
Horizon Bending for Stylized Spherical Worlds

Christoph Kubisch, Per Normann Abrahamsen

Otto-von-Guericke Universität Magdeburg
3 Point Studios

Email: kubisch@isg.cs.uni-magdeburg.de
perna@3pointstudios.com

Abstract

We present a technique that creates the illusion of
a spherical world, while the source scene descrip-
tion is from a flat world. The latter allows us to
use standard techniques of planar terrain rendering
and physics with a single directional gravity. This is
less complex than having an actual spherical world,
where different techniques and scene editors are
used. Our deformation effect allows us to change
the curvature at runtime, which can be used to ad-
just the appearance of the world or add dramatic ef-
fects. Another benefit using this technique is that it
allows to limit view distance. In a planar world the
view distance can be quite high, which may require
level-of-detail techniques. Using a modified visibil-
ity test according to the world’s curvature, we bene-
fit from drawing less objects, while assuming most
detail lies on the ground and the view direction is
mostly parallel to ground.

1 Introduction

In virtual worlds for computer games, certain exag-
gerations of natural phenomena can help to create
a distinct style. Varying the scale of proportions
is one such a frequently used method. Recent ti-
tles such as EA Maxis’ Spore and Nintendo’s Mario
Galaxy have successfully used spherical worlds in
their designs. The majority of games, however,
still use planar worlds. Such planar worlds can be
rendered and animated using many standard tech-
niques, whilst spherical worlds have a higher com-
plexity, e.g [1] and [2]. That complexity exists in
tools for creating the worlds, rendering them and
physics simulation.

2 Our Approach

Figure 1: The deformed world geometry is shown
left. Right objects illustrate the inversely deformed
visibility frustum.

The deformation effect is similar to ([4]). How-
ever they focussed on making more terrain visible
based on context, while we want to see less to get
additional culling and stylization of world’s curva-
ture. We decided to implement this effect as on-
the-fly deformation of all vertices depending on dis-
tance to camera (illustrated in figure 1 left) using
a vertex program. At runtime the minimum and
maximum range of the effect, as well as the angle
and base elevation can be altered. The bending is
length-preserving at the base level. Geometry be-
low it should be avoided, as it could create distor-
tions by self-overlaps. Although the top level geom-
etry is also distorted, this is less obvious due to the
geometry rotating away from the viewer. The effect
of the deformation is visible in figure 2 top. The
bending axis lies in the base level and is perpendic-
ular to the direction (camera to vertex) on the base
level.

Furthermore the curvature can help to reduce the

VMV 2009 M. Magnor, B. Rosenhahn, H. Theisel (Editors)



Figure 2: The effect applied to a test scene with 90 ◦

bending (top) and no bending (bottom).

amount of visible objects. To benefit from this we
modified the visibility test system. The camera’s
frustum is split into multiple sections, which are in-
versely deformed as seen in figure 1 right. Applying
this multi-frustum reduces the drawn objects. We
assume that in a typical world scenery the major-
ity of detail will be on the ground, and the sky will
contain less objects.

2.1 Results

As the effect is vertex driven, the quality de-
pends on the tessellation level of the scenes’ ge-
ometry. On current generation hardware render-
ing a few more triangles of the same state set-
tings (textures, shaders,...) does not have se-
vere performance penalties ([3]). Therefore ob-
jects can benefit from higher resolution meshes
to minimize vertex deformation artifacts. We
tested our method on a GeForce 9600 GT 512
MB, Core2Duo 2.3Ghz. The scene consists
of around 200, 000 triangles and 150, 000 vertices.
To simulate common fragment-program load, a
dummy program with 56 instructions was used.

We tested different configurations for their rela-
tive speed:

• Off: No bending is performed. This yields to
the highest amount of visible fragments and
the most simple vertex-program. 100%.

• Conditional: Bending is performed for ver-
tices beyond the minimum range. The vertex-
program has 47 additional instructions and
makes use of conditional branching. 92%.

• On: Bending is performed for all vertices. The
vertex-program has 53 additional instructions.

Figure 3: The scene of figure 2 is shown from a
different angle and with the camera’s cyan frustum
hull.

Performs faster than conditional branching as
the branching overhead outweighs the arith-
metic costs. 98%.

• Frustum: As above but with improved frus-
tum culling. Depending on scene can reduce
processed meshes quite a lot. 170%

References

[1] K. Compton and J. Grieve and E. Goldman
and O. Quigley and C. Stratton and E. Todd
and A. Willmott. Creating Spherical Worlds.
In ACM Siggraph Sketches, 82, 2007.

[2] M. Klasen and H.C. Hege. Terrain Rendering
using Spherical Clipmaps. In Eurographics /
IEEE VGTC Symposium on Visualization, 91–
98, 2006.

[3] M. Wloka. Batch, Batch, Batch: What does
it really mean? In Game Developers Confer-
ence, 2003.

[4] S. Möser and P. Degener and R. Wahl and
R. Klein. Context Aware Terrain Visualization
for Wayfinding and Navigation In Computer
Graphics Forum 27/7,1853–1860, 2008.


