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Fig. 1. Incorrect vessel segmentations (left) can by modified interactively in high quality by our algorithm (center left). An annotation
mechanism for inflows and outflows allows the creation of models suitable for computational hemodynamics (center right, right)

Abstract—The precise modeling of vascular structures plays a key role in medical imaging applications, such as diagnosis, therapy
planning and blood flow simulations. For the simulation of blood flow in particular, high-precision models are required to produce
accurate results. It is thus common practice to perform extensive manual data polishing on vascular segmentations prior to simulation.
This usually involves a complex tool chain which is highly impractical for clinical on-site application. To close this gap in current blood
flow simulation pipelines, we present a novel technique for interactive vascular modeling which is based on implicit sweep surfaces.
Our method is able to generate and correct smooth high-quality models based on geometric centerline descriptions on the fly. It
supports complex vascular free-form contours and consequently allows for an accurate and fast modeling of pathological structures
such as aneurysms or stenoses. We extend the concept of implicit sweep surfaces to achieve increased robustness and applicability
as required in the medical field. We finally compare our method to existing techniques and provide case studies that confirm its
contribution to current simulation pipelines.

Index Terms—Surface modeling, vascular visualization, centerline-based modeling

1 INTRODUCTION

Patient-specific models of vascular structures are an important foun-
dation of many clinical applications. Due to their complex morphol-
ogy and their vital function, vessels are of particular importance when
assessing risks or evaluating different surgical strategies. The simu-
lation of blood flows (computational hemodynamics), for instance, is
an important new field in medical imaging. The basic idea is to avoid
the risks of invasive measurements by using vessel segmentations as
a basis to simulate quantifiable patient-specific blood flows. These
simulations can then, for instance, be used to compute and visualize
wall shear stress gradients, fractional flow reserve (FFR) statistics or
intra-aneurysmal flow patterns.

To perform reliable simulations, accurate vascular models are of ut-
most importance. In pathological cases, such as stenoses or aneurysms
in particular, expressive modeling techniques are required to capture
the patient-specific vascular geometry. Automatic vessel segmenta-
tion is a traditional field in medical imaging and a huge variety of
methods has been developed over the last decades. However, none

• Jan Kretschmer is with the Department of Computer Graphics, FAU

Erlangen, and Siemens Healthcare Computed Tomography, Forchheim,

Germany. E-mail: jan.kretschmer@cs.fau.de.

• Christian Godenschwager is with the Computer Science Department, FAU

Erlangen, and Siemens Healthcare Computed Tomography, Forchheim,

Germany. E-mail: christian.godenschwager@cs.fau.de.

• Bernhard Preim is with the Department of Simulation and Graphics,

Otto-von-Guericke University of Magdeburg, Germany. E-mail:

bernhard@ovgu.de.

• Marc Stamminger is with the Department of Computer Graphics, FAU

Erlangen, Germany. E-mail: marc.stamminger@cs.fau.de.

Manuscript received 31 March 2013; accepted 1 August 2013; posted online

13 October 2013; mailed on 4 October 2013.

For information on obtaining reprints of this article, please send

e-mail to: tvcg@computer.org.

of these methods can guarantee a perfect segmentation in all scenar-
ios. Pathological cases in particular tend to pose problems even for
state-of-the-art vessel segmentation algorithms. A manual inspection
of automatically generated segmentations is thus usually inevitable be-
fore performing computational hemodynamics. In case of deficiencies,
a common approach is to run segmentations again with a changed pa-
rameter set that hopefully leads to improved results. Another approach
is to export data to generic geometric modeling tools where trained
profesionals perform plausible corrections [35]. This workflow is im-
practical for every day’s clinical routine as it requires significant geo-
metric modeling skills and involves complex tools.

To solve this problem, we present an image-independent vascular
modeling technique. Our method allows to generate high-quality vas-
cular models from automatic segmentations and provides facilities to
interactively correct those models in an integrated intuitive workflow.
We model individual vascular branches using implicit sweep surfaces
and smoothly blend them at furcations. To avoid bulging, we use a
recently published gradient-based blending operator [23], which per-
fectly suits our vascular application. We furthermore present an ex-
tended interpolation technique that significantly contributes to the ro-
bustness of implicit sweep surfaces for challenging datasets. To gen-
erate data which is directly suited for simulation frameworks, we pro-
pose an automatic inflow and outflow annotation technique which al-
lows for easy user manipulations. We validate our method by evalu-
ating its accuracy on a broad set of medical data sets, ranging from
manually annotated coronary arteries to automatically segmented cen-
terline descriptions for whole-body arterial trees. In addition, we com-
pare our method to existing approaches and present case studies, which
confirm its contribution to the computational hemodynamics pipeline.

Our method is based on geometric centerline descriptions since
they provide a natural way to represent the topology of tubular struc-
tures and an excellent basis for navigation during user interactions. In
this article, we presuppose the presence of a centerline description for
a given vessel tree. The tree may contain automatically segmented
cross-sectional contours, as they are generated by geometric segmen-
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tation algorithms [24, 44, 49]. If the centerline tree contains no cross
sections, surface models can be created from scratch manually.

2 RELATED WORK

Vascular modeling is a vast field in medical imaging and many dif-
ferent techniques have been proposed to generate models for various
applications. In this section we will first review existing vascular mod-
eling techniques and their individual properties. Since our method is
based on implicit sweep surfaces, we will then give a brief introduc-
tion on implicit modeling and a short overview of the history of sweep-
based modeling.

2.1 Vascular Modeling

Current vascular modeling methods can roughly be categorized to be
either model-based or model-free. In this section we will first re-
view the most important model-free approaches before giving a brief
overview of model-based techniques. Extensive summaries on the
topic can be found in [42, 50].

Model-free methods are also referred to as implicit methods, since
they usually rely on generic point cloud-based interpolation techniques
and make extensive use of implicit indicator functions to interpolate
models. Common choices for interpolation techniques include multi-
level partition of unity implicits [42] and Poisson surface reconstruc-
tion [50]. Model-free methods are usually concerned with a robust
extraction of point clouds from binary segmentation masks that is able
to capture fine vessels. To generate reliable interpolations, these meth-
ods need a dense sampling and they do usually not incorporate explicit
topological and geometric information on the underlying vasculature.

Model-based methods, in contrast, are motivated by the tubular
structure of vascular systems and are frequently used to visualize cen-
terline descriptions. Many techniques rely on explicit mesh generation
methods [19, 26, 52], which is usually fast but often leads to self-
intersecting meshes at vascular furcations. For computational hemo-
dynamics, the generated models need to be smooth and free of self-
intersections or unwanted inner structures. Implicit modeling pro-
vides inherent composition mechanisms to solve this problem and has
been successfully used to generate model-based vascular models. An
early approach [36] was based on convolution surfaces and produces
closed, intersection-free models. It has, however, limited expressive-
ness, since it is restricted to polar definitions of cross sections. An
implicit modeling technique that supports free-form shapes was pro-
posed in [30]. The segment-based modeling paradigm, however, leads
to C0 continuous models only, which are inadequate for simulation
purposes or virtual angioscopy applications. Sweep surfaces have re-
cently been employed [27] to model vascular trees using piecewise
algebraic splines with excellent smoothness properties. The authors,
however, report reconstruction times of 1-3 minutes for an optimized
GPU implementation, which prohibits interactive applications.

Workflows to interactively segment or correct vascular segmenta-
tions have been proposed previously [18, 47]. These semi-automatic
methods, however, are bound to the resolution of the underlying
dataset and allow only for an indirect manipulation of the vascular
representation.

2.2 Implicit Modeling

Implicit indicator functions are a compact natural way to describe the
volume and the surface of an object in a scalar field d(x) : R3 → R.
Even though implicit representations do not contain an inherent pa-
rameterization of the volume like polycube-based models [31], their
simplicity has made them a widely used tool in geometric modeling.
For signed indicator functions, the surface of the object is usually de-
fined by the zero level set d(x) = 0, the interior of the object is defined
by d(x)< 0 and the exterior satisfies d(x)> 0

d(x) =





< 0 if x inside ob ject
0 if x on ob ject boundary
> 0 if x outside ob ject

. (1)

Implicit modeling is motivated by the fact that signed indicator
functions can easily be combined using Boolean operators such as min

and max to form unions, intersections and subtractions [21, 39]. The
result of combining two signed indicator functions is, again, a signed
indicator function which allows a recursive application of operators to
compose complex objects. This process is commonly referred to as
solid modeling and is strikingly easy to apply. One drawback, how-
ever, is that min and max operators only preserve C0 continuity, which
leads to undesirable sharp edges at object joints (see Figure 2, left).

To create smooth blends of objects, the closely related concept of
potential field modeling [10, 12] can be applied. The original concept
[10] was physically motivated and focused on point primitives emit-
ting a potential field. In contrast to distance fields, whose magnitudes
continuously increases with larger distance to the surface, potential
fields are usually designed to drop to zero at a certain distance from
the object boundary. A blending operation is required to be neutral
if one of the operands is zero. This leads to a locally constrained
influence since far-away regions of an object description are neutral
during blending. For comprehensive overviews on implicit modeling
see Wyvill [51], Bloomenthal [12] and Frisken [21].

An inherent property of potential field modeling is that bulges
emerge when overlapping potential fields are blended. In some cases
these bulges are desirable (see Figure 2, right) but in general they are
considered a problem and several strategies have been proposed to sup-
press them. One strategy is to offset the blended objects to reduce
overlap while maintaining the desired overall shape [11, 22]. This
technique, however, was developed for convolution surfaces with cir-
cular cross-sectional shapes and reasonable offsets are hard to guess
in our case. Another strategy is to narrow the potential field [11, 36].
This, however, results in reduced smoothness properties of the result-
ing blends. The key observation is that bulges are both a blessing and
a curse in potential field modeling and that they have to be treated
carefully in an application like vascular modeling.

desirable bulging

undesirable bulging

sharp joint

Fig. 2. Comparison of distance field modeling and potential field mod-
eling. Left: The distance fields of two line skeletons are unified using
min (solid union [39]). Sharp joints emerge. Right: The corresponding
potential fields are blended using summation. Joints are smooth, but
bulges emerge (solid union is overlaid as reference).

2.3 Sweep Objects

Sweep objects are generally defined as the shapes which emerge when
an object is moved along a trajectory. There are two basic related areas
of research: sweep volumes treat the movement of three-dimensional
objects through space while sweep surfaces are commonly used to re-
fer to two-dimensional shapes swept along a trajectory.

Sweep volumes are largely used to describe tool paths in nu-
merically controlled milling [48]. In such applications, Jacobi
rank deficiency-based methods [2] and sweep envelope differential
equation-based methods [9] are frequently used to compute boundary
representations of the resulting sweep. These methods are, however,
computationally expensive and require the presence of closed-form
boundary representations [1]. Recent work [29] has shown that vol-
ume sweeps of polyhedral models can be approximated efficiently by
exploiting the fact that in this case only ruled (or developable) surface
boundaries are present.

The cross-sectional information in a vascular centerline tree leads
to two-dimensional shapes associated with the centerline. Our method
can thus be categorized as a sweep surface method. Early appearances
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of sweep surfaces [38, 45, 46] described only basic translational, rota-
tional and conic sweeps. The concept was later generalized to curved
trajectories with profile curves that vary the size of the contour as it
moves along the trajectory [13, 14, 37]. Most of these methods focus
on an immediate tessellation of the resulting sweeps in the parame-
ter domain. In this case, the prominent problem is that depending
on the trajectory and the shape templates self-intersections frequently
occur. Fortunately, implicit surface descriptions allow for volumet-
ric Boolean operations, like unions or intersections, to be performed
trivially. This property was exploited to inherently remove any self-
intersections by using implicit functions as sweep templates [15, 41].
Crespin and colleagues [15] analytically describe two-dimensional
distance fields which can be varied along the trajectory. Their use of an
(anisotropic) polar definition, however, restricts the resulting sweeps
to star-shaped templates. Schmidt and colleagues [40] further general-
ized sweep surfaces by generating generic signed distance fields which
are blended along the trajectory.

2.4 Implicit Representations for Polygons

To create implicit sweep surfaces from geometric centerline descrip-
tions, some method is required to convert consecutive point lists sam-
pled from the vascular wall into signed implicit descriptions. A well-
known approach is variational interpolation [43]. By solving a linear
system of equations, coefficients for a set of radial basis functions are
computed, which interpolate prescribed values at certain constrained
positions. To achieve an interpolation, which is negative inside Si

and positive outside of Si, additional interior and exterior constraints
with negative and positive interpolation values respectively have to be
placed [43]. This is commonly done at a small offset of the inter-
polation constraints in a direction normal to the surface. While this
method is broadly applied as it is straightforward to implement and
proven to deliver smooth results, it has several drawbacks. Depend-
ing on the support of the chosen basis functions a more or less dense
linear system has to be solved for every outline in the vascular model.
When dealing with complex outlines, the placement of the interior and
exterior constraints has a strong effect on the resulting interpolation.
Disadvantageously placed constraints may even result in unusable in-
terpolations. Additionally, the interpolated scalar field massively dif-
fers from a signed distance function if it is only constrained in the
vicinity of the object’s surface. In [40] a hybrid approach is presented,
which uses an unsigned Euclidean distance transform [20], to generate
additional constraints for the variational interpolation setup. This sta-
bilizes the variational solution and increases the similarity to a signed
distance function, but comes at the cost of additional constraints.

Another approach is to construct 2D piecewise algebraic splines
[33] which have been successfully used to model vascular trees [27].
This method directly incorporates a smoothness parameter σ and di-
rectly produces blendable potential fields of arbitrary continuity. For
increased smoothness parameters, however, the potential fields be-
come approximating and do not interpolate the original polygon. In
our scenario with closed outlines, this approximating behavior leads to
a noticeable shrinkage. Moreover the evaluation of the implicit piece-
wise algebraic splines is rather expensive even for quadratic splines.

3 SWEEP SURFACES FOR VASCULAR MODELING

Implicit sweep primitives are defined by a sweep template and a tra-
jectory along which the template is moved. In our scenario the sweep
trajectory corresponds to the centerline of an unbranched vascular seg-
ment and is described by a list of consecutive nodes Fi which follow
the center of the vessel. The corresponding implicit vascular contours
Oi are represented by lists of consecutive coplanar points (o0

i . . .o
n
i )

which sample the vascular surface in the corresponding plane Pi and
define a closed polygon.

To create an implicit description of a vascular tree, we essentially
perform three steps: first we need to convert all vascular contours Oi

into implicit 2D sweep templates Ti (1). We then use the centerline to
compute the sweep surface for each branch (2). Finally, the branches
are smoothly blended together to form the whole vascular tree (3).

3.1 Implicit Sweep Templates

Several methods have been proposed to generate implicit descriptions
from polygons. Since our method is specifically designed to allow
interactive real-time applications, we chose to precompute rasterized
implicit representations. During evaluation of the implicit sweep, the
precomputed images serve as implicit sweep templates, which means,
distance computations in the template domain are simple and efficient
image lookups. This can be viewed as a caching strategy as opposed
to the in-place evaluations used in [27] which result in a significantly
higher computational complexity. To reduce aliasing, we use standard
bilinear filtering when accessing the template images.

Catmull-Rom splines (CR splines) [17] constitute a popular family
of hermite cubic interpolants. We will employ CR splines for several
interpolation tasks in this article since they are very easy to construct
and expose local control and C1 continuity. A CR spline that interpo-
lates a list of consecutive points pi, i = 0 . . .n with varying distances is
defined as

CRτ

pi
(t) =




1
u

u2

u3




T 


0 1 0 0
−τ 0 τ 0
2τ τ −3 3−2τ −τ

−τ 2− τ τ −2 τ







pi−1

pi

pi+1

pi+2




u = t−ti
ti+1−ti

(2)
where ti = ti−1 + |pi − pi−1| and t0 = 0 represent the parameter values
of the spline associated with the interpolated points pi. For every in-
terval [ti, ti+1], the spline is defined by a local cubic Bezier curve start-
ing at pi and ending at pi+1. The user-adjustable parameter τ ∈ [0,1]
accounts for the so-called ’tension’ which means it determines how
’curved’ the spline is.

To efficiently generate shape templates, we first construct a closed
CR spline CR0.7

Oi
(t) that interpolates the contour samples Oi. To con-

vert this parametric curve to an implicit description, we adaptively sub-
divide the spline and rasterize the resulting polygon to an image of ad-
justable resolution. We then perform an unsigned distance transform
algorithm [4] which results in a discrete distance field. To convert it to
a signed distance field, we use a modified scan line algorithm that uses
the subdivided polygon to flip the sign of the distance values inside the
object. This is essentially a point-in-polygon test. This method (see
Figure 3), is very fast and the quality of the resulting distance fields is
mainly determined by the choice of the distance transform algorithm
and the resolution of the rasterization. The discrete distance templates

+ -

subdivide

flip sign

rasterize

+DTF

+ +

Fig. 3. Diagram of our implicit sweep template generation method. Poly-
gons are converted to Catmull-Rom splines, and rasterized after subdi-
vision. A discrete distance transform algorithm is performed to generate
an unsigned distance image. Finally the inside of the polygon is flipped,
yielding a signed distance field.
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generated by this approach are clamped, but since we are mostly in-
terested in the surface and in the interior of the final sweep, far-away
regions of the distance field are irrelevant. To increase performance,
the generation of the templates can easily be parallelized.

3.2 Defining the Implicit Sweep

In this section we will describe how to compute an implicit indica-
tor function B(P) from a centerline trajectory with associated sweep
templates. The surface of a branch will be described by the zero level
set B(P) = 0 and the interior of the vessel by negative regions with

B(p)< 0. Let F : R→ R3 be a smooth parametric curve that interpo-
lates the sampled centerline positions Fi at parameter values ti

F(t) = ( fx(t), fy(t), fz(t)). (3)

To define the vascular sweep surface, an affine mapping W : R3 →
R3 is needed that transforms positions from the parameter domain of
the curve to the embedding space and vice versa. We will from now
on refer to the setting in the parameter domain as tangent space and
denote the embedding space as world space as depicted in Figure 4. A

Fig. 4. Illustration of the corresponding world space and tangent space
settings of a sweep. The mapping W is defined by the orthonormal
frames (F t ,Fn,Fb). For curved trajectories, W−1 is ambiguous since
world space positions can be mapped to multiple tangent space posi-
tions.

common way to define the tangent space is to use Frenet frames which
define an orthonormal basis for any curve parameter t

F t(t) =
F ′(t)

‖F ′(t)‖

Fn(t) =
F ′′(t)

‖F ′′(t)‖

Fb(t) = F t(t)×Fn(t)

(4)

where F t is the tangent function and the normal function Fn and the

binormal function Fb parameterize a plane which is orthogonal to the
centerline. To overcome singularities at inflection points F ′′(t) = 0
several methods have been proposed [8]. The basis defined by F t ,

Fn and Fb allows to define the mapping W which transforms tangent
space points P′ = (Pt ,Pn,Pb) to world space points P = (Px,Py,Pz) for
any given curve parameter t.

(Px,Py,Pz) =Wt(Pt ,Pn,Pb) = F(Pt)+Pn ∗Fn(Pt)+Pb ∗Fb(Pt) (5)

To describe curved centerlines, we define F(t) using a CR spline

CR0.7
Fi

(t) which interpolates the discrete centerline positions Fi. Un-
fortunately, due to the bending induced by curved centerlines, the re-
verse mapping W−1 from world space to tangent space is ambigu-
ous. Any world space position may be mapped to multiple positions
in the tangent space as depicted in Figure 4. Intuitively, this means,
that depending on the curvature of the trajectory and the extent of the

templates, local self-intersections may occur. Since our sweep is de-
fined implicitly, however, we can resolve these intersections in-place
by successively applying a Boolean union operator. For this, we use
the quadratic polynomial operator described in [32] which is a smooth
generalization of the min [39] operator and preserves the C1 continuity
of our CR spline-based interpolations.

minli(x,y) =
1

2
(x+ y− |̂x− y|2,σ ) (6)

where |̂x|2,σ is a smooth quadric approximation of the absolute func-

tion |x| with blend range σ

|̂x|2,σ =

{
|x|, |x|> 2

x2(1− 1
4 |x|), |x| ≤ 2

(7)

To prevent an unwanted self-blending for a branch, we have to choose
the blend range of the operator to be very narrow. In practice, it should
be chosen to be a fraction of the smallest vessel radius, that is present
in the dataset. This means minli behaves much like a solid union oper-
ator, but has the theoretical property of preserving C1 continuity.

To determine W−1 for a point P in world space, all parameter values
t that allow a projection of P to F(t) in the plane defined by F t(t), have

to be determined. The reverse mapping W−1 thus looks as follows

W−1(Px,Py,Pz) =
{

W−1
t (Px,Py,Pz)

∣∣∣((Px,Py,Pz)−F(t)) ·Ft(t) = 0
}
.

(8)
The computation of the projectable parameters t depends on the de-
grees of the polynomials used to describe F and F t . For cubic polyno-
mial interpolations, as in our case, the roots of a polynomial of degree
5 have to be computed numerically [28]. This root-finding has to be
performed individually for each local Bezier curve segment of the CR
spline. Once the curve parameters t for a query point (Px,Py,Pz) in
world space have been found, we can map that point to all correspond-
ing positions in tangent space, evaluate the implicit sweep, and com-
pose the implicit values B′(Pt ,Pn,Pb) obtained in tangent space using
the union operator defined in Equation 3.2

B(Px,Py,Pz) = minli{B′(W−1(Px,Py,Pz))}. (9)

Sweep templates are usually sparsely present at specific curve pa-
rameters t, hence some interpolation method is required to compute
the sweep at intermediary positions. For tangent space points, the
Pt coordinate directly corresponds to the curve parameter t which
leads to a stacked arrangement of the sweep templates (see Figure
4, right). This setting allows for a straightforward interpolation be-
tween the implicit templates. In [40], linear interpolation is applied,

Fig. 5. Comparison of linear sweep template interpolation and Catmull-
Rom spline-based sweep template interpolation. Left: Original con-
tours. Center: Linear interpolations of shape templates lead to visible
discontinuities, particularly at high gradients of the template size. Right:
Cubic Bezier splines produce more organic C1 continuous results.

which leads to C1 discontinuities that are undesirable in our scenario
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since we want to model organic structures (see Figure 5, left). To
blend the distance field templates, we use CR splines CR0.7

Ti
(t) where

Ti = Ti(Pn,Pb) are the values sampled from the implicit sweep tem-
plate associated with parameter value ti. The implicit distance value
for a point P = (Pt ,Pn,Pb) in tangent space is thus defined as follows

B′(Pt ,Pn,Pb) =CR0.7
Ti

(Pt). (10)

Figure 5 (right) demonstrates the more organic behavior of the cubic
template interpolations for a segmented aneurysm.

3.3 Robust Template Blending

Interpolations of signed distance fields generally have to be treated
with care. Problems occur if the (negative) inside-regions of adjacent
sweep templates are not aligned. Suppose an extreme case, where
the inside-regions of two adjacent templates have no overlap at all,
as depicted in Figure 6 (left). If the fields are interpolated, the re-
sulting volume will have two disconnected regions, since there are in-
termediate blends where the whole interpolated template is positive.
In cases where the inside-regions of adjacent templates expose a par-
tial overlap, the volume is usually connected, which means the inter-
polated templates do contain negative regions. These are, however,
significantly smaller than those of the surrounding templates, which
leads to visible artifacts that could be misinterpreted as stenoses. For
well-behaved centerline trees, this problem should not occur, since the
centerline is defined to be in the center of a vessel. However, in the
presence of pathologies, large calcifications or noisy datasets of low-
resolution, automatic segmentation algorithms frequently deliver in-
consistent models with a poor alignment of the vascular contours.

To inherently handle such constellations, we introduce a spline-
based blending technique which automatically aligns the shape tem-
plates in tangent space. The key idea is, not to blend in the t direction
as depicted in Figure 6 (left), but to blend along an additional CR
spline CR0.7

meani
(t) as depicted in Figure 6 (right). The spline is con-

structed to pass through the centers of gravity of the vascular contours
in tangent space and basically leads a translational alignment of the
blended implicit templates. This technique greatly increases the ro-
bustness of our system in handling poorly conditioned segmentations.

4 BLENDING VASCULAR BRANCHES

To model whole vascular trees, the individual implicit branches Bi con-
structed in Section 3.2 need to be unified to form the global implicit
indicator function V . To achieve a composition with smooth joints at
vascular furcations, we use an extension of the Wyvill field function
[40] to map the pseudo distance field B of an individual branch to a
potential field.

fwyvill(x) = (1− x2)3 : R→ [0,1] (11)

In contrast to fwyvill , we design our field function fw(x) : R→ [−1,0],
generates fields which are negative inside objects. By this we can
consistently use min operators to compute unions

fw(x) =





−1 x <−w

− fwyvill(
x

2w + f−1
wyvill

(0.5)) −w <= x <= w

0 x > w

. (12)

Here, w allows to adjust how fast fw drops to −1 inside of objects and
to 0 outside of objects which means it represents the blending range
of the field. While B has global support and the object boundary is
defined by B = 0, the potential field fw(B) has local support and the
isocontour fw(B) =−0.5 corresponds to the boundary.

A rich set of blending operators is available that allows to create
smooth unions of these fields [6, 7, 11, 32, 39] . When dealing with
complex vascular trees, there are frequent constellations where ves-
sels run in close proximity to each other. To prevent an unintentional
blending of unrelated adjacent vessels, we exploit the topological in-
formation of the centerline tree to compute blend weights b(t) ∈ [0,1]
similar to the blend graphs used in [25]. The blend weights b are

Fig. 7. Comparison of two different blending techniques for composing a
vascular tree. Left a smooth, but gradient-agnostic blending method [27]
leads to visible bulges. Right: recent gradient-based blending operators
[23] allow for truly bulge-free blending which is perfectly suited for high-
quality vascular models.

designed to equal 1 at vascular furcations and to drop to 0 at a reason-
able distance along the centerline. This means, the ability of a branch
to blend with others or with itself continuously decreases with a larger
distance from furcations.

As discussed in Section 2.2, during composition, undesirable bulges
may emerge where potential fields overlap [11, 16]. Figure 7 shows a
bifurcation where a child vessel branches off its parent. In our model-
ing approach, the two vessels have a certain area where they overlap.
In this case, the application of standard blending operators leads to a
visible bulging artifact that would most certainly influence subsequent
simulations on the model. This is also the case for an increased blend
range of the operator minli which we used to resolve ambiguities in
branches. Fortunately, this problem has very recently been solved [23]
by using a quasi-C∞ operator ming( f1, f2), which allows to generate
smooth and truly bulge-free hierarchical blends. The key idea is to
modulate the blending properties of the operator with the angle be-
tween the gradients of the participating implicit fields. Using ming,
the implicit indicator function V for the whole vascular tree is defined
as the recursive binary composition of all individual branches Bi.

5 INTERACTIVE MODEL CORRECTION

Vascular trees are complex structures that usually consist of many
branches, each containing arbitrarily many contour definitions. For an
interactive correction application, this leads to a demanding environ-
ment in terms of user navigation and computational complexity. In this
section we will first give a brief overview of our interaction paradigm.
We will then describe our culling- and isosurface extraction pipeline
that allows an interactive editing of high-quality vascular models.

5.1 Interaction Concept

Our interaction framework uses triangular meshes to visualize the cur-
rent vascular model during editing. Additionally, a volume dataset can
be loaded to verify the segmentation in overlay renderings. Computed
tomography angiography (CTA) images provide a contrast agent-
enhanced view of the patient-specific vascular structures and thus con-
stitute a common choice. If the user clicks on an arbitrary point on the
3D mesh, a linked orthogonal multiplanar reformation (MPR) view is
shown. This allows to inspect the corresponding cross section of the
current model as an overlay on the original image (see Figure 11). Us-
ing the mouse-wheel, the user is able to move up and down along the
current branch which allows for a fast visual inspection of the model.
If desired, a snapping feature can be activated which snaps the view to
existing nearby contours on the current vessel. If the user is discontent
with the model at a certain position, he can simply sketch a corrected
contour in the MPR view to get an instantly updated global model. If a
prescribed contour was already present, it will be replaced, otherwise
a new contour will be inserted into the branch, if a contour is deleted,
it will be removed from the model.
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Fig. 6. Illustration of our spline-based interpolation technique in tangent space. Left: a poor alignment of adjacent implicit templates may lead to
disconnected vessel volumes, since there are intermediate blended templates which are positive (=outside) everywhere. Right: by blending along
an additional Catmull-Rom spline in tangent space, the templates are implicitly aligned during blending leading to more robust reconstructions.

Fig. 8. Based on the centerlines, our modeling tool automatically pro-
poses inflow (green) and outflow (red) tags for a coronary vessel tree
(indicated by arrow glyphs). Our global implicit indicator function de-
livers the corresponding branch and parameter value for any evaluated
point P. This allows for an easy assignment of mesh vertices or mask
voxels to branches (top, right).

Computational hemodynamics algorithms often require masks or
meshes to be annotated with inflow and outflow information. Exploit-
ing the topological information contained in a geometric centerline
model, we can automatically determine which end-nodes of the tree
will most likely be inflows or outflows. To allow for an easy tagging
of mesh vertices or mask voxels, we extended our model evaluation
scheme to keep track of the closest vessel and the corresponding pa-
rameter value. It is straight forward to do this, since before applying fw
the implicit values of the branches Bi(P) correspond to the distances
to the respective branches. By additionally returning the branch with
the smallest distance, our system is able to directly associate world
space positions P with that branch and the corresponding centerline
parameter F(t).With this information we can mark vertices or voxels
as inflow or outflow based on their proximity to previously tagged cen-
terline nodes. In interactive sessions, we can thus immediately gener-
ate initial proposals for these tags as shown in Figure 8. If areas are
tagged incorrectly, they can easily be reassigned by the user using a
hot-key.

5.2 Segment-based Culling

To generate a mesh for visualization, polygonizers need to evaluate the
implicit sweep V at (many) world space positions P = (Px,Py,Pz). For
every evaluation of V , we need to compute all potential projections to
vessel centerlines (recall Section 3.2). This is the most computation-
ally expensive step in the evaluation process since we need to find the
roots of a polynomial of degree five. (i.e. solve for all t in Equation
8). To localize computations, we use a culling strategy based on axis
aligned bounding boxes (AABBs). For this, we split the CR spline of
the centerline into individual piecewise cubic Bezier curve segments
for which we compute AABBs. Since we have limited a-priori knowl-
edge about the actual surface which belongs to a Bezier segment, we
heuristically determine conservative bounds for each segment. Due to
the convex hull property of Bezier curves we can use the local control
polygon to bound the centerline segment. In addition, we can deter-

mine the farthest distance Dmax
i = max(|Fi − o

j
i |), j ∈ 0 . . .n from a

centerline position Fi to the corresponding vessel contour Oi. To de-
termine the bounds of a Bezier segment we thus compute the AABB
of its control points and extend it by the maximum of the distances
max(Dmax

prev,D
max
next) as illustrated in Figure 9. Since centerline nodes

need not be associated with a contour Dmax
prev and Dmax

next here refer to the
closest previous or subsequent node respectively, which is associated
with a non empty contour. Since the blending operator g, which we
apply as described in Section 4, increases the influence of local seg-
ments, the AABBs may need an additional extension proportional to
the blend range multiplied by the local blend weight b(t). To allow
for fast localized queries to V , we finally compute an octree for the
segment AABBs as depicted in Figure 10. During evaluation we use
the octree to gather a local subset of centerline segments which have
to be considered when evaluating a point P = (Px,Py,Pz).

Fig. 9. The maximum distance of the nearest previous and the nearest
subsequent contour to the centerline are used to generate a conserva-
tive axis-aligned bounding box of the local cubic Bezier segment i.
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Fig. 10. Illustration of an octree built upon the bounding volumes of the
segments belonging to a single branch. During evaluation, only locally
relevant segments are considered. Please note, that real world vessel
trees are substantially larger than the example in the Figure.

5.3 Isosurface Extraction

To efficiently generate visualizations during interactive sessions, we
use a propagation-based marching cubes (MC) algorithm [5] that ex-
tracts mesh approximations of the underlying model. Instead of evalu-
ating all cells in the volume, that method tracks the isosurface with an
advancing front from preselected seed cells. For each cell, the selec-
tion of neighboring cells which need to be evaluated can be made by
examining the marching cubes configuration of the current cell. The
problem with such methods usually lies in the determination of the
seed cells. In our scenario, however, we can exploit the geometric in-
formation provided by the centerline description, since it allows us to
make a precise guess about where the surface will pass in space. For
each branch, we generate two seeds, one at its beginning and one at its
end, yielding #branches∗2 total seed cells. We advance the cell fronts
for each seed cell in separate threads which are synchronized at cell
access. Figure 12 shows the seeds and cells and their thread affinity
for a single vessel branch.

Computational hemodynamics based on meshes has high demands
on the triangle quality and density distribution. The polygonization
approach described in the previous paragraph does in general not meet
these demands. Its purpose lies, however, in the instant visualization
of the current implicit model during editing. The final result of our
method is the global implicit indicator function V with an arbitrarily
high precision that is determined by the resolution of the shape tem-
plates Ti. For simulation frameworks that require meshes as input,
this indicator function can immediately be polygonized with methods
tuned for triangle quality [50].

5.4 Local Model Updates

During user interactions, the aim is to quickly generate updated visu-
alizations. For this, we use a localized update strategy that only re-
computes the changed portions of the surface. When the user deletes,
modifies or creates a contour, we bound the modification based on
the AABBs computed in Section 5.2. For this, we need to account
for the support of the CR spline-based template interpolation. If an
implicit template changes, two neighboring segments may potentially
change their appearance. During a modification, the model may grow
or shrink. We thus create an AABB that bounds all affected segments
and update the model description with the new contour. We then cre-
ate another AABB for the modified affected segments and finally merge
those two AABBs, which yields the final bounds AABBmod for the user
modification as indicated in Figure 11 (center, left).

To create an updated surface mesh, it is sufficient to recompute the
surface inside of AABBmod . For this, we first clear the evaluations
of the previous MC run in AABBmod . While doing this, we flag all
cells which previously intersected the surface and lie at the border of

thread 0

thread 1

seed

Fig. 12. A multi-threaded propagation-based marching cubes variation
is used for interactive isosurface extraction. The marching cubes seed
cells (red) are placed at the end points of each branch. The colors of
the cells indicate the thread that evaluated the global implicit function.
Note that this illustration only shows a single branch.

AABBmod as seeds. Since we know the new surface will be consistent
with the old surface beyond AABBmod , these seeds provide perfect en-
try points for the subsequent local isosurface extraction. In Figure 11
(center, right), seed cells generated this way are visualized in red color.

6 RESULTS

To validate the models generated by our method, we applied it to a va-
riety of segmentations, including cerebral vessel trees, arterial whole-
body vessel trees and coronary vessel trees. For these applications our
method generated smooth high-quality models with an instant manual
correction capability. In addition, our method has been applied for
the manual creation of 30 coronary segmentations in an ongoing vali-
dation study that compares computational hemodynamics-based FFR
simulations with invasively measured blood flow data.

6.1 Model Smoothness

Since our method uses CR splines to define the sweep templates and
trajectories and to interpolate the sweep in tangent space, our models
generally expose C1 continuity. This continuity is preserved by the
union operator minli and the gradient-based branch blending opera-
tor ming. By design, our method interpolates all prescribed contours
which is important for consistent feedback during interactive editing
sessions. For the visualization of vascular trees from noisy segmen-
tations however, the ability to generate smoothed results is important.
Our method can easily be extended to support this by applying smooth-
ing kernels to the discretized shape templates Ti. Another way is to
blend the templates with a smooth shape, which leads to a modified
template function

T ′
i (Pn,Pb) = Ti(Pn,Pb)∗ (1− s)+ shape(Pn,Pb)∗ s.

This can be seen as a regularization scheme which allows to restrict

Fig. 13. Noisy centerline models (left) can be smoothed by blending the
implicit templates of the cross-sectional contours with implicit analytic
shapes like circles or ellipses. This leads to a controllable regularization.
Smoothness parameters s from left to right are 0, 0.5 and 1.

2834 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 12, DECEMBER 2013



erroneous user-corrected

Fig. 11. Illustration of our local modification scheme. Left: the automatic contouring result has leaked to a close-by gradient, which is a frequent
problem. Center, left: the user can select the erroneous contour by clicking in a 3D view and sketch a correction in an MPR view of the image. The
region where the surface of the model might change corresponds to the support of the Catmull-Rom spline and is indicated by the arrows. Center,
right: the bounding box, which encloses the affected segments is cleared from the previous marching cubes state and border cells are used as
seed cells (red) for subsequent isosurface extraction. Right: the final constellation after local execution of the propagation-based marching cubes.

the cross-sectional shapes of vessels to a limited deviation from a tar-
get shape depending on a smoothness parameter s ∈ [1,0]. Typical
shapes are ellipses or circles which can directly be fitted to the corre-
sponding contour polygon. Figure 13 shows the impact of an increas-
ing smoothness parameter s.

6.2 Comparative Study

We qualitatively compared our method to the technique described in
[27], since it is also based on implicit sweep surfaces and to our knowl-
edge the only method with a model quality comparable to ours. The
main difference is that the authors use piecewise algebraic splines
(PAS) with an inherent smoothness parameter σ as the underlying im-
plicit representation. This results in superior theoretical smoothness
and continuity properties for their models. To perform a direct com-
parison, we implemented the method described in [27] and incorpo-
rated it in our system. Figure 14 shows close-up views of a coronary
model that illustrates the high similarity of both methods for cubic
PAS splines with a low smoothness parameter σ = 2. The most promi-
nent difference we noticed in the resulting models was a shrinkage of
vessels for increased smoothness parameters σ . As mentioned in Sec-
tion 2.4, this effect is induced by the approximating character of the
implicit algebraic spline representation [33] for the vascular contours.
An increased smoothness thus comes at the cost of an increased shrink-
age as shown in Figure 14 (center, right). Our explicit blending-based
smoothing strategy (see Section 6.1) does not suffer from this effect.
The geometric regularization shape can even be designed to have the
same area as the corresponding free-form contour. This results in a
very low impact of smoothing on the overall volume of a model which
is an important quantity in the vascular domain.

The development of our method was driven by the observation, that
a manual inspection and correction system is essential for practical
computational hemodynamics applications. Hence, an important fea-
ture of our method is its support for interactive editing. A major draw-
back of the PAS method is its computational complexity and the re-
sulting model generation times. The reconstruction times of 1-3 min-
utes reported in [27], which were already achieved with an optimized
CUDA implementation, do not allow for interactive workflows.

Since [27] presents a combination of a segmentation algorithm and
a subsequent modeling method, the presence of a cross-sectional con-
tour is assumed for every centerline point. Our method explicitly sup-
ports centerline points that do not contain a vascular contour, but only
contribute information about the centerline trajectory. This allows the
sampling of the centerline to be independent of the number of cross-
sectional definitions. For a given centerline of arbitrary complexity, a
single contour is thus sufficient to define the whole sweep with a con-
stant cross-section. In addition, this allows the user to adaptively place

Fig. 14. Qualitative comparison of cubic PAS models [27] (red surface)
with our models (blue overlay). Smoothness parameter sigma for [27]
from left to right: 2, 5, 6. Blend range for our method was set to w = 3mm

in all examples. Left: for a low σ both methods are qualitatively indistin-
guishable (notice the z-fighting of the overlays which results from highly
similar surfaces). Center, Right: for higher smoothness parameters σ

PAS models visibly shrink due to their approximating nature.

more contours in pathological regions like stenoses or aneurysms,
while leaving less detailed regions with sparse contour information.

6.3 Quantitative Comparison

To quantitatively validate our method, we compared the results to our
implementation of PAS and an implementation of convolution sur-
faces (CS) [36] that is shipped with the medical imaging framework
MeVisLab [34]. Table 1 shows Hausdorff distance statistics measured
between our models and meshes extracted from PAS and CS models.
For σ = 2 the mean distance between our models and PAS models
is < 0.07mm which is fraction of the voxel size delivered by current
CT or MRI protocols. Note that the high increase in the surface dis-
tances to the PAS method for σ = 6 is due the loss of entire regions of
thin vessels during isosurface extraction. This is an effect of shrinkage
since the uniform MC algorithm cannot adequately sample vessels if
they become too thin. As indicated by Table 1, the effect is particu-
larly pronounced for vascular trees with thin vessels like coronary or
cerebral trees.

The cerebral tree model only contained radii associated with center-
line nodes. Our method easily supports this type of data, if the shape
templates are replaced with implicit circle definitions, similar as in the
smoothing approach presented in Section 6.1. Since CS only support
radial models, we could not compare the results for the other datasets.
CS models and our models are, however, very similar except for the
fact that convolution surfaces inherently generate rounded caps at ves-
sel ends. These are precisely the regions where both methods have the
largest differences and which account for the max error in Table 1.
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Table 1. Max, mean and rms Hausdorff distances (in millimeters) com-
puted with MeshLab. Distances compare piecewise algebraic splines
(PAS) with different smoothness parameters σ and convolution surfaces
(CS) to our results. The arterial and coronary datasets could not be
compared to CS since the centerline models contained free-form out-
lines and CS only supports circular vessel shapes.

PAS CS

σ = 2 σ = 5 σ = 6

arterial tree max 1.286 0.896 1.182 -

∼ 90K vertices mean 0.074 0.140 0.210 -

(Figure 15) rms 0.102 0.172 0.240 -

coronary tree max 0.516 0.572 15.946 -

∼ 60K vertices mean 0.039 0.128 0.489 -

(Figure 8) rms 0.058 0.138 1.474 -

cerebral tree max 0.199 12.777 26.533 1.643

∼ 150K vertices mean 0.017 0.594 2.0673 0.097

(Figure 15) rms 0.023 1.846 4.396 0.157

6.4 Performance

The time needed to generate and visualize our models is mainly de-
termined by the number of vascular cross sections that are present and
by the resolution of the mesh that is extracted. The rasterization time
for the cross sections depends on the target resolution of the template
images. In all examples shown in this article, this resolution was set
to 64× 64 since it is a good trade-off between accuracy and rasteri-
zation time. Computation times are, however, mostly dominated by
the isosurface extraction since it involves the costly root finding as
mentioned in Section 5.2. The initial complete mesh generation time
is usually in the range of 2.5 - 4.5 seconds for real world vascular
trees with a marching cubes resolution of 2563 (see Table 2). After
this, interactive local modifications take less than 0.5 seconds on our
datasets which is fast enough for interactive feedback. Local update
times are mainly determined by the density and the constellation of the
templates. Here, models with a dense template configuration result in
faster update rates, because the template support is spatially more re-
stricted. Changing a template in a sparse model, in contrast, causes
large portions of a branch model to change which leads to a more
global recomputation of the mesh. This behavior is reflected in Table
2 which shows that updates for the cerebral tree are very fast, even if
its model is substantially larger than the arterial and the coronary trees.

Table 2. Mesh generation times (in seconds) for three vascular trees
(marching cubes with 2563 cells) taken on an Intel Xeon CPU with 4
physical cores @2.80GHz and 8GB RAM. Timings are for rasterizing the
implicit templates, for extracting the mesh and the average time needed
to compute an updated mesh after contours have been modified.

Templates Mesh Updates (Avg)

arterial tree (398 cross sections) 0.44 2.06 0.15

coronary tree (109) 0.25 2.49 0.45

cerebral tree (2422) 2.29 2.10 0.11

6.5 Simulation Example

The benefit of our manual correction method can be demonstrated by
the following example. The velocity visualizations shown in Figure 16
were generated using a Lattice-Boltzmann simulation technique [3]
that was executed on a binary mask generated from our global indi-
cator function V . Figure 16 (left) shows the results for the original
automatic centerline-based segmentation [24]. Since it did not accu-
rately capture a present calcification, the velocity magnitude color-
coded streamlines exhibit no saliencies and indicate a normal blood

Fig. 15. An arterial model and a cerebral model generated with our
method. Both trees received automatic inflow and outflow tagging and
can be modified in real-time in our interactive prototype.

flow. The results on the right, in contrast, were generated from a cor-
rected vascular model and clearly indicate the temporarily increased
velocity of the blood flow inside the stenosis. This illustrates, that
even small shortcomings in a segmentation can result in significantly
distorted simulation results.

Fig. 16. Streamline visualization with color-coded simulated blood ve-
locities generated with a Lattice-Boltzmann method [3].Left: the auto-
matically segmented model did not capture a stenosis that was present
and thus leads to an unsuspicious velocity pattern. Right: the corrected
model reveals the increased blood velocity inside the stenosis.

7 CONCLUSION AND FUTURE WORK

We have presented a fast and robust method to generate high-quality
vascular models from geometric centerline descriptions. By employ-
ing a local update mechanism, it is in particular fast enough to al-
low for local model updates at interactive rates without resorting to
a simplified model representation. Our method incorporates a user-
adjustable smoothness parameter which allows to choose between a
strictly interpolatory or an approximating behavior depending on the
application. A blend range parameter can be used to control the blend-
ing behavior at vascular furcations. The implicit modeling approach
guarantees that all models are self-intersection free and expose C1 con-
tinuity. In addition it inherently provides an assignment of locations in
space to a specific vessel branch and the corresponding parameter of
the centerline spline. This property can easily be used to automatically
annotate meshes and voxelizations with inflow and outflow informa-
tion as it is required by many computational hemodynamics frame-
works. Our method thus enables the creation efficient workflows to
manually inspect and correct automatic segmentations or to create new
ones given a presegmented centerline tree. We have applied and eval-
uated our approach on a variety of clinical datasets and have shown
its improvements over similar state-of-the-art methods. We have pro-
vided case studies that confirm the important contributions that our
method brings to the clinical computational fluid dynamics pipeline.

Currently our method is implemented in a prototyping application.
Future work will focus on the tuning of our interaction concepts for
the clinical environment and on the tight integration of our method
into corresponding simulation frameworks.
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