (a saturated
color indicates a strong correlation). (b) Now, Z is set to all features
n and yields n 2D heat maps. These represent the slices in our 3D
Regression Heat Map. The metric describing the regression model of
each slice voxel is mapped on opacity in the 3D view later on, reducing
the occlusion of other values.

The goal of an overview visualization is to provide a comprehensive
view on the data (raw or using descriptive metrics [5]), which is easy
to understand. As described in our previous work [23], correlation
values scaled between 0 (no correlation) and 1 (perfect correlation)
can be encoded with color in a 2D heat map. Regression models are
more complex, having many associated describing metrics. For the
3D Regression Heat Map analysis we are interested in the quality-of-
fit of the resulting model. This allows to infer the predictive quality of
the independent features included in the model. The R2, adjusted R?
and AIC value are metrics allowing for this kind of assessment (recall
Sect. 2.3).

2D (slice) view. Since R is scaled between [0, 1], it allows for
comparison between regression models. We can apply the same 2D
heat map by translating the R* values to color saturation (Fig. 1a).
This encodes a 2D regression square for dynamic variables X and Y
(e.g., Age ~ X +7Y). Based on expert feedback on early versions of
this view, the amount of features used to compare regression models
was extended. Therefore, these experts can investigate the heat map
with emphasis on specific aspects of the model. Adjusted R* can be
represented in the same way, since they are also scaled between [0, 1].
AIC values have to be normalized in order to map them on color sat-
uration. The resulting scale may be distorted by outliers derived from
poor regression models. To tackle this problem, we provide a slider in-
put, which maps the transfer function of the metric to color saturation
based on user-selected ranges. Outliers can be cut off to emphasize
ranges of interest. Small AIC values indicate a good model. Hence,
we inverted the transfer function color mapping, assigning low AIC
features to saturated colors. To include users unfamiliar with these
metrics, the Regression Heat Map is set per default to show R? values.

3D view. Introducing Z creates a 3D heat map (Fig. 1b). The
selected metric (per default set to RZ) of each heat map entry (voxel)
is mapped to opacity to reduce the overlap. Object size is not used
to encode information because it would result in a cluttered view.
Epidemiologists argued that the visualization of descriptive metrics
derived from different regression methods (e.g., Z ~ X +Y) is
misleading, as they can be compared relatively, but not in precise



numbers. Therefore, we decided to map metrics of different regression
methods on distinct colors (i.e., orange for linear regression and blue
for logistic regression). Thus, the visualization can be easily extended
using other regression types. For 3D Regression Heat Maps with a
fixed target feature, e.g., Cancer ~ X +Y + Z, no such encodings are
required and the z dimension can be compared directly. As mentioned
previously, the feature reduction using the CFS algorithm potentially
removes important features. The z dimension of the visualization
contains all features of the data set, allowing to assess their influence.
The x and y dimensions are restricted to the features extracted from
the CFS algorithm.

Our goal is to create an overview visualization for a data set.
We also want to incorporate expert knowledge into the visualization
by adapting the underlying formulas. These two approaches do not
exclude each other, they rather underline the difference in purpose
of the chosen formula. The different analysis approaches require
different starting points using the 3D Regression Heat Map.

4.5 Analysis Workflow

Our 3D Regression Heat Map is well suited for different workflow
analysis techniques, based on the Visual Analytics (VA) Mantra of
Keim et al. [21]:

Analyze first [1.AF]. Choosing an initial regression formula trig-
gers the 3D Regression Heat Map calculation, filtering the dimensions
of the dependent feature through the CFS algorithm.

Show the important [2.SI]. The 3D visualization acts as an
overview over the whole data set. Here, regression models with large
regression metric values can be spotted fast, steering the user’s atten-
tion to the respective slice.

Zoom, filter and analyze further [3.ZF]. The slices of interest can
then be analyzed using the 2D heat map of the slice.

Details-on-demand [4.DD]. Precise information about the individ-
ual regression models (coefficients, associated confidence intervals
and p-values) can be retrieved based on the data point representatives
(e.g. in a hover modal on a currently selected data point).

We use the squared bracket abbreviation for each step to denote
the affiliation to the system design section later on. The workflow
is highly iterative. Observations in the 2D heat map or simply
the CFS-based features can trigger new analyses by adjusting the
underlying regression formulas. This can be carried out either to
refine the current formula based on observations, or to create a new
3D Regression Heat Map for a difference view.

Hypothesis-free and hypothesis-based analysis. Early analy-
sis sessions yielded two approaches of analyzing the data. The classic
approach is hypothesis-based, where the expert already knows the data
and potential associations (e.g. reproducing knowledge about hepatic
steatosis risk factors based on known risk factors). The hypothesis-free
analysis allows to derive new insights, such as identifying confound-
ing features or potential targets (e.g. deriving risk factors for breast
cancer-associated features). Hypotheses about the data are reflected
using input formulas. Using the operators, dynamic variables and data
set features, many different assumptions can be expressed. To support
the hypothesis-free analysis, we provide a default formula:

Z ~ X +7Y. It represents all possible combinations of two indepen-
dent features w.r.t. all features in the data set, since we do not know
which features are of interest. Each slice represents a different target
feature. It is therefore suitable for an exploratory analysis.

Hypotheses about the data are easily built up by relating dynamic
variables with the regression operators. Furthermore, static features
can be added for each regression formula. Here are a few examples:

Cancer ~ X +Y + Z is the formulation of a hypothesis where the
specific feature Cancer is analyzed. All combinations of three inde-
pendent features with the target are analyzed through this 3D Regres-
sion Heat Map.

Cancer ~ X +Y +Z + feature| : feature, encodes more assump-
tions. This formula models the hypothesis of an interaction between
featurey and feature) (denoted with ‘:*) being relevant for the target

feature, but it is not clear how other feature combinations influence
the result. Therefore, this interaction is incorporated for all X, ¥ and
Z values as independent features.

Cancer ~ X +Y + Z subtracted with the regression metric from
Cancer ~ Age excludes the confounding effect that age has in view
of the target Cancer feature. This is achieved through 3D Regression
Heat Map comparison.

3D Regression Heat Map comparison. Comparisons were in-
troduced later in the project. Epidemiologists with focus on statistics
pointed out that comparing outcomes of different formulas is suitable
for removing the effect of possible confounding features. 3D Regres-
sion Heat Maps can be compared by creating difference views. One
formula acts as reference. The absolute difference in the regression
metric values with the second formula is calculated. For example, it
can be utilized for comparing the influence of a single feature on the
complete result (e.g., Z ~ X +Y and Z ~ X +Y + Income).

5 SYSTEM DESIGN
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Fig. 2. Breast density data set loaded into our prototype. (a) Using the
formula input, the user specifies the dependent feature and calculation
rules. (b) 3D heat map showing values above the matrix diagonal as
overview. The values of the currently selected slice are mirrored and
represented as orange data points on the slicing plane. (c) 2D heat
map of the selected slice for feature Pain/Discomfort.

We designed our system to be openly accessible and easy to use. With
open formats as input interfaces, the application can be extended to
non-epidemiological data sets. The focus lies on creating an overview
visualization and gaining insight into relationships of the data, which
triggers further analyses with other (statistical) tools. This is, however,
out of the scope of this work. Therefore, the system has to be intuitive
and comprehensive in order to be adapted by domain experts.

Using web-based technologies offers various advantages w.r.t. the
collaboration with epidemiologists. They usually have little time to
wrangle software. A web-based approach has no set-up time besides
loading up the data set and can be carried out with any computer con-
nected with the web. We can even implement small changes based on
feedback of domain experts directly during analysis sessions. By pro-
viding a service using a website it has a much larger chance of being
tested and potentially adapted by a broad user base. Web technology is
based on a client-server architecture. It allows for outsourcing compu-
tationally heavy tasks on server clusters and transferring results to the
client device. This architecture is also prone to security issues, such as
the storage of confidential data, especially in the epidemiological con-
text. Therefore, we have to incorporate technical measures to ensure a
secure workflow.



5.1 System Paradigm and Components

Epidemiologists will not adapt complex systems that require substan-
tial training and time. Therefore, the 3D Regression Heat Map design
focuses on a clean appearance, reducing the amount of user interface
elements as much as possible. This allows for a fast learning of the
system. Our prototype consists of three components:

e The file upload section starting the analysis with providing a
comma-separated value (CSV) file [1.AF].

o The Regression Heat Map visualization consisting of the 2D heat
map as well as a 3D representation of all regression models
with facilities to change the represented regression metric and
its range [2.SI].

e The formula editor allows formula input w.r.t. a hypothesis or
to conduct a hypothesis-free analysis. It also allows to select a
reference formula for creating difference models [1.AF, 3.ZF].

File upload and classification [1.AF]. Popular analytics tools,
such as WEKA [14], owe part of their success to their support of open
file types. To allow other users even outside the epidemiological appli-
cation domain to access our tool, we use standard ASCII-based CSV
files. The first line in a CSV file represents all features (columns) of
the data set. Each line after that represents one subject (row) and its
feature manifestations. Using a check box, the user can disable the
CFS preprocessing step, which is useful for small data sets where the
user does not want to reduce the number of features.

Data security issues are raised by uploading data into an online
service such as our prototype. The use of epidemiological data is pre-
ceded by a detailed description of the analysis purpose and has to be
approved by ethics committees. Preventive steps have to be taken to
restrict access to unauthorized subjects. We calculate a SHA-256 hash
to derive the data set name using the data contents and disable direc-
tory listings on the web server to avoid data set downloads. Data sets
are deleted from the server after closing a session.

Formula editor [1.AF, 3.ZF]. After uploading the data, the user
can specify a formula or use the default (Z ~ X +7Y). Entering a for-
mula is facilitated via text input. On formula input, a context panel
displays all data set features as well as the available operators and
their function. This allows to comprehend the function of the underly-
ing formula for users without statistical background about regression
analysis and its notation. Auto-completing input features also simpli-
fies the approach and works as spell check of feature names.

Formula validation is carried out directly on input. The text input
containing the formula is marked using a red halo to indicate invalid
input, which turns green for valid formulas. This prevents processing
errors on the statistical processor back-end. Confirming a formula trig-
gers the Regression Heat Map calculation, which is preceded by de-
termining all required formulas. These are then divided by the number
of available statistical back-end processors, driving a cloud comput-
ing-based approach. In theory, the calculation duration is reduced by a
factor of 2 by every statistical processor. In practice, data transmission
and differences in machine specifications always influence the speed.

Difference heat maps can be generated for each formula added to
the system. Using a dropdown menu it can be selected as reference.
Since all cells in the heat map are represented using regression metric
values, the difference is the absolute difference of regression metric
for each cell.

5.2 3D Regression Heat Map Visualization [2.SI].

The visualization and interaction with the 3D Regression Heat Map is
the core of the prototype. Results from the statistical processors are
uploaded into the visualization slice by slice. This allows the assess-
ment of the data as soon as parts of the calculations are finished while
the rest is still in progress.

Usage of a regression prism for information reduction. Fig-
ure 1 shows that all values are mirrored along the diagonal of the 2D
heat map matrix. This is due to the symmetry of basic regression op-
erators. Therefore, we can discard half of the results to reduce vi-
sual clutter and repetition, yielding a Regression Prism. This opens
up space for displaying additional information. Along the diagonal, X
and Y represent the same feature, Z ~ X +Y turns into Z ~ X because
the regression automatically ignores doublings. The diagonal there-
fore acts as reference on how strong the correlation for the given row
(or column) feature is.

Selecting and scaling the descriptive regression metric. The
feedback made apparent that other features are of interest for analyz-
ing regression models too. Hence, Ul elements for controlling them
were introduced. The descriptive metric shown in the 2D/3D view
can be selected using a dropdown menu. The default selection is R2.
AIC displays model quality. Adjusted R? values are only available for
linear regression. Logistic regression results are represented via R?
values in this mode. As they are visually distinguished using color,
confusions are avoided. The transfer function of the color intensity
(2D) and opacity (3D) can be adapted using a slider input. This allows
to filter models with desired features, such as only very high R? values.

3D prism as data mini-map. In early prototype versions, the 3D
prism acted as starting point for the data analysis without the imple-
mentation of a separate 2D view. Slices were shown using cutaway
planes. This approach was not popular among epidemiologists, be-
cause the complexity of the visualization overwhelmed them. The
3D Regression Heat Map representation was redesigned to act as an
overview over the whole data set. It serves as a function similar to
a mini-map, guiding the attention to points of interest in the data. It
also gives context information about adjacent data values when using
the 2D heat map. The distinction between overview and details-on-
demand using two different representations was well received with our
domain experts. The displayed prism shows values above the matrix
diagonal. For formulas with a dynamic target feature (e.g. exploratory
analysis using Z ~ X +7Y), the color encodes the absolute regression
metric values (Fig. 2b). Applying this strategy to a formula containing
a static target (e.g. Cancer ~ X +Y +Z) yields many occlusions, since
the CFS algorithm creates the same feature space for every slice. For
such formulas, the 3D view encodes every data element as absolute
difference between its regression metric values and the global mean
along the z-axis. This highlights slices with unusually low or high re-
sults (Fig. 4). Variables are ordered the same way in the 2D and 3D
heat map to preserve the mental model and make them visually analo-
gous.

Tackling the disadvantages of 3D information visualization.
3D information visualizations are criticized for introducing occlusions
and interaction problems. These are often not balanced out by the ad-
vantages of using the third dimension for visual mapping. We aim to
minimize these problems. The regression metric (e.g. R*) values are
mapped on data point opacity, highlighting large values in the prism,
which guides the focus to the respective slices. The visualization is
sparse, since the majority of the regression models yield (depending on
the data set and the chosen formula) low R? values. Also, the preced-
ing correlation-based feature selection reduces the information space
significantly, leading to sparse heat maps. Overlapping is still an issue,
but greatly reduced in its effect to the visualization readability.

Transformation of the 3D heat map is restricted to the y-axis (hori-
zontal only), preserving the mental map to position individual features.
The 3D heat map is always oriented according to the 2D representa-
tion, allowing for an easy mental combination of them. Allowing more
degrees of freedom was confusing to our users and also did not add
value to the visualization.

3D heat map slice selection [3.ZF]. 1In order to Zoom, Filter
and Analyze Further, the user has to navigate to different slices of
interest. We propose two ways to achieve this.

We apply the slicing metaphor from 3D volume data. In medical
volume renderings, slicing views are common to view details on a
selected plane in the scene. We employ this technique for selecting 3D



heat map slices (e.g., by moving a plane via vertical mouse input while
pressing the right mouse button). However, we still display the whole
3D object instead of cutting away information. Early prototypes only
provided this method to select a slice of interest, which was inefficient
when the user was looking for a specific slice. Hence, an additional
method was implemented.

Selecting the slice using a dropdown menu containing the feature
names provides fast access to plane selections when the user already
knows the slices of interest. The currently selected slice is displayed
as a semi-transparent gray plane. Early prototypes rendered the whole
3D Regression Heat Map, which made it hard to assess the position
of the plane. Since the regression metrics are mirrored along the di-
agonal, the space available from visualizing only the prism generated
from the upper half of the heat map diagonal is used to display the 2D
heat map of the currently selected plane. The regression metric values
are projected on this plane to provide an overlapping-free view. This
allows for a easier to identify the current slice.

2D heat map slice visualization [4.DD]. The 2D heat map
(Fig. 2c) shows all values below the matrix diagonal of the current
slice. It creates an optical equivalence with the 3D heat map. To re-
duce visual clutter, the 2D view only shows dimensions which are re-
trieved through the correlation-based feature selection. The free space
above the matrix diagonal is used to display the 3D heat map.

The purpose of this view is the detailed assessment of the under-
lying regression models. By hovering over a data entry in the plot, a
tooltip displays detailed information about a model’s coefficients, as-
sociated p values, confidence intervals, f-statistics and AIC values. It
also contains a scatter plot of the model residuals, which shows the
difference between the observed data points with the fitted values.
Epidemiologists use such plots to validate models w.r.t. the model
assumptions, such as homogeneity, normality, and independence [25].

6 IMPLEMENTATION
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Fig. 3. The front-end (left) is realized with HTML5/CSS3/Javascript
and different Javascript libraries, such as Angular. js, Three. js and
D3.7js. The web server (right) is written using Node. js and hosted
on Heroku. R and OpenCPU constitute the statistical back-end (top) to
compute the 3D Regression Heat Maps. Additional statistical back-ends
can be attached to the system to decrease the computation time.

We rely on web-based technologies for our prototype. The front-end
is created using HTML5, CSS3 and Javascript. Angular.js
abstracts web application into models and views, allowing for a re-
sponsive way to combine HTML and Javascript. It is easily ex-
pandable by forcing developers to write modularized code. Twitter
Bootstrap handles the page layout and provides a rich set of
user interface elements. The 2D heat map is implemented using the
D3. js [6] information visualization library. It provides fast and easy
methods for binding data to graphical elements. The 3D plot is created
using the WebGL-based Three. js library.

Two server structures serve as back-end. The web server is written
in Javascript using Node. js, running on Googles V8 Javascript
runtime environment. It is hosted on Heroku, a cloud application
platform. The statistical computations are performed on the second
structure. They rely on the statistical programming language R. It is
widely adopted in the statistical analysis community, yielding a rich
support of state-of-the-art statistics algorithms as well newly published

methods. OpenCPU is an R package and provides an API for access-
ing it via HTTP calls [32]. This way, any computer which runs R can
be turned into a statistical processor for our project.

A running instance of the 3D Regression Heat Map prototype can
be found under regressionheatmap.herokuapp.com. The
source for the prototype is freely available at Github.!*2 Instructions
and code to setup running the statistical back-end through a Ubuntu
server using OpenCPU are included in the repository. The front-
end can be deployed using Heroku by cloning the repository into
a Heroku app.

7 APPLICATION

In this section, we describe the application of the 3D Regression Heat
Map to two epidemiological data sets. The hepatic steatosis data
set was analyzed using data mining algorithms, yielding risk groups,
which we now analyze further. We try to reproduce the prior results
from the analysis as proof-of-concept of our method. The female
breast density data set is the basis for an explorative analysis w.r.t. the
influencing parameters of the breast cancer-related parenchyma tissue
ratio.

Both data sets are unusual for epidemiological analysis regarding
their feature extent. Usually, only a few features depicting a hypothesis
are compiled into a data set to assess them using statistical tools. The
herein used data sets comprise several hundred features. Our method
focuses on data exploration and knowledge extraction and requires a
wide scope of sociodemographic, medical and lifestyle features.

7.1 Participants, Setup and Procedure

The knowledge discovery capabilities of a system are difficult to mea-
sure. The Visual Data Analysis and Reasoning (VDAR) technique pro-
posed by Lam et al. [24] is focused on the characterization of a sys-
tem’s ability to generate hypotheses and explore the data in order to
extract information. VDAR can be carried out based on case studies
using thinking-aloud techniques to comprehend the user’s reasoning
and thought process. We employ VDAR for analyzing our system.

Participants, setup and procedure. We conducted a web-based
analysis by using an online meeting software, which features voice
chat as well as screen sharing. Starting an analysis using these tech-
niques took about 5-10 minutes of setup time. The sessions started
with an initial overview of the system, showcasing its features and
functionality. Afterwards, the experts used the system on their own
computers. The screen-sharing function was still used to observe the
actions of the experts. All sessions were video-recorded to be pro-
cessed later on. We conducted the analysis with three participants.
KH, a clinician (10 years of experience) with focus on epidemiologi-
cal research, is the domain expert for the breast density data set. She is
aradiologist responsible for the SHIP-MRI acquisition and also for the
mammography analysis. The hepatic steatosis data set is analyzed by
UN, a data scientist responsible for prior analysis of the data. The third
participant is 71, a statistician with focus on epidemiology (8 years of
experience), who assesses the statistical reliability of the tool and the
underlying methods without a focus on a specific data set.

7.2 The Hepatic Steatosis Data Set

We employ the data set used by Niemann et al. [31] to identify pre-
dictive features w.r.t. the reversible hepatic steatosis disorder. The
dichotomous target feature is derived from the liver fat concentration
measured using MRI scans. Liver fat concentrations of no more than
10% are mapped to the ‘negative’ class; values greater than 10% are
mapped to the ‘positive’ class to indicate absence or presence of the
disease. The data set contains labels for 578 participants. The MRI
scans for each subject are only available in SHIP-2.

IR-based back-end:
github.com/paulklemm/regression-heatmap-r-package

2Front-End and Node.js Webserver:
github.com/paulklemm/regression-heatmap-prototype
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The analysis of the numerical and dichotomized target feature depicting liver fat values yields similar results (left). In (a), hotspots for

somatometrical features with high correlations were found. High correlations were also found for features depicting hepatic steatosis (b). A high
correlation between Interleukin-6, hepatic steatosis, GGT and Lipase (highlighted using arrows) was revealed during the analysis using the 2D heat
map. The hypothesis-free analysis of the breast density data set (right) w.r.t. the parenchyma tissue percentage of the breast displays correlations

between age, body fat, hip circumference as well as menstrual period.

Apart from the target feature, the data set contains 199 features
comprising sociodemographic features (e.g., gender, age), consump-
tion behavior (e.g., alcohol and tobacco), laboratory data (e.g., sera
concentrations), and two features depicting the liver ultrasound. The
acquisition wave is denoted using the appendix; 85 features with ap-
pendix sO denote their affiliation to SHIP-0 (first study moment), 50
features for s/ and 55 for 52, alongside with 10 time-independent SNPs
(DNA base pairs). Niemann et al. [31] show different class distribu-
tions of liver fat concentrations of women and men. For women, an
association between age and liver fat was identified. An appropriate
cut-off value of 52 years, which is the approximate entry age for the
menopause was set, yielding the most homogeneous class distribution
within the resulting subsets. Based on these observations, we perform
our analysis on three populations: males, females (all ages) and fe-
males older than 52 years.

7.3 The Breast Density Data Set

The breast density data set was compiled to find associations between
the parenchyma tissue proportion in the female breast compared to
other features in the data. Breast density is denoted as the ratio be-
tween parenchyma and cellular connective tissue and has been shown
to be associated with breast cancer. Studies describe a four to five
times increased risk of getting breast cancer for participants with a
breast density above 50% [27].

The data comprises 1,186 female subjects. It contains 231 features,
holding information about somatometric features (e.g., body size and
weight) consumption behavior, personal and medical history (e.g., oc-
cupation and prior diseases), women-specific features (e.g., number of
born children and contraception type) as well as mammography fea-
tures (e.g., fat content and parenchyma tissue proportion to volume).
The latter were derived from MRI data for each subject, which was
manually segmented by radiologists [17, 20].

The data of each cohort were presented as individual SPSS files.
All features related to the mammography attributes were stored in an
additional file. We converted the SPSS data sets to CSV and used
R to merge the data sets together using their ID. All features were
renamed to be self-explaining, e.g., chro_09a is now denoted as Dis-
ease_Osteoporosis. This avoids the need of defining a separate data
dictionary file for translating the feature names.

7.4 Case 1: Hypothesis-Driven Analysis of the Hepatic
Steatosis Data Set

We refer to each analysis step with regard to its belonging in the VA-
Mantra (recall Sec. 4.5). The analysis goal was reproducing results
with our visual analysis framework that are in accordance to the data
mining-based results presented by Niemann et al. [31]. Therefore, UN
started the [1.AF] step using the dichotomized MRI fat liver concen-
tration and the formula mrt_liverfat_s2 ~ X +Y + Z for male sub-
jects. The [2.SI] step using the 3D heat map locates hotspots at the
end of the heat map (Fig. 4 left). The Zoom, Filter and Analyze Fur-
ther Step [3.ZF] was realized by slicing through the 3D heat map using
the mouse input to inspect the hotspots. Analyzing the 2D heat map
[4.DD] revealed high correlations for somatometric features, hepatic
steatosis indicator features as well as laboratory values, such as crea-
tinine (used as renal retention parameter) and uric acid (used as gout
and diabetes risk factors) magnitudes. Similar results were present
for analyzing the female groups. UN could reproduce most results.
Some features exhibit lower correlations, e.g., creatinine magnitudes.
A slight influence of age on the target feature could be observed for
women (R2 of 0.09 for females compared to 0.02 for males). Rela-
tionships not described by Niemann et al. [31] were found, such as en-
zymes indicating liver dysfunctions, e.g., aspartate aminotransferase.
Due to the difference between our regression model approach and the
decision tree approach presented by Niemann et al. [31], a complete
matching set of correlating features is not expected.

Analysis of non-discretized target feature. Since our method
can assess numerical target features, the analysis was conducted again
for the non-dichotomized target using the same formula. The 3D heat
map showed lower R? values in general. However, the analysis is now
based on linear regression and the R? values cannot be compared di-
rectly. The correlation hotspots matched with the ones from the di-
chotomous target, but were generally lower (R* of 0.37 for somato-
metric features as opposed to 0.58). We assume that the bias intro-
duced by dichotomizing the fat liver content enforces the findings of
liver diseases, while using the numerical features is less expressive.

Interleukin-6 correlation with liver fat. During the analysis, one
hotspot was always observable in the [2.SI] and [3.ZF] steps, incor-
porating a high Interleukin-6 (IL-6) correlation with liver fat values
(R? of 0.8, see Fig. 4b). The correlation was high for both the di-
chotomized and continuous target feature. The literature described
relations between IL-6 and liver cancer [16] as well as chronic liver



diseases [37]. For mice, strong effects of /L-6 with hepatic steatosis
were described [18]. The finding is subject to further analysis.

7.5 Case 2: Hypothesis-free Analysis of the Breast Den-
sity Data Set

The analysis aims to find relationships on the breast density data us-
ing mammography analysis features. Relationships between the share
of parenchyma tissue on the overall breast volume are of high inter-
est [27]. The [1.AF] was started by KH using the default formula
for hypothesis-free analysis (Z ~ X +Y). At first, she was inter-
ested in correlations with the parenchyma tissue percentage, which
was selected through the drop-down for the z-axis [2.SI]. She ob-
served strong correlations with age, body fat percentage, hip and waist
circumference as well as menstrual period or pregnancy status as ex-
pected (Fig. 4 right). Women with higher body fat also have a larger
breast density percentage, which also correlates with other somato-
metric features. Age is a strong influencing factor, as breast tissue
and subsequently the parenchyma tissue degrades over time. KH pro-
ceeded using [3.ZF] and [4.DD] to check for relationships for dif-
ferent target features, such as current hormone replacement therapy,
BI-RADS (classification of the mammography findings) as well as dif-
ferent diseases, such as diabetes or gout. She observed relationships
matching her expectations and expert knowledge. One unexpected re-
lationship was observed between breast lesions and menstruation cy-
cle w.rt. spiral contraception (R* of 0.77). KH proceeded with a
detailed analysis of the parenchyma tissue.

Detailed breast parenchyma analysis. The analysis was con-
ducted by calculating the formula Parenchyma_Percentage ~ X +Y +
Z [1.AF]. Using the 3D heat map, KH observed several hotspots
[2.SI]. Navigating to them using the slicing facility of the 3D visu-
alization [3.ZF] highlighted features of high influence, such as image-
derived features, as glandular tissue density and parenchyma segmen-
tation metrics. Also, strong correlations were observed in the diabetes
slice, confirming expectations of KH w.r.t. its strong influence on the
parenchyma tissue. A surprising finding was the strong correlation
with kidney disorder (R2 values around 0.9). The [4.DD] analysis,
however, showed only 8 subjects with this disease. Too few subjects
impose the risk of a biased finding. The correlation was noted and will
be further investigated using an extensive data set. Lastly, KH assessed
the influence of contraception-related features, such as the use of birth
control pills or the spiral, but found no significant correlations with the
parenchyma tissue. Other consumption behavior features, such as al-
cohol intake also yield no elevated R? values. KH remarked that these
features are suspected to have an impact on the parenchyma tissue, but
they are less reliable, since they are self-reported.

7.6 Further Feedback and Lessons Learned

The presented method was well received among the domain experts.
For the first time, they were able to derive an overview visualiza-
tion custom-tailored to underlying assumptions. KH noted the ease of
use, which “converts data sets into a feasible form”. She highlighted
the efficiency of combining fast target feature selection with visually
highlighting interesting results, enabling rapid analysis cycles. To get
nearly similar results, she had to spend hours using SPSS and poten-
tially missed interesting hotspots during this process. 77 highlighted
the ability to simultaneously analyze thousands of regression models
while maintaining little time expenses for rating them.

Extracted hypotheses have to be investigated further. We
map results of complex statistical computations into comprehensive
visualizations. Agreeing with 7TI’s feedback, each finding and hy-
pothesis has to be confirmed using a dedicated statistical analysis.
An accompanying search for correlations potentially highlighting con-
founders can be carried out using our method. Statistical validation of
an epidemiological result still has to be carried out by statisticians us-
ing their respective tools. 7/ commented on the possibility of adding
more regression types to model different correlation types.

Overview visualizations are preferred over black-box meth-
ods. Explorative analysis based on the data gains importance in
epidemiology with increasing data set complexity. Results from au-
tomatic ‘black-box’ methods, such as data mining algorithms, are
more often obscure to the expert. Findings and hypotheses derived
through overview visualizations, however, are met with more confi-
dence, because the users actually observed the behavior themselves.
The participation and steering of the analysis using human pattern de-
tection and expert knowledge is preferred. Observing expected corre-
lations matching the expert knowledge strengthens the confidence in
the method and, subsequently, in the hypotheses generated from unan-
ticipated relationships.

Using non-discretized features reduces information bias.
Discretization reduces the information space and introduces bias into
the data and is therefore avoided in epidemiological research when-
ever possible. In contrast to many data mining algorithms, our method
allows to use the concurrent analysis of heterogeneous data types. In-
vestigations of the hepatic steatosis data set with both numerical and
dichotomized liver fat values showed comparable results. The overall
explanatory power on the numerical feature was lower, supporting the
hypothesis that the dichotomized target feature already models knowl-
edge to bias the data w.r.t. the expected result.

Attention steering is crucial. Important events have to be high-
lighted in overview visualizations to direct the user’s attention to inter-
esting parts of the data. Poor guidance potentially leads to overlooked
relationships. We found the 3D heat map as supporting mini-map vi-
sualizations most useful for this purpose, e.g., for highlighting differ-
ences rather than displaying absolute values (Fig. 4).

8 SUMMARY AND OUTLOOK

We presented a technique for knowledge discovery in population
study data sets with user-defined target features. Dimension reduc-
tion using the target restricts the analysis to the most important fea-
tures. Hypothesis-free analysis employs default regression models.
Modeling expert knowledge using regression formulas allows for a
hypothesis-based investigation. A 3D Regression Heat Map allows to
assess hotspots in the analysis by abstracting regression models using
a quality-of-fit measure. These can then be analyzed further using the
2D plot for each 3D heat map slice. Details-on-demand for each model
allow for a detailed assessment of regression models. We successfully
applied the approach to find correlations in a hepatic steatosis as well
as a breast density data set. The method was well received by our
clinical partners, triggering detailed investigations of the findings.

The analysis is limited to three dynamic variables representing the
3D Regression Heat Map dimensions. Investigating more dynamic
variables can be achieved by projecting the high-dimensional space
into a three-dimensional representation. This, however, increases the
cognitive load and complexity of the analysis substantially and needs
to be accompanied by techniques that simplify this approach. Static
features can be added using the formula input without increasing the
complexity of the visualization.

As a next step, we want to introduce more regression types, which
model different kinds of correlations. We also want to extend the 3D
heat map to time-dependent data by expanding the difference heat map
approach. We published all associated code and provide a freely ac-
cessible analysis platform open to heterogenous data types. We want
to support opening up knowledge discovery to allow a diverse group
of domain experts to derive insight into their data.
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