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Abstract Purpose: 4D PC-MRI enables the non-invasive
measurement of time-resolved, three-dimensional blood
flow data that allow quantification of the hemodynamics.
Stroke volumes are essential to assess the cardiac function
and evolution of different cardiovascular diseases. The cal-
culation depends on the wall position and vessel orientation,
which both change during the cardiac cycle due to the heart
muscle contraction and the pumped blood. However, cur-
rent systems for the quantitative 4D PC-MRI data analysis
neglect the dynamic character and instead employ a static
3D vessel approximation. We quantify differences between
stroke volumes in the aorta obtained with and without con-
sideration of its dynamics.

Methods: We describe a method that uses the approxi-
mating 3D segmentation to automatically initialize segmen-
tation algorithms that require regions inside and outside the
vessel for each temporal position. This enables the use of
graph cuts to obtain 4D segmentations, extract vessel sur-
faces including centerlines for each temporal position and
derive motion information. The stroke volume quantifica-
tion is compared using measuring planes in static (3D) ves-
sels, planes with fixed angulation inside dynamic vessels
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(this corresponds to the common 2D PC-MRI) and moving
planes inside dynamic vessels.

Results: Seven datasets with different pathologies such
as aneurysms and coarctations were evaluated in close
collaboration with radiologists. Compared to the experts’
manual stroke volume estimations, motion-aware quantifi-
cation performs, on average, 1.57% better than calcula-
tions without motion consideration. The mean difference be-
tween stroke volumes obtained with the different methods is
7.82%. Automatically obtained 4D segmentations overlap
by 85.75% with manually generated ones.

Conclusions: Incorporating motion information in the
stroke volume quantification yields slight but not statisti-
cally significant improvements. The presented method is
feasible for the clinical routine, since computation times are
low and essential parts run fully automatically. The 4D seg-
mentations can be used for other algorithms as well. The
simultaneous visualization and quantification may support
the understanding and interpretation of cardiac blood flow.

Keywords 4D PC-MRI - CMR - Stroke Volume - Motion -
Quantification - 4D Segmentation - Graph Cut

1 Introduction

Four-dimensional phase-contrast magnetic resonance imag-
ing (4D PC-MRI) gained increasing importance in the last
decade. It is a non-invasive image modality that allows qual-
itative and quantitative investigation of intravascular hemo-
dynamics. Stroke volumes — the amount of pumped blood
per heartbeat — help to assess the cardiac function and moni-
tor progression of diseases such as bicuspid aortic valves and
heart insufficiencies. Static 3D approximations of the dy-
namic vessel wall are widely used to calculate this measure.
There is a trade-off between easier, faster preprocessing
and accurate information about the heart’s cyclic movement.
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Techniques with an enhanced level of automation could
overcome this issue by speeding up data processing. How-
ever, the accurate definition of intravascular hemodynamics
requires the determination of the time-dependent wall posi-
tion, wall orientation and vessel diameter. Approaches that
neglect these components are error-prone.

The segmentation of time-varying cardiac image data was
aimed at by several research groups. Algorithms such as
graph cuts only require the specification of areas inside and
outside the target structure, which is convenient for physi-
cians since it exploits their anatomical expert knowledge.
Based on heuristics that were derived from discussions with
collaborating radiologists, we automatically initialize a 3D
graph cut for each temporal position of the dataset and ob-
tain a time-dependent binary mask of the aorta. A mesh
model is described that contains motion information as vec-
torial displacement list per vertex. Displacement vectors are
projections from a static vessel surface approximation onto
the meshes of each time step. The latter were extracted from
the 4D segmentation. This facilitates postprocessing of the
movement information. We incorporate the vessel dynamics
in a motion-aware stroke volume quantification and investi-
gate the reliability of the conventional quantification using
static vessels by examining deviations.

Section 2 describes related work w.r.t. qualitative and
quantitative 4D PC-MRI data analysis and time-dependent
cardiac segmentation approaches. Section 3 continues with
details about selected cardiac diseases, data acquisition and
preprocessing. The 4D segmentation, motion extraction and
the adjusted stroke volume quantification are described in
Section 4. Section 5 examines differences to static vessel
quantification using various patient and healthy volunteer
datasets. Our work is summarized in Section 6.

2 Related Work

4D PC-MRI: Stankovic et al. [31] provide basic information
about 4D PC-MRI. It has the potential to become the lead-
ing image modality to assess cardiac hemodynamics since it
allows a more flexible data analysis than its 2D counterpart.
Calkoen et al. give an overview of recent applications [6].

Visual Analysis of 4D PC-MRI Data: The high complex-
ity of the dynamic 3D flow data leads to heavy visual clut-
ter. Various exploration approaches and expressive visual-
izations were introduced that facilitate better insight. Exam-
ples are speed lines by van Pelt et al. [25], further illustrative
techniques by Born et al. [4] and the FlowLens [12] as well
as ghosted viewing of the vessel front by Gasteiger et al.
[13]. Preim et al. [28] describe methods tailored for the vi-
sual exploration of simulated and measured blood flow data.
Line predicates are a threshold-based filtering technique for
integral lines such as pathlines, which are commonly used
to visualize blood flow. Line predicates were used by Born

et al. [5] and Kohler et al. [18] to extract qualitative flow
features such as vortices. Carnecky et al. [7] provide a spe-
cial flow data preprocessing to improve noise robustness of
the employed A, vortex criterion. Hennemuth et al. [14] de-
scribe a pipeline for interactive 4D PC-MRI data processing
and exploration.

Quantification in 4D PC-MRI Data: The quantification
of stroke volumes allows an assessment of the cardiac func-
tion. Hope et al. [15] give an overview of further impor-
tant measures such as pulse wave velocities. Van Ooij et al.
[24] and Potters et al. [27] describe a method to determine
vectorial wall shear stress, which is associated with vessel
dilation, in measured data. The comparison with compu-
tational fluid dynamics (CFD) simulations showed a good
correspondence of wall shear stress directions and peak lo-
cation. Yet, absolute values are error-prone due to low spa-
tial resolutions and high sensitivity to the exact wall posi-
tion. Roldan-Alzate et al. [29] investigated thromboembolic
pulmonary hypertension in a canine model. Francois et al.
[11] found significant alterations in the pulmonary artery
and right ventricle of tetralogy of Fallot patients.

4D Heart Segmentation and Visualization: Graph cuts
were used to obtain spatio-temporal segmentations of the
heart [8,20,21]. Other groups used level sets [37] or de-
formable models [1] for this purpose. GPU-accelerated
time-varying direct volume rendering was used to display
measured anatomical data [33,36]. Cine MRI is another
common technique where a series of slice images through-
out the cardiac cycle is acquired, which are then presented
as movie.

3 Medical Background

4D PC-MRI data represent the blood flow dynamics
throughout the cardiac cycle. During systole, oxygenated
blood from the left ventricle is pumped through the aortic
valve into the aorta (systemic circulation). Deoxygenated
blood is pumped from the right ventricle through the pul-
monary valve into the pulmonary artery (pulmonary circula-
tion). During diastole, the valves are closed to prevent blood
from flowing back.

3.1 Cardiovascular Vortex Flow

Flow in the great vessels is typically laminar with the highest
velocities in the center. In the following, we explain selected
valvular and vascular pathologies that promote the forma-
tion of vortex flow. Kohler et al. [19] pointed out the high
susceptibility of stroke volume quantification to such com-
plex flow patterns.

Vascular Diameter Alterations: Slight dilations up to
1.5x the original vessel diameter are called ectasia, above
they are referred to as aneurysm. In contrast, stenosis /
coarctation defines an abnormal narrowing. The altered ves-
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Fig. 1: (a) Anatomical images from averaged signal intensities, magnitude (undirected flow strength) and phase images
(flow direction and strength) from a 4D PC-MRI sequence. (b) Artifact correction, temporal maximum intensity projection
(TMIP) of the magnitude images, static vessel segmentation, initial surface reconstruction and centerline extraction, full flow
integration and vortex extraction. (¢) 4D segmentation and motion extraction. (d) Motion-aware stroke volume quantification
and assessment of differences to results calculated in static vessels and using a 2D PC-MRI simulation.

sel shape promotes the formation of vortex flow in both
cases.

Valve Pathologies: Stenotic valves are abnormally nar-
rowed. Insufficient valves do not close properly and cause
an abnormal amount of diastolic back flow that negatively
affects the cardiac function. If the aortic valve (AV) consists
of only two instead of three leaflets, it is called a bicuspidal-
ity (BAV) — a setting that often leads to systolic vortex flow
in the ascending aorta [16]. Valve replacements are invasive
and should be performed only when a positive benefit-risk
ratio is likely.

Tetralogy of Fallot: This congenital pathology is char-
acterized by an infundibular and / or stenotic pulmonary
valve and a ventricular septal defect. After correction of
both within months after birth, Fallot patients are highly vul-
nerable to developing a pulmonary insufficiency.

3.2 Data Acquisition and Preprocessing

A 3 T Magnetom Verio (Siemens Healthcare, Erlangen, Ger-
many) with a dedicated 32-channel cardiac coil was used for
data acquisition. A 4D PC-MRI dataset consists of seven im-
ages. Three phase (also: gradient, velocity) images describe
the flow direction and strength for each patient-oriented xyz
dimension. Three magnitude images describe the undirected
flow strength and are less prone to uncorrelated noise. One
anatomy image is reconstructed from averaged signal inten-
sities. Each image has the same spatio-temporal resolution.
The imaging parameters were as follows: slice thickness 3.5
mm, flip angle 15°, field of view 340 mm, echo time 3.2
ms, repetition time 6.1 ms, temporal resolution 49 ms, sam-

pling bandwidth 491 Hz/pixel, reconstructed phases 10-20,
one acquisition. The maximum expected velocity (Vgnc)
was set to 1.5 m/s per dimension. A sagittal oblique 3D
slab was positioned to include the aorta. Heart and wall mo-
tion artifacts were minimized using prospective ECG gating.
The spatial in-plane resolution is 1.77 mmx1.77 mm in a
132x192 grid with 15-23 slices. Isotropic resolution was not
used, since it would have lengthened the already 20 min long
acquisitions. The same yields for respiratory control. Eddy
current (also: velocity offset) correction [34] and phase un-
wrapping [9] were applied to the phase images. Figure 1
depicts the pipeline.

Static Vessel Segmentation: A temporal maximum in-
tensity projection (TMIP) of the magnitude images yields
a high contrast 3D image [25]. Regions with high veloc-
ity magnitudes in at least one time point are emphasized.
Since flow in the aorta is fast, it is clearly visible in the
TMIP image. A graph cut with a 26-neighborhood per
voxel (GridCut) is employed to obtain a segmentation of
the aorta as static approximation. Edge weights are set to
exp(—a-||VI||?). Gradients in the TMIP with [0, 1]-scaled
intensities / are calculated via finite differences. The higher
the tolerance parameter « is, the larger the segmented region
becomes. o = 1000 is used as an experimentally determined
default value. Depending on the TMIP quality, the user has
to specify fewer or more regions inside and outside the ves-
sel as graph cut input. For noise reduction, 3x3x3 morpho-
logical closing and opening is applied to the resulting 3D
segmentation.
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Initial Surface Reconstruction: Marching cubes is em-
ployed to extract a triangular vessel surface from the seg-
mentation. The aorta’s surface is not complex and wall mo-
tion is mainly pulsatile. Thus, few triangles are sufficient
to represent its shape. To minimize discontinuities in of the
surface, the mesh is smoothed using a low-pass filter [32]
(50 iterations, passband = 0.1) that is suitable for medical
surface models [3] and reduced via quadric decimation [17]
(topology preserving, target reduction = 0.8). The param-
eters are experimentally determined default values. After-
wards, the centerlines are extracted [2,26]. In our datasets,
they produced 2771 triangles on average with a mean area
of 10.43 + 0.27 mm?. This corresponds to approximately
4.9 mm edge length in equilateral triangles. For comparison,
a voxel diagonal is 4.3 mm long.

Flow Calculation: The GPU is utilized to integrate the
full set of pathlines [10] and to derive the A,-criterion that
is required for the line predicate-based vortex extraction
[18]. Velocity vectors u € R3 in the 4D flow field V at the
spatio-temporal position X = (x,y,z,t)T are obtained using
quadrilinear interpolation. The temporally adjacent vectors
u = V(x,z|t]) and ur = V(x,y,z,[]), both obtained
via hardware-accelerated trilinear interpolation, are used to
perform a last linear interpolation manually. Pathline visu-
alization is enhanced with illuminated streamlines and halos
[22] to improve spatial and depth perception. Particles with
trails are shown during animation. A ghosted viewing [13]
shows parts of the cut away vessel front.

4 Motion Extraction and Adjusted Stroke Volume
Quantification

In the following, we describe the 4D segmentation of the
aorta and the steps to obtain and postprocess movement in-
formation. After the adjustment of centerlines and measur-
ing planes, the stroke volume quantification is adapted.

4.1 Stroke Volume Quantification in Static (3D) Vessels

The stroke volume (SV) is the amount of blood that passes a
measuring plane over the aortic valve orthogonally during a
heartbeat. This requires the time-dependent flow rate fr(z).
For a measuring plane P it is obtained as:

g1 &1

fr)=scsym Y Y S3(P(xy)-V(P(xy),1)

x=0 y=0

with  S3(P(x,y)) = {

1, P(x,y) inside vessel
(x,) 0

0, else

and P (x,y) =c+sy- (x—%) Nyt Sy - (y—%) ‘ny

Based on [19], a measuring plane is characterized by a grid
size g = (gx,gy) With 50 x 50 as default, a center position
¢ € R?, a normal vector n € R? that describes the plane’s
orientation, a scale s = (sy, s, per grid element and two vec-

(b)
Fig. 2: Mask of an aorta’s cross-section obtained from ras-

terization of (a) the 3D vessel segmentation and (b) the ex-
tracted corresponding triangular surface.

tors ny, n, that form a local orthonormal system with n. The
scale is determined so that the plane fits the diameter of the
corresponding vessel section. P (x,y) € R? is a grid position
transformed to world coordinates. The product s, - s, is the
area per grid element. V(P (x,y),f) are velocity vectors in
the flow field V, which is given by the phase images from
the 4D PC-MRI dataset. The SV results as integral of the
periodic flow rate fr(r).

S3(P(x,y)) describes the check whether or not a posi-
tion is inside the vessel. When applied to each grid element
of the measuring plane, it yields a 2D segmentation of the
cross-section. The segmentation’s resolution is given by the
plane’s grid size g. S3(P(x,y)) can be realized using the
voxel-based 3D segmentation, which is rather coarse com-
pared to the resolution of the plane’s grid elements. How-
ever, it facilitates usage of the GPU, since it can be employed
as 3D texture. A smoother result can be obtained by raster-
izing the 3D mesh, as depicted in Figure 2. This is what we
use for this work.

4.2 Four-Dimensional Vessel Segmentation

Performing a manual vessel segmentation in every tempo-
ral position is too time-consuming for the clinical routine.
Therefore, we automatically determine regions inside and
outside the aorta for each time step based on the 3D seg-
mentation and employ this to initialize graph cuts. Other
segmentation algorithms that require the same kind of in-
put are also suitable. We perform one 3D graph cut for each
time step in the 4D anatomical image.

(b) © (d) (®

Fig. 3: Extraction procedure for each temporal position. (a)
Automatic specification of regions inside (green) and out-
side the aorta (red) as graph cut initialization. (b) Resulting
3D segmentation. (c) Postprocessed segmentation. (d) Ex-
tracted triangular surface. (e) Postprocessed vessel mesh.
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The 3D segmentation, based on the magnitude images’
TMIP, represents blood-filled vessels during systole and
therefore the maximum extent — like an upper boundary.
Thus, we assume that voxels outside this segmentation are
also outside the segmentation of each temporal position. A
safety margin is incorporated to consider inaccuracies. We
subtract a kernel size 5 from a kernel size 8 dilated segmen-
tation to obtain a dilated vessel hull. This is about 1-2 cm
away from the vessel surface for the data’s spatial resolution
of 1.77x1.77x3.5 mm>. We observed that a smaller mar-
gin does not improve the results of the employed graph cut.
Based on discussions with radiologists, a second assumption
is made that the vessel diameter does not shrink more than
50% during diastole. Hence, all voxels are specified as in-
side the vessel that are closer to the centerline than to the
wall. The same initialization is used for all time steps and
graph cuts are performed separately for each of them.

Image quality, in particular the signal-to-noise ratio, de-
pends on the acquisition time. In patients with severe heart
diseases, acquisitions need to be performed in limited time
with a quality that is just sufficient for diagnosis. As a con-
sequence, the graph cut tolerance parameter ¢ is increased
by a factor of ten. The resulting segmentations for each tem-
poral position are postprocessed in the same manner as de-
scribed in Section 3.2. The same applies to the extraction
and postprocessing of the polygonal 3D meshes. Figure 3
depicts the process.

4.3 Dynamic (4D) Vessels

Displacement Vectors: We aim at extracting motion infor-
mation that can be postprocessed in order to reduce noise.
Until now, we obtained independent 3D meshes M, for each
of the T temporal positions t = 0...7-1 in the dataset. Un-
fortunately, the meshes may differ in their number of ver-
tices and topology. Thus, a vertex’ time-dependent posi-
tion V?Spl cannot be derived implicitly. For the association
of points on the surfaces with each other, a correspondence
problem has to be solved.

A 4D mesh model requires a certain flexibility to capture
pathologic vessel morphologies. We employ a 3D triangular
surface mesh M with a constant topology as basis. It is the
one extracted from the 3D segmentation that was performed
on the magnitude images’ TMIP. Every vertex v € M stores

Fig. 4: The projection v:*"' of a base mesh vertex v (red)
onto the one-ring neighborhood of the closest vertex q; in
the mesh M; (green) of a temporal position ¢ is determined

pl

to obtain the displacement vector d; (blue) as st —V.

cnofsing

temporal ¢k

(®)

Fig. 5: (a) Displacement postprocessing. The spatial
smoothing (orange) is a low-pass filter applied to the dis-
placements {d},d;"} of the one-ring neighborhood v; of the
mesh vertex v in each temporal position # = 0...7-1. The
temporal denoising (green) smoothes the displacement list
d} of v. (b) Displacement vectors (white lines) of one tem-
poral position without (left) and with (right) noise reduction.
The surface is colored according to the displacements.

a list of T 3D vectors d;, in the following referred to as dis-
placement vectors. A vertex’ position V?Spl attime ¢ is v+d;,.

Displacements V?Spl are calculated as closest projection
of a vertex v € M onto M,. To do so, the nearest vertex q; €
M; to v is determined. Then, v is projected onto each plane
spanned by the triangles that q, is part of. If a projection
lies outside a triangle, the closest projection onto one of the
triangle’s edges is used as result. The displacement vector d,

dspl .
results as v, © — v, see Figure 4.

Displacement Postprocessing: For noise reduction of the
displacement vector lists, two postprocessing steps are ap-
plied, as depicted in Figure 5:

e The aligns displacement vectors in a
vertex’ one-ring neighborhood in each temporal position
separately. The same low-pass filter [32] as for the mesh
smoothing is used for this purpose.

e The temporal denoising smoothes the displacement list
of each vertex, i.e., the displacements along the tempo-
ral dimension. It is realized by fitting a cubic penalized
regression spline (AlgLib).

Motion Visualization: A real-time capable visualization
of the 4D mesh can be obtained using the GPU, or more pre-
cisely the OpenGL shader pipeline. Each vertex is uploaded


http://www.alglib.net/interpolation/leastsquares.php#header12
http://www.alglib.net/interpolation/leastsquares.php#header12
http://www.alglib.net/
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Fig. 6: Cardiac motion visualization. The left ventricle con-
tracts during systole (left) to pump blood into the aorta, re-
sulting in a slightly increased vessel diameter. In the mean-
time (right), the left atrium fills and then supplies the left
ventricle with new oxygenated blood during diastole.

to the GPU with its position, normal and an index to access
additional information, which are a list of all triangles, the
triangle count per vertex, the corresponding triangle indices,
and the displacement list per vertex. A displaced vertex po-
sition v?*? at 7 € R is calculated as linear interpolation be-
tween v(fffl and v?:]p '

A dataset has about 15 temporal positions. Thus, there are
15 displacement vectors in the list. Linear interpolation of
these few samples would not lead to a fluent motion visual-
ization. Therefore, ten times as much displacement vectors
are resampled from the spline during the temporal denois-
ing. Figure 6 shows a result of the motion visualization.

4.4 Motion-Aware Stroke Volume Quantification

Dynamic Centerlines: The employed Vascular Modeling
ToolKit (VMTK) [26] for the centerline extraction [2] re-
quires the specification of a start and an end point on the
vessel’s surface as input. The user provides these points for
the static vessel mesh M to extract the corresponding center-
line C. To initialize the extractions of the centerlines C; for
the meshes M; of each temporal position, the closest points
on M; to the start and end point of C are determined. At this
point, M; does not refer to the independent 3D meshes for
each time step (Figure 3e). Instead, M; is obtained using the
postprocessed displacement vectors (Figure 5b, 6).

The dynamic centerline’s motion is modeled, obtained,
postprocessed and visualized in the same way as the 4D ves-
sel mesh. Solely the projections are performed onto line seg-
ments instead of triangles.

Moving Measuring Planes: Measuring planes, orthogo-
nal to the centerline and freely movable along it, are a stan-
dard to quantify SVs. To ensure that a plane remains per-
pendicular to the moving centerline C; and fits the vessel at

Fig. 7: Binary mask of the ascending aorta’s cross-section
for two of 15 temporal positions of the dataset obtained by
rasterization of (a) the 4D segmentation, (b) the independent
3D meshes for each time step, (c) the 4D mesh with postpro-
cessed motion information.

every temporal position M;, the plane’s center, normal and
scale are modified to a list of size 7' — analogous to the dis-
placement lists. The centers are derived from the centerline
positions and the normals from the tangents. The scales are
determined so that the plane fits the diameter of the corre-
sponding vessel section in M;. Figure 8a shows a measuring
plane that fits the vessel at any time and follows the moving
centerline, i.e., stays orthogonal.

Stroke Volumes in Dynamic (4D) Vessels: The incorpora-
tion of motion into the SV quantification requires an adap-
tion of Equation 1. The check S3, whether or not a position is
inside the vessel, becomes a dynamic counterpart S4. In ad-
dition, planes have a list of T orthonormal systems (n’, n;,
n)), scales s’ = (s, s;) and center positions ¢/, r =0...T-1.
The grid size g remains constant. Following this, the flow
rate calculation fr(r) and transformation to world coordi-

nates P (x,y, ) have to be adjusted to:

gx=1 &y-1

fr(t) :s;~s;~nt~ Z Z Sy (P(xvyvt)at)'V(P(xayat)’t)

x=0 y=0

1, P(x,y,t) inside vessel

with  S4 (P (x,y,7),t) = { )

0, else

ad Plrpt) =+ (=) s (- F) om

Analogous to the static version, S4 (P (x,y,t),t) is realized
with the dynamic triangular surface, see Figure 7.

5 Results

In this section, we present a validation of the 4D segmenta-
tions, an overview of the seven datasets and a discussion. In
the implementation, the user is allowed to manually refine
the 4D segmentations if desired. However, solely the auto-
matically specified input as described in Section 4 was used
for this evaluation. The 4D segmentation including the mo-
tion extraction were performed in less than 15 seconds per
case on an Intel i7-3930K. The stroke volume (SV) quan-
tifications run in interactive speed. All presented images of
vessels and flow were directly captured from our software,
which is used for research purposes by the clinical collabo-
rators. Plots were created with MATLAB.


http://www.vmtk.org/
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Fig. 8: (a) A measuring plane inside the ascending aorta follows the vessel movement during the cardiac cycle by changing
its size and orientation. (b) Equidistant measuring planes in the ascending aorta between the approximate coronary arteries’

location and the brachiocephalic artery.

The first vessels that branch off the aorta are the coro-
nary arteries (CAs) directly behind the valve. They receive
about 5% of the SV. The next branching vessel is the bra-
chiocephalic artery (BA) in the aortic arch. In order to have
a larger range of sample positions to compare the static and
motion-aware quantification, we use the constant net flow
volume in the ascending aorta after the CAs and before the
BA as SV. Figure 8b depicts the evaluated planes in 1 mm
steps on the centerline.

5.1 Accuracy of 4D Segmentations

For one dataset (see Figure 8b and 10b), we generated ves-
sel segmentations for all 43 equidistant planes in the ascend-
ing aorta manually by drawing contours. Randomly selected
samples were validated by the collaborating experts. On the
one hand, we performed this on the TMIP of the magni-
tude images and compared it to the rasterization of the static
(3D) vessel surface (”Static”’). On the other hand, this was
done in the anatomical images for each of the 18 tempo-
ral positions and compared to the rasterized independent 3D
meshes for each temporal position (”Dyn. (indep.)”) as well
as the rasterized dynamic vessel with postprocessed motion
information ("Dynamic”). Planes were always perpendicular

H Static ‘ Dyn. (indep.) ‘ Dynamic
(A=M) /M (%) —-10.64 -4.36 2.44
( )/ ( ) (%) 86.35 85.23 86.27
(AAM) /( ) (%) 13.65 14.77 13.73

Table 1: See Figure 9 for a depiction of the areas.

0.0
(a) (b)

ADM (o) \
——

Fig. 9: Cross-section areas that were used to compare the
automatic (A) with the manual (M) segmentations.

to the vessel’s centerline. Each value in Table 1 is an aver-
age of all planes. The manual and automatic segmentations
overlap by 85.95 £0.62%. Cross-sections derived from the
static mesh are 10.64% smaller than the manual segmenta-
tions. This is the main cause for the 13.65% difference. In
the dynamic variant, these sizes differ less. Consequently,
large parts of the about 14% discrepancy are caused by the
positioning. The 4D mesh with postprocessed motion infor-
mation directly depends on the independent 3D meshes of
each temporal position. Thus, the results of both are similar.

5.2 Cases

The constant SV between the coronary arteries’ location and
the brachiocephalic artery was estimated by the collaborat-
ing experts for each case and used as a reference. For this
purpose, they were allowed to freely move and rotate a mea-
suring plane, obtain multiple SV samples and then estimate
a result. In our experiments, the SV was calculated in three
different variants ”’S”, ”D” and D2

e S uses the rasterized 3D vessel surface (Figure 2b) that
was extracted from the segmentation which is based on
the magnitude images’ TMIP (recall Equation 1).

e D employs the rasterized dynamic (4D) surface with
postprocessed motion information from our proposed
method (Figures 6, 7c; recall Equation 2).

e D2 is a simulation of the common 2D PC-MRI. Here,
planes are fix (constant angulation, size, center) per cen-
terline position, but the segmentation is time-dependent.
The 4D segmentation of the cross-sections is derived
from rasterization of the 4D mesh (same as in D).

For each variant, the mean of the absolute deviation
©E(sp,p2} per centerline position from the reference was
calculated. The plots in Figure 10 show the reference in red,
Sin blue, D in green and D2 in orange. The x-axis shows the
centerline positions in 1 mm steps, starting from the approx-
imate coronary arteries’ location on the left. D performed,
on average, 1.57% better than S and D2. The improvements
ranged from —1.0% to 4.12%. D was best in four cases, S in
two and D2 in one.
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Fig. 10: Dataset overview with internal vortex flow. The arrows mark present pathologies. The diagrams show stroke volumes
obtained with the static (S, blue) and dynamic approach (D, green) as well as the 2D PC-MRI simulation (D2, orange). A
reference (red), which is constant in the ascending aorta, was estimated by the collaborating experts. E(s p po) is the average
percentaged absolute deviation per centerline point of the corresponding method from the reference. (a) Patient with systolic
vortex flow in the ectatic ascending aorta. (b) The ectatic ascending aorta of this patient causes systolic vortex flow. (c)
A systolic helix in the ascending aorta and aortic arch is promoted by the altered vessel shape of this bypass patient. (d)
Systolic vortex flow in the ascending aorta of this patient with an aneurysm and coarctation. (e) Vortex flow after the aortic
arch that is present during the whole cardiac cycle. A small systolic vortex in the ascending aorta is a result of the special
opening characteristics of the patient’s bicuspid aortic valve. (f, g) Physiological helix in the aortic arch during systole in this

tetralogy of Fallot patient (f) and healthy volunteer (g).

Ectasia 1: The first patient has a pathologically dilated
ascending aorta. Figure 10a shows emerging vortex flow
during systole. All SV quantifications are most error-prone
in the first half of the examined vessel section, where the
vortex is most prominent. The 2D PC-MRI simulation D2
performs marginally better than S and D with @Ep; =
25.65%.

Ectasia 2: In addition to an ectatic ascending aorta, the
second patient has an improperly closing aortic valve which
causes an abnormal amount of blood swirling back into the
left ventricle during diastole. Figure 10b shows the systolic
vortex flow. The diagram depicts the 2.96% improvement
of D compared to S. Like in the previous patient, the heavy
vortex flow causes high quantification uncertainties in the
first half of the examined vessel section.

Bypass: Extraanatomic bypass surgery was performed in
this patient due to a severe coarctation. The motion extrac-
tion shows plausible results: there is a strong movement in
the aortic root, no noticeable contraction in the vascular re-
placement and then again a pulsating wall motion. The al-

tered vessel shape promotes systolic vortex flow in the as-
cending aorta, shown in Figure 10c. Dynamic quantification
(D) is, on average, 4.12% closer to the reference SV than S.

Aneurysm and Coarctation (AneuCo): This patient has
an aneurysm in the ascending aorta and a coarctation. As
illustrated in Figure 8a, there is a heavy movement in the as-
cending aorta that causes a high variation of the plane angu-
lation. § performs slightly better (0.93%) than the dynamic
counterparts, shown in Figure 10d. However, the SV quan-
tification seems to be uncertain due to the present vortex
flow.

Aneurysm and BAV (AneuBAV): High velocity blood flow
passes this patient’s aortic arch and impinges on the wall. A
huge vortex emerges that is present during the whole cardiac
cycle, shown in Figure 10e. Progression for years probably
caused the significant dilation of the left subclavian artery.
The patient’s bicuspid aortic valve is likely responsible for a
smaller systolic vortex in the ascending aorta. The resulting
plot illustrates the 0.74% and 1.98% worse performance of
D and D2 compared to S, respectively.
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Fallot: This patient has a pulmonary valve defect as con-
sequence of a surgical tetralogy of Fallot correction. The
aorta, however, is free of abnormal flow patterns — only
a physiological systolic helix in the aortic arch occurs, as
shown in Figure 10f. All quantifications achieve similar re-
sults. Yet, D with ©Ep = 11.08% is, on average, 2.7% closer
to the reference than the others.

Healthy Volunteer: The last dataset is from a healthy vol-
unteer with a slight physiological helix in the aortic arch dur-
ing systole (Figure 10g). All SV curves match the reference
relatively well. Yet, with ©Ep = 4.33%, D performs about
2.7% better than the rest.

5.3 Influences

We analyzed influences on the result deviations by correlat-
ing the standard deviation (std) of the three obtained SVs
from S, D and D2 per centerline position i to measures that
describe differences between the static and dynamic vessels
or measuring planes:

e AArea is the std of minimum and maximum plane areas
Ag, Af) and Agz.

e ANormal refers to angulation changes of measuring
planes in D. It is calculated as mean of angles be-
tween the average plane normal vector on’ and the time-
varying plane angulations n’.

e ACenter is the mean distance of the time-dependent dy-
namic measuring plane centers ¢! in D from the average
plane center oc'.

e AVelocity is the std of average velocities ||ouf||, [|ou||
and ||ouk,|| that were sampled on the corresponding
planes in S, D and D2.

Table 2 shows no (p < 0.25),low (0.25 < p < 0.5),

and high (0.75 < p) Pearson correlation
coefficients. The normal (ANormal) and plane center varia-
tion (A Center) are the highest influence on deviations of the
resulting SVs. Three high and five medium correlations were
found in the datasets for these two measures. This seems
plausible because both indicate a strong movement of the
vessel or, more precisely, the centerline. The sampled aver-
age velocities (A Velocity) in the cross-sections are the direct

% SlSl2|8 E 5 E’ &

Sl &l 8| &|8|8|2|35| 5
Measure ol = & é E £ = Z
AArea ||0.19]0.16]0.24 | 0.14| 0.3 0.4
ANormal || 0.43 ] 0.02 0.84(0.18 0.45
ACenter || 0.03 0.08 | 0.77 0.94 {0.22 (| 0.48
AVelocity || 0.23 0.03 0.3410.96 | 0.11 || 0.44

Table 2: Pearson-correlation of different measures to the
standard deviation of SVs obtained with S, D and D2.

consequence of the resulting different plane configurations
and rank third. The differences of the measuring plane sizes
(AArea) rank fourth. An interpretation could be that there is
only a moderate amount of vessel pulsation in many cases.
Exclusively no or low correlations were detected in the Ecta-
sia 1 patient. This might indicate that there are other, more
complex influences or simply that the differences between
the three SVs are not distinctive enough.

5.4 Discussion

The overall deviations from the reference SV were small-
est, if there was no prominent vortex flow (Healthy V.,
AneuBAYV, Bypass, Fallot). This coincides with the findings
from Kohler et al. [19]. The differences between the 2D PC-
MRI simulation D2 and S were, on average, smaller than the
differences between S and D — especially if there was just a
moderate movement of the dynamic centerline. A possible
explanation is as follows: The dynamic aorta has its min-
imum diameter during diastole. During systole, when the
maximum diameter is reached due to the pumped blood, the
aorta has approximately the same size as the static vessel
approximation. Consequently, the difference between flow
rates in S and D2 is smallest at this time of the cardiac cy-
cle. The changing diameter causes exclusion of peripheral
plane regions from the D2 quantification during diastole and
during the transition from maximum to minimum vessel di-
ameter. Nevertheless, differences between S and D2 remain
small because of the low diastolic blood flow velocities with
little contribution to the SV. In addition, the aorta usually
shows a parabolic velocity profile, i.e. the main blood flow
jet with highest influence on the SV calculation is located in
the center, as depicted in Figure 11.

Limitations: Contrast in the anatomical images strongly
varies due to the pulsatile flow, making the automatic seg-
mentation challenging during diastole. Correcting inten-
sity inhomogeneities [30] might increase the robustness.
Divergence-free filters [23] may be applied as further phase
image preprocessing. The effect of phase dispersion [35]
was not considered, but could introduce errors at the vessel

Fig. 11: A plane, color-coded by velocity, orthogonal to
the centerline (gray) inside the vessel (red surrounding).
Motion-aware stroke volume quantification excludes periph-
eral regions (darkened) while the vessel diameter is below
maximum. Yet, the difference using static vessels is rela-
tively small since high velocities with most influence on the
stroke volume quantification are often located in the center.
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boundaries. Scans with retrospective gating could produce
different results, since early-systolic values are better cap-
tured. Generally, image data with a higher spatio-temporal
resolution might generate more significant SV differences.

6 Conclusion and Future Work

We have presented a cardiac motion extraction that is fea-
sible for the clinical routine due to minimal required inter-
action. We focused on the aorta, but the application of our
method to other vessels such as the pulmonary artery is pos-
sible. Graph cuts were employed to support segmentation
tasks and showed a high level of acceptance among the con-
sulted radiologists because of the intuitive task of specifying
regions inside and outside the vessel. Such regions were au-
tomatically determined for each temporal position and can
be used for other segmentation algorithms as well.

We incorporated vessel dynamics to adjust stroke volume
calculation and quantified differences to conventional meth-
ods using static vessels and a simulation of 2D PC-MRI. On
average, the results differed by 7.82%. Unfortunately, the
incorporation of motion information does not achieve im-
provements for each position of the centerline and thus is
no guarantee for more accurate results. Yet, it performed on
average 1.57% better by having lower differences to the ref-
erence stroke volumes estimated by the clinical collabora-
tors. Limitations were pointed out. Variations of the planes’
normal vectors and centers had the highest correlations to
differences of the SVs obtained with the different methods.
This is plausible since both indicate a strong vessel move-
ment. The limited improvements imply that it is reason-
able to employ static 3D vessel approximations to quantify
stroke volumes. Yet, the use of robust methods [19] is rec-
ommended due to the calculations’ high sensitivity to the
measuring plane angulation.

Outlook: Motion information open up various opportu-
nities. Wall shear stress is another important measure that
strongly depends on the accurate wall position and orienta-
tion. Possible improvements by incorporating vessel dynam-
ics should be investigated. Models of the aortic valve facil-
itate further understanding of vortex formation in, e.g., bi-
cuspid aortic valve patients. The extracted movement could
support the determination of the valve’s exact position and
location. Finally, the wall movement allows conclusions re-
garding vessel elasticity, which is important for the risk as-
sessment of aneurysm rupture and thus supports treatment
decisions. The derivation of a vascular wall model was a
major interest of the consulted experts.

Further research to assess the reliability of the ob-
tained results is necessary. In the future, standardized and
(semi-)automatic evaluation methods will enable the fast
processing of large studies that are performed for statistical
analysis of gender- and age-specific norm values. The de-

rived physiological variations of different flow parameters
will support the assessment of disease severity.
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