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Abstract
Accurate visualizations of complex vascular structures are essential for medical applications, such as diagno-
sis, therapy planning and medical education. Vascular trees are usually described using centerlines, since they
capture both the topology and the geometry of the vasculature in an intuitive manner. State-of-the-art vessel
segmentation algorithms deliver vascular outlines as free-form contours along the centerline, since this allows
capturing anatomical pathologies. However, existing methods for generating surface representations from center-
lines can only cope with circular outlines. We present a novel model-based technique that is capable of generating
intersection-free surfaces from centerlines with complex outlines. Vascular segments are described by local signed
distance functions and combined using Boolean operations. An octree-based surface generation strategy automat-
ically computes watertight, scale-adaptive meshes with a controllable quality. In contrast to other approaches,
our method generates a reliable representation that guarantees to capture all vessels regardless of their size.

1. Introduction

The visualization of vascular structures is an important issue
in many clinical applications. Due to their complex morpho-
logy and their vital function, vessels are of particular impor-
tance when assessing risks or evaluating different surgical
strategies. In the field of oncological liver surgery planning
the intrahepatic vasculature is of particular importance, since
the functionality of the organ is in large parts dependant on
the blood supply. A reliable visualization of all vessels is
thus crucial for a solid risk assessment. In diagnostic proce-
dures, such as virtual endoscopy, high-quality visualizations,
which reliably model the interior of complex furcations, are
required. To represent pathologies, accurate surface genera-
tion concepts that can handle non-circular vessel outlines are
necessary. They are also of great importance in stent plan-
ning routines, since they require intersection-free surfaces

that allow an inspection of the interior of vessels. Due to
their similar morphology, surface visualizations of the res-
piratory tract are closely related to vascular methods which
makes most concepts applicable in both scenarios.

Geometric representations, such as centerlines, constitute
a common way to describe anatomical tree-like structures in
a compact manner. At sample points along the center of a
vessel information about the surface, like radii or samples of
the surface outline, is provided. In contrast to segmentation
masks, these models explicitly describe the shape and the
topology of vascular structures. They are widely used for
annotation- and classification tasks and provide key infor-
mation for navigation during fly-through visualizations and
cross-section analysis. A common way to derive centerlines
is to skeletonize presegmented binary masks [KHH∗04],
which are visualized using so called model-free techniques
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that interpolate point clouds sampled from the boundary of
the segmentation mask. Geometric segmentation algorithms
[BB∗09] [TdTF∗07] [WNV00], however, explicitly avoid
the costly generation of these masks. They rely on geometric
models or active shape models which are fitted to the vascu-
lar surface on the fly. Unbranched vessel segments are often
traced separately and composed to define the entire vascular
tree. Interpolating the resulting outlines is, however, error-
prone since the underlying models may cause segmentation
outlines at furcations to partially run through adjacent ves-
sels (see Figure 1). Traditionally, surface generation from
centerlines is performed in a model-based manner. Unfortu-
nately these methods resort to restrictive assumptions on the
shape of cross-sections like circles or ellipses.

We present a reliable adaptive modelling approach for
vascular structures (RAMVAS) that efficiently generates sur-
face meshes from general centerline descriptions. It simpli-
fies the reconstruction of vascular trees in their entirety by
delegating the description to local segments that only have
to provide implicit representations for their local volume.
We introduce a novel thin plate spline interpolation-based
technique to model smooth surfaces between pairs of expres-
sive free-form outlines. In contrast to previous approaches
we generate scale-adaptive meshes and guarantee watertight
polygonizations at the same time. We present a refinement
criterion for octrees that guarantees a topologically reliable
extraction of vessels of any radius. This is an important fea-
ture, since the representation of all vessels is essential for
many clinical applications. RAMVAS is independent of the
smallest vessel diameter that is present and handles arbitrary
variations in vessel size. It is capable of producing reliable
low-poly meshes, which allow a fast rendering, as well as
high-quality surfaces and is thus applicable in a wide range
of scenarios. Our aim is not to smooth error prone segmenta-
tions or to improve their quality otherwise, but to represent
the information contained in the centerline and the associ-
ated surface information as accurately as possible.

2. Related Work

The methods proposed to model vascular surfaces can
roughly be categorized to be either model-based or model-
free. In this section we will first review the most important
model-free approaches before giving a brief overview over
model-based techniques. For an extensive overview on the
topic the reader is referred to [WWL∗10] and [SOB∗07].

2.1. Model-free Mesh Generation

Model-free methods are also referred to as implicit methods,
since they make extensive use of implicit indicator functions
derived from point clouds extracted from a binary segmenta-
tion masks. Common choices for interpolants include Radial
Basis Functions [ZO03] and poisson surface reconstruction
[KBH06]. Schumann et al. [SOB∗07] employ Multi-level

Partition of Unity implicit surfaces which construct a global
implicit surface from locally supported surface patches that
are blended together with smooth transitions. Iso-surfaces
are usually polygonized using standard Marching Cubes
(MC) [LC87] which is bound to a fixed triangle resolution
for the whole dataset. This results in an oversampling of
large vessels and an unreliable undersampling of small ves-
sels. More recently, curvature adaptive vascular meshes have
successfully been generated using advancing front methods
[WWL∗10]. These techniques, however, lack robustness as
they are dependent on well behaved surfaces and cannot
guarantee to produce watertight meshes. Moreover, in case
of disjoint surface portions every surface part needs to be de-
tected and provided with an entry point for reconstruction.
To extract iso-surfaces Kazhdan et al. [KKDH07] describe
an adaptive method which is capable of extracting watertight
meshes from octrees. Due to the local adaptivity their tech-
nique is very well suited for the generation of scale-adaptive
surface meshes of complex structures such as vessels.

2.2. Model-based Mesh Generation

Model-based approaches usually rely on the assumption
that vessels have near-circular cross-sections. Most of them
are categorized as explicit since they use centerlines to
generate a surface representation in a constructive fash-
ion. An early approach described in [HPSP01] explicitly
constructs approximations based on tubular mesh primi-
tives. Unfortunately, this ad-hoc technique leads to highly
(self-)intersecting meshes that only provide means for a re-
stricted set of visualization scenarios. Felkel et al. [FKF∗02]
and Volkau et al. [VZB∗05] describe a method where topol-
ogy is handled while constructing a quadrilateral base-mesh
which is later refined by Catmull-Clark subdivisions. The
authors state that the algorithm works for "natural" datasets.
Self intersections, however, may occur, since their algorithm
is sensitive to small angles between branches and the place-
ment of centerline sampling points. Adler et al. [AMMP10]
propose a low resolution meshing scheme, where centerlines

Figure 1: Left: An abdominal and pelvic artery mesh gen-
erated with RAMVAS. Center & Right: Interior views from
the point of view indicated in the left image. Free-form con-
tours (white dotted lines) of two unbranched vessel sections
contributing to the bifurcation are displayed. Since contours
may partially lie inside adjacent vessel, a simple interpola-
tion leads to undesirable inner structures.
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are polygonized by iteratively extending an initial triangular
sphere. In a process similar to region growing, new vertices
are generated at faces that are intersected by the centerline
and are then projected onto the vessel surface. In [BRB05]
simplex meshes are constructed and subsequently deformed
by iteratively moving the generated vertices to the nearest
boundary voxel. Results are smooth, but a preprocessing
stage that explicitly removes overlaps at furcations and re-
vises the centerline topology is needed which effectively dis-
cards information. The most elaborate model-based method
was presented by [OP05] and is based on Convolution Sur-
faces (CS). To our knowledge, it is the only model-based
approach that can be categorized as implicit. Radial infor-
mation is interpreted as a 1D signal along the vessel, which
restricts the approach to circular cross-sections. A global im-
plicit function is then created by blending radii along vessels
using a Gaussian filter with finite support.

3. Overview

Generally, the model assumptions and the explicit handling
of furcations are the major drawbacks of most model-based
approaches. Model-free methods produce good results when
generating surface representations from binary masks. Since
they are bound to point clouds they are, however, unsuitable
for centerline-based visualizations. Figure 1 shows a set of
free-form contours and the vascular surface reconstruction
computed with RAMVAS. The geometric centerline descrip-
tion was generated using the method from [BB∗09], which
is able to capture complex vascular shapes. Because of the
Active Shape Model used during the segmentation process
a considerable part of the segmented contours is located in-
side the vessel lumen. Any model-free method that tries to
generate a surface by interpolating these points inevitably
produces unusable results. Additionally, converting radial or
free-form centerline descriptions into point-clouds discards
valuable topological information which can result in the fu-
sion of vessels with close proximity. To prevent this, we in-
troduce a level of abstraction that relies on implicit functions
and uses the topological information provided with the cen-
terline description.

In contrast to model-based vessel visualization methods
which explicitly construct meshes, we employ implicit func-
tions. We decompose the centerline description into seg-
ments Si which are locally described by implicit functions
and combine them using Boolean operations to describe vas-
cular surfaces (Section 4). This resolves all intersection- and
furcation-related issues independent from their complexity.
We then construct an adaptive octree which is converted into
a watertight scale-adaptive mesh (Section 5).

4. Admissible Distance Functions

Signed distance functions (SDFs) are a common tool to de-
scribe the volume and the surface of an object in a scalar

field d(x) : R3→ R. The surface of the object is usually de-
fined by the zero level-set d(x) = 0, the interior of the object
is defined by d(x) < 0 and the exterior satisfies d(x) > 0.
The values of d encode the distance to the surface and the
gradient defines the direction that is normal to the surface.

Unfortunately, the analytic description of SDFs quickly
becomes complex even for simple geometric primitives.
Since we use a MC-based iso-surface extraction algorithm
[KKDH07], however, we are able to simplify their defini-
tion. For MC to detect intersections with a surface described
by a zero level-set d(x) = 0, the exact distance values are
of no importance. The topological configurations of the MC
cells exclusively depend on the signs of d at the cell vertices.
This enables us to relax the distance property of SDFs by al-
lowing |d| to underestimate the distance to the surface. We
explicitly prohibit an overestimation of the distance, since
we will later use |d| to define a safe perimeter that is guar-
anteed to contain no surface portions. Note, that relaxing the
distance property does not imply a change of the zero level-
set d(x) = 0. It leads to the following key properties

1. d encodes the union surface:

d(x) = 0⇔ x on the vascular surface

d(x)< 0⇔ x inside the vasculature

d(x)> 0⇔ x outside the vasculature

2. d does not represent the exact distance to the union sur-
face. It provides, however, an admissible heuristic of the
signed distance, since it is never overestimated.

We thus refer to these functions as admissible distance
functions (ADFs). They enable a very compact definition
of primitive-based volumes by performing Boolean com-
binations using min and max operations as described in
[FPRJ00]. To model the entire vasculature, we decompose it
into segment functions fi : R3→ R that describe their local
volumes using ADFs. To compute the global, intersection-

F = min{fi}F = min{fi}

fifi

fifi

fifi

fifi

fifi fifi

Figure 2: By computing their minimum the local ADFs fi
are combined to form the Boolean union volume F . Note the
distance peaks of F inside the union volume.
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Figure 3: A vessels branch modelled with clipped cones
(blue) and clipped spheres (red). One radius ri is given per
centerline node pi. ri and ri+1 are interpolated along the
centerline. Gaps between clipped cones are filled by placing
clipped spheres at the inner nodes.

free surface, we form the Boolean union volume as illus-
trated in Figure 2.

F(x) : R3→ R= min
i

fi(x) (1)

F may contain distance peaks on the contact surfaces of
neighboring segments (see Figure 2) but since we select the
minimum of all fi we receive positive values if ∀i, fi(x)> 0
and negative values if ∃i, fi(x) < 0. This means the sign of
F can be used to classify points as to lie inside or outside the
union of all segments. Note, that no restrictions are imposed
on the realization of the local segment functions themselves.
We only require the vascular system to be decomposable into
volumes whose union describes the whole tree. No explicit
rasterization of the underlying implicit functions is required.
They may describe simple analytic primitives or complex in-
terpolated functions. The ADFs fi are evaluated on the fly,
which means that no artifacts are introduced by discretizing
the domain of F .

4.1. Radial Vessel Models

Circular vessel cross-sections are a widely used model as-
sumption. They constitute a valid simplification of the vas-
cular outline in many applications. For example, when plan-
ning oncological liver interventions the spatial constellation
of vessels with respect to lesions is the main aspect of in-
terest while deviations from circular cross-sections are less
important.

We choose a representation that uses truncated cones and
spheres to model the tubular structures of the vessel tree as
shown in Figure 3. Linear centerline segments with two radii
ri and ri+1 associated with the end points pi, pi+1 are rep-
resented by cones which are clipped at the end of each seg-
ment. The radius rc = ri+1 · t+ri ·(t−1) with t ∈ [0,1] is in-
terpolated along the line segment. The linear segments usu-
ally coincide at centerline nodes pi at a certain angle. When

using clipping planes orthogonal to the corresponding line
segment li a gap in direction of the larger angle at pi is cre-
ated (see Figure 3). We close this gap by placing spheres be-
tween segments which are clipped against the same planes
as the adjacent cones. The clipped cone is described by a
Boolean intersection of an infinite tube with two half-spaces.
Thus, the local ADF fi of a clipped cone can be computed
as the maximum of three ADFs

Dc = max{Dp0,Dp1,Dtube} (2)

where Dp0 and Dp1 are the signed distances to the clipping
planes, each with an outward facing normal and Dtube =
Dcenterline− rc is the distance to the centerline with the in-
terpolated radius subtracted. An ADF of a clipped sphere is
analogously described by

Ds = max{Dp0,Dp1,Dsphere} (3)

where Dsphere = Dcenter−ri is the signed distance to the sur-
face of the sphere. In the vicinity of the surface these dis-
tance functions locally behave like SDFs. In the far away
regions that are close to the clipping planes, the distance is
underestimated. The union volume of all clipped spheres and
cones describes the volume of the whole vascular tree and
faithfully represents the radial information of the nodes.

4.2. Free-Form Vessel Models

Centerlines with associated free-form contours allow a very
precise representation of the vascular geometry. This is par-
ticularly important when dealing with pathologies. In our
case, the contour C associated with a centerline node is rep-
resented by a list of consecutive coplanar points (q1, . . . ,qn)
which uniformly sample the vascular contour. The number
of surface samples increases with the circumference of the
vessel. To describe a local segment Si, we need to provide

Ci+1Ci

Ci+1Ci

Figure 4: Left: RAMVAS reconstruction of an arterial tree
computed form free-form contours. A subset of contours is
shown in the image. Right: Reconstructions of two individ-
ual segments defined by pairs of contours Ci and Ci+1.
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an ADF fi of the volume which is described by two consec-
utive contours Ci = (q1

i , . . . ,q
n
i ) and Ci+1 = (q1

i+1, . . . ,q
m
i+1).

For centerlines with circular cross-sections we interpolate
the two end radii ri and ri+1 as described in Section 4.1.
Computing the distance to a smoothly interpolated surface
between two free-form contours is far more challenging.

To describe the local ADF, we compute a mapping
T PS(x) : R3 → R3 based on thin plate splines ([Boo89],
[RSS∗01]) that transforms Ci and Ci+1 into a normalized
space where distance computations become feasible. This
mapping process has to be topology-preserving to prevent
changes of the interpolated surface. As stated in the original
work of Bookstein [Boo89], the thin plate spline mapping
is a diffeomorphism as long as it does not fold. To ensure a
continuous mapping, we assign contour pairs to normalized
target shapes that are homeomorphic to the shapes defined
by the original configurations. The contours associated with
centerlines can exhibit different configurations as shown in
Figure 5. In most cases two consecutive contours define a
cone-like volume. Since they are usually sampled in planes
orthogonal to the centerline, they may however touch or even
intersect if the centerline exhibits a high curvature or center-
line nodes are close.

Under the assumption that the topology of a pair
of neighboring contours is one of TOP(Ci,Ci+1) ∈
{non-intersecting; touching at 1 contour position; intersect-
ing at 2 contour positions} a system of generators is il-
lustrated in Figure 5. Obviously, more complex relations
are possible in theory but in practice this system of sup-
ported constellations has proven to be sufficient to model
realistic vascular structures. After examining the relation
between a pair of neighboring contours and assigning the
appropriate generator element, a set of reference points
(q̃1

i , . . . , q̃
n
i , q̃

1
i+1, . . . , q̃

m
i+1) is distributed on the target shape.

The target shape of non-intersecting is a normalized cylinder
with radius = 1 and height = 1, the target shape of touch-
ing at 1 contour position is a section of a horn torus with
radiusa = radiusb = 1 and the target shape of intersecting
at 2 contour positions is defined by two unit-circles whose
intersection line goes through their centers (see Figure 5). In
the case of the torus and the crossed circles it is important to
map the points surrounding the intersections of Ci and Ci+1
to the corresponding locations on the target shape to gener-
ate a well-behaved mapping (highlighted contour points in
Figure 5).

The set of corresponding point pairs is then used to de-
termine a smooth mapping T PS(x) from world space W to
normalized space N that satisfies T PS(q j

i ) = q̃ j
i for 1≤ j≤ n

and T PS(qk
i+1) = q̃k

i+1 for 1 ≤ k ≤ m. For this the displace-
ment vectors (q̃1

i − q1
i , . . . , q̃

n
i − qn

i , q̃
1
i+1 − q1

i+1, . . . , q̃
m
i+1 −

qm
i+1) are interpolated using thin plate splines to define a

global vector deformation field. The calculation of coeffi-
cients for the interpolating basis functions leads to a system
of linear equations as described in Rohr et al. [RSS∗01]. To

approximate the distance function fi(x) of a requested point
x ∈ W , the point is transferred into the normalized space
where the distance can be calculated f̃i(x̃) = f̃i(T PS(x))
with x̃ ∈ N based on the normalized primitive. An impor-
tant remark on this distance approximation approach is that
the transformation T PS(x) is not distance-preserving due to
the non-rigid deformation. However, the sign of distances
and thus the topology of the object is preserved. Figure 4
shows an arterial tree reconstructed from free-form contours
and two local segment surfaces described by contour pairs.

5. Adaptive Modelling of Vascular Structures

To efficiently generate a vessel mesh with a locally adapted
triangle size, we construct an octree that serves two pur-
poses. Firstly, it is used to establish a relevant subset of
segment functions fi(x) for each octree cell to approximate
F(x). Secondly the cell size is adapted to the size of the

world space normalized space

Figure 5: Mapping of neighboring free-form contour pairs
to normalized shapes. A non-rigid thin plate spline transfor-
mation T PS to a topologically equivalent simple object is
performed to compute local ADF f by an easily computable
approximation f̃ in the normalized space. For our free-form
vessel models the topology of each neighboring contour pair
is classified as non-intersecting, touching at 1 contour posi-
tion or intersecting at 2 contour positions as displayed.
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smallest vessel that is locally present. Finally, we employ
a modified version of the iso-surface extraction method de-
scribed in [KKDH07] that uses a bisection method to deter-
mine iso-surface positions.

5.1. Octree Construction

To compute the global function F(x), all segments Si need to
be evaluated. Since the evaluation of the implicit functions
fi(x) is potentially expensive, we try to avoid the consid-
eration of far-away segments. To establish locality, we en-
close all segments with a bounding box Bi that must con-
tain the entire local surface. The root cell is initialized with
all segments and is recursively subdivided. When splitting
cells, we distribute vessel segments to child cells if they
intersect. Cells which intersect no segments cannot con-
tain surface portions and are not examined any further. In-
stead of evaluating F(x), we use the localized approximation
F ′(x) = min{ fi(x)|Bi intersects O} for distance queries in
octree cell O. Note, that F ′(x) does not equal F(x). It is only
defined in octree cells that contain segments and is not con-
tinuous, since segment functions may pop in or out based on
their bounding boxes. However, the properties listed in Sec-
tion 4, including admissibility, are preserved which makes
F ′ a valid approximation.

5.1.1. Radius-sensitive Octree Refinement

To ensure an adequate sampling, we refine the octree until
the local cell size is small enough to capture the shape of all
relevant segments. For this purpose, we require every seg-
ment to provide a conservative approximation of its radius
and determine the smallest radius rmin of all locally relevant
segments Sc. Since rmin is required to be a conservative es-
timation of the vessel radius, the smallest object that can be
present is a sphere of radius rmin. This means we have to
choose the sampling distance (i.e. the cell size) small enough

smax

octree cell

rmin

+ +

++

sc

F(v )c

octree cell

vc

Figure 6: Left: for a topologically reliable sampling of a
sphere of radius rmin the edges must be shorter than rmin · 2√

3
.

Right: although containing portions of the surface all cell
vertices lie outside the volume. Pruning the cell prohibits the
reconstruction of the highlighted area. If |F(vc)|>

√
3

2 · sc
holds the surface does not run through the cell.

Figure 7: Topological degeneracies occur if the size thresh-
old for the octree cells is violated. Quality parameters Q
from left to right are 0,5, 0,9 and 1. A quality parameter of
Q >= 1 guarantees a topologically reliable reconstruction.

to be able to capture the topology of a sphere with radius
rmin > 0 (see Figure 6a). Since octree cells are cubic, the up-
per bound smax for the cell size sc > 0 is defined as follows√

(
sc

2
)2 ·3 <

√
rmin2

sc < rmin ·
2√
3
= smax. (4)

All cells are thus subdivided until their size is below this lo-
cal threshold. Note, that the resulting meshes are not neces-
sarily topologically correct. If the distance between the sur-
faces of two vessels is smaller than smax the two vessels may
be merged if the gap is not sampled. Adhering to smax, how-
ever, ensures that every vessel segment is sampled at least
at one position inside the volume which guarantees a rep-
resentation of every vessel. Thus, we refer to this method as
topologically reliable. Figure 7 shows the topological degen-
eracies that occur when sampling F ′ with cells that violate
the size threshold. In addition to describing the maximum al-
lowed cell size, the size threshold smax can be used to control
the local surface quality by introducing a parameter Q > 0

sc <
smax

Q
. (5)

By increasing Q, the local cell size is forced to adapt to the
surface more closely which leads to more accurate recon-
structions. For Q >= 1 the vascular reconstruction is guar-
anteed to contain a representation of every vessel (i.e. is re-
liable), since the local cell size sc fulfills the condition stated
in Eq. 4.

To approximate the radius for clipped spheres, we use the
radius ri of the sphere and for clipped cones we use the
smaller of the two radii min{ri,ri+1}. For free-form con-
tours we use the radius of the maximum inscribed circle. It
can be computed using a distance transform and selecting the
maximum of the distance field inside the contour perimeter.
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5.1.2. Cell Pruning

Bounding boxes provide an overestimation of vessel seg-
ments and allow no pruning of cells that lie completely in-
side the vessel lumen. When refining the octree to approx-
imate the surface, this produces a huge cell-overhead. To
avoid this, we need a safe criterion to check if surface in-
tersections are present.

To safely prune cells, the signs of F ′ at the cell vertices
cannot be used, since the vascular surface may intersect a
cell without producing opposite signs at its vertices. Fig-
ure 6b shows an example where the values of F ′ at the cell
vertices are all positive i.e. outside the volume. Pruning the
cell leads to a reduced accuracy of the reconstructed sur-
face, since the highlighted arc is lost. To guarantee the con-
servation of all cells that intersect the surface, we exploit
the admissibility property of F ′. As stated in Section 5.1,
it provides an estimation of the distance to the surface that
never overestimates the distance to the surface. If the abso-
lute function value

∣∣F ′(vc)
∣∣ at the cell center vc is larger than

the distance from the center to the corner vertices
√

3
2 · sc the

cell cannot contain any portions of the. This scheme enables
us to prune cells based on a single evaluation of F ′. If prun-
ing fails there are two cases: the cell is either subdivided, or
it is flagged for polygonization. In the former case F ′(vc) is
reused by the child cells, in the latter case F ′(vc) is reused
to compute a disambiguate MC index.

5.2. Calculating Function Roots

When extracting the zero iso-surface, marching cubes-based
algorithms [LC87], [KKDH07] detect roots F = 0 by exam-
ining changes in the sign of a scalar field. The root position
rab | F(rab) = 0 is then interpolated linearly between the oc-
tree vertices va and vb which are of opposite sign. In our
case, however, linear interpolation can lead to artifacts be-
cause F provides no reliable information on the distance to
the surface. As shown in Figure 8, rab differs greatly from
the actual root, since the value sampled at va underestimates
the distance to the surface.

For a robust and fast approximation of the root position
along the line segment [va,vb] we use a slightly modified
bisection method. We iteratively split the interval [va,vb],
which is known to bracket a root, at a point sab. To en-
sure the detection of roots that lie on the outer surface
only, we terminate the search if the scalar value is small
|F(sab)| < ε and positive F(sab) > 0. If not, we repeat the
process with subsegment [va,sab] or [sab,vb] depending on
which of them has opposite signs and thus contains our root.
When splitting the interval at its mid-point va+vb

2 this pro-
cess leads to linear convergence. Since F is piecewise linear
on the line segment [va,vb], we accelerate the root search
by splitting the interval at the interpolated root position
sab = va

|F(va)|
|F(va)|+|F(vb)| + vb

|F(vb)|
|F(va)|+|F(vb)| . In regions where

F(va) and F(vb) both yield the distance to the same (locally

linear interpolation bisection method

rabrab

vava

vbvb
rabrab

vava

vbvb

--
++

--
++

Figure 8: Top left: artifacts occur if the roots of F are lin-
early interpolated. Top right: using a bisection method the
actual roots are identified and the reconstruction is correct.
Bottom: the corresponding scalar fields. Left: rab is interpo-
lated at the wrong position because of the distance peak in-
side the volume. Right: the bisection method iteratively finds
the correct root positions indicated in green.

plane) segment surface i | F(vb) = fi(vb)∧F(va) = fi(va)
the root finding problem is solved by applying the intercept
theorem, which leads to immediate convergence.

5.3. Computation of Normals

To compute gradients for a scalar function at arbitrary posi-
tions, a standard approach is to evaluate F in the surrounding
of q and to approximate the partial derivatives by forming
difference quotients. This is an expensive operation, since it
implies at least four evaluations of F each resulting in mul-
tiple evaluations of underlying segment functions fi. Since,
our global indicator function F is not an SDF its gradient
cannot be used to derive normals. We only need to compute
normals at those surface positions which are calculated dur-
ing the root finding scheme described in Section 5.2. Once
the root position is found the normal can be derived directly.
For this we simply keep track of the segment with the small-
est signed distance and use its normalized gradient as the
normal of the global surface. Since we are not dealing with
SDFs the resulting normal is not exact. In practice, however,
the error introduced by using our ADFs is marginal and can
be compensated by one normal smoothing pass in a post-
processing step.

6. Results and Discussion

To validate the proposed technique, we applied it on cen-
terlines of various portal and venous liver trees (LT), a
bronchial tree (BT), a cerebral vascular tree (CT) and an ar-
terial tree (AT). The first three were described by centerlines
with radial cross-sections and the arterial tree was described
by free-form contours with ≈ 10− 50 surface samples per
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Figure 9: A low-poly reconstruction (70 812 triangles) of
a cerebral tree with quality parameter Q = 1. The vascular
branches are very thin, but due to the local refinement con-
straints all structures are reliably represented.

centerline node depending on the vessel diameter. All re-
constructions consistently confirmed the reliability criterion
described in Section 5.1.1. If the quality parameter Q was
chosen Q >= 1 no single branch of any dataset was lost and
no holes in the reconstruction occurred. Choosing Q= 1 thus
leads to a fast low-poly reconstruction of the vascular surface
independent of the variation of the vessel diameter. Figure 9
shows a reconstruction of a CT with Q = 1. The surface ap-
proximation is rather rough, but it is very well suited for ap-
plications such as intervention planning or therapy planning,
since these focus on the spatial relations of vessels. It is also
valuable in scenarios where a fast but highly representative
rendering is necessary.

Our adaptive strategy proved to be powerful for datasets
with a high variation in vessel diameter such as BT and
CT. We compared it to an implementation of Convolution
Surfaces (CS) which is shipped as a part of MeVisLab.
It basically provides two quality parameters "smoothness
at branchings" and "polygonal refinement" both providing
three options (low, medium and high). The first one deter-
mines the size of the Gaussian kernel during implicit sur-
face modelling and the latter one determines the MC resolu-
tion during polygonization. For CS to reproduce thin struc-
tures, we had to set the MC resolution to "high" leading to
a substantial triangle overhead for large branches. Figure 10
shows a bronchial tree reconstructed with CS and RAMVAS
(Q = 1,5). At equal triangle counts RAMVAS allows a more
accurate representation of thin vessels by avoiding an over-
sampling of large structures.

Table 1 shows a comparison of the generation times of
CS and RAMVAS with the corresponding resulting triangle

counts. We set the smoothness parameter for CS to "low",
which corresponds to the fastest setting for the algorithm.
Generation times of RAMVAS are generally shorter except
for the CT dataset. This is because it contains very thin ves-
sels. The MC resolution of the CS implementation is too
low in this case resulting in visible artifacts. The ability of
RAMVAS to adapt to the local vessel size results in a denser
sampling of the long thin vessels and thus in an increased
computation time and triangle count.

Dataset CS RAMVAS
(Q=1) (Q=2)

LT time 14 070 2177 8 080
5146 segments tris 510 056 95706 339 738
BT (Figure 10) time 11 040 1 155 4 832
2580 segments tris 261 664 49 418 221 168
CT (Figure 9) time 2 048 1 716 4 756
3383 segments tris 82 980 67 202 171 240

Table 1: Mesh generation times (in milliseconds) and trian-
gle counts for CS [OP05] and RAMVAS, taken on an Intel
Xeon CPU with 4 physical cores @2.80GHz and 8GB RAM.

Wu et al. [WWL∗10] describe an advancing front mesh-
ing algorithm that generates curvature adaptive triangula-
tions. Near-equilateral triangles are constructed on the sur-
face and their size adapts smoothly to the local curvature.
These properties make their meshes suitable for computa-

Figure 10: Two reconstructions of a bronchial tree with
close-up views. Left: CS reconstruction. The main bronchus
is sampled in unnecessary detail. Right: RAMVAS recon-
struction with quality parameter Q = 1,5. Even though both
meshes consist of ≈ 120 000 triangles RAMVAS is able to
represent thin structures more accurately.
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Figure 11: Two close-ups of a thin vessel branching from
a large one (LT dataset, left: Q = 1, right: Q = 2). Our ap-
proach is able to handle such situations as the octree is re-
fined to very small cells in the vicinity of the small branch.

tional fluid dynamics simulations. Due to the octree-based
refinement strategy, our approach is inherently bound to
power of two subdivisions in the cell size. This means our tri-
angle size does not change smoothly. The projection-based
approach described in [WWL∗10], however, can fail if sud-
den changes in the curvature are present. For example a very
small vessel branching from a large and low-curved struc-
ture leads to a sudden change in the local curvature. If the
advancing front arrives at such a spot with a large current tri-
angle size it might miss the small feature entirely. RAMVAS
in contrast, is explicitly capable of handling such constella-
tions, since small vessels force the local octree refinement to
an adequate level (see Figure 11). Since we use axis-aligned
bounding boxes of vessel segments to determine the small-
est vessel that is present, more triangles than necessary are
generated (recall Figure 11). Using oriented bounding boxes
should greatly reduce this overhead.

6.1. Accuracy

CS implicitly generate rounded off caps at the vessel ends.
Since our RAMVAS method allows the models for the in-
dividual segments to vary for one vascular tree, vessel ends
can easily be modelled in different ways. By placing a half-
sphere at the end, similar to Hahn et al. [HPSP01], we
achieve rounded-off caps. By simply ending a vessel with
a clipped cone, a plain, cut-off end is reconstructed (Figure
11, right and Figure 10, top right). This is useful to illus-

Figure 12: Projections of CS meshes displayed in solid
black. The differences to the same surface generated with
RAMVAS are color-coded. Red areas are not present in
RAMVAS and green areas are not present in the CS mesh.
Left: the differences at vessel ends arise from our ability to
model non-spherical ends.

trate that a vessel does not actually end at a certain point
but that the representation is discontinued due to an incom-
plete segmentation. To improve the quality of our triangu-
lation, we smooth the generated meshes using the displace-
ment corrected Laplacian proposed in [VMM99]. As stated
in [BHP06] it is suited for meshes of elongated complex
structures, since it reduces the shrinkage induced by ordi-
nary Laplacian smoothing while maintaining a reasonable
speed.

Since we had no influence on the polygonization of the
CS implementation, a quantitative comparison that differen-
tiates between the modelling and the meshing error was not
feasible. Qualitative examinations, however, showed that our
radial vessel model described in Section 4.1 delivers very
similar results. When increasing the smoothness parameter
(i.e. the kernel size) of the CS reconstruction, furcations are
blended more smoothly but deviations from the original cen-
terline radii dramtically increase. Figure 12 shows the pro-
jection of a surface computed with CS. The differences to the
same dataset reconstructed with RAMVAS are color-coded.
Differences between the results are marginal. Note, that the
discrepancy at the vessel ends is not an error but results from
our ability to model cut-off vessel ends (see Section 6.1).

We choose ε=min{ri}/100.0 to ensure that the root find-
ing (i.e. the determination of the surface locations) is ac-
curate enough not to compromise the reconstruction of the
smallest vessel for arbitrary data sets. Experiments showed
that an average of≈ 2.2 iterations is needed and that≈ 33%
of the roots are found at the first iteration. Using standard bi-
section (dividing [va,vb] at the mid-point) resulted in ≈ 3.3
iterations per root search, which validates our strategy that
exploits the local SDF-like behavior of F ′.

7. Conclusion

With RAMVAS, we present a flexible method that generates
surface representations from centerline descriptions. Vascu-
lar systems described by free-form contours as well as ra-
dial cross-sections can be converted into watertight adaptive
meshes with a controllable quality. Furcation-related issues
are handled by employing implicit functions which results in
intersection-free meshes for any complexity of the vascular
furcations. We introduce an octree-based scale-adaptive re-
finement strategy that guarantees a reliable reconstruction of
all vessels independent of their thickness. Our method is able
to generate low-poly approximations and high-quality sur-
faces with one single approach. Compared to existing tech-
niques our approach offers a superior reliability.
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