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Abstract Volume rendering allows the direct visualization of scanned volume data,
and can reveal vessel abnormalities more faithfully. In this overview, we will present
a pipeline model for direct volume rendering systems, which focus on vascular
structures. We will cover the fields of data pre-processing, classification of the
volume via transfer functions, and finally rendering the volume in 2D and 3D. For
each stage in the pipeline, different techniques are discussed to support the diagnosis
of vascular diseases. Next to various general methods we will present two case
studies, in which the systems are optimized for two different medical issues. At the
end, we discuss current trends in volume rendering and their implications for vessel
visualization.

1 Introduction

For the diagnosis of vascular diseases, like stenosis, plaques, and other vessel
wall abnormalities, contrast-enhanced image data, such as CT angiography or MR
angiography data, are acquired. Direct volume rendering of these datasets is a
viable option and complements slice-based viewing. The increased image intensity
of the contrast-enhanced vessels is used to selectively emphasize them. Compared
to threshold-based surface rendering or surface rendering of segmentation results,
direct volume rendering (DVR) represents vascular structures, in particular small
vessel abnormalities, more faithfully. This is achieved by avoiding the binary
decision, which portions of the data belong to a surface. With carefully refined
transfer functions (TF) different portions of the vessel wall, e.g. arease with plaque

C. Kubisch (�) � S. Glaßer � M. Neugebauer � B. Preim
Institute of Simulation and Graphics, University of Magdeburg
e-mail: kubisch@isg.cs.uni-magdeburg.de; glasser@isg.cs.uni-magdeburg.de;
neugebauer@isg.cs.uni-magdeburg.de; preim@isg.cs.uni-magdeburg.de

L. Linsen et al. (eds.), Visualization in Medicine and Life Sciences II,
Mathematics and Visualization, DOI 10.1007/978-3-642-21608-4 7,
© Springer-Verlag Berlin Heidelberg 2012

109

kubisch@isg.cs.uni-magdeburg.de
glasser@isg.cs.uni-magdeburg.de
neugebauer@isg.cs.uni-magdeburg.de
preim@isg.cs.uni-magdeburg.de


110 C. Kubisch et al.

are displayed. A survey of surface-based vessel visualization techniques with
applications in treatment planning and surgical training was presented in [1]. In
contrast, this chapter is focussed on volume rendering and consequently diagnostic
applications.

Data Quality. Ideally, the contrast agent is equally distributed in all vascular struc-
tures which are relevant for diagnosis. In clinical practice, the contrast agent spreads
with a certain speed and thus cannot reach a complete vascular tree at a particular
point in time. Moreover, the contrast agent diffuses in the surrounding and leads
to (again irregularly) increased image intensity values. The non-uniform spatial
distribution of the contrast agent is referred to as contrast agent inhomogeneity.
A simple technique to compensate for this artefact is a so called background
compensation [2], which estimates the different background values and adaptively
corrects them.

Another general problem is the small scale of vascular structures. A large portion
of the voxels belonging to a blood vessel are boundary voxels. These voxels
comprise vessel portions and portions of other tissues resulting in a state that is
generally referred to as the partial volume effect. This leads to an averaging of the
image intensities. As a consequence, small side branches of vascular structures may
be hidden and larger branches may appear smaller than they actually are.

Finally, the image intensity of contrast-enhanced vascular structures in CT data
is in the same range as bony structures. In some regions of the body, these bony
structures may be far away from the vascular structures and can be efficiently
removed by applying clipping planes. However, in other regions, such as the skull,
this is often not feasible due to a close neighborhood.

The remainder of this chapter is organized as follows. We describe a vessel
visualization pipeline in Sec. 2. We go on and discuss the elements of that pipeline,
namely data preprocessing (Sec. 3), classification (Sec. 4), and rendering (Sec. 5).
Case studies, where the general principles are applied to specific diagnostic tasks,
are presented in Sec. 6.

2 Vessel Visualization Pipeline

We define the visualization of vessels from volume data as a pipeline process. The
common goal of this pipeline is to support the diagnosis of vascular diseases, such as
stenoses (narrowings), aneurysms, and plaque formations. This goal is achieved by
the use of isolated views and focus-and-context visualizations. The focus can be the
vessels themselves, pathologic portions of a vessel, or their spatial relationship to
other organs. The context is mostly provided by the surrounding tissue, which aids
therapy planing by providing functional relationships. We will present the following
stages of the pipeline:

1. Data Preprocessing: Additional anatomic structures next to the volume data are
identified and delineated to aid the vessel identification. The volume may be
filtered for noise removal.
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2. Classification with Transfer Functions: The intensity values stored in the volume
are mapped to optical properties, like color and opacity values.

3. Rendering: The volume data is rendered as 2D or 3D image and might be limited
to single vessel paths.

Common visualization goals are the removal of obstructing tissue and highlight-
ing vessel pathologies. When it comes to intervention planning, surrounding context
structures gain more importance. The presented DVR pipeline focuses more on the
vessels themselves.

3 Data Preprocessing

In a first stage, various preprocessing steps on the volume data can be carried out.
Initially, filtering techniques may remove noise or compensate for contrast agent
inhomogeneity [3]. Bone removal (Sect. 3.1), vessel segmentation (Sect. 3.2), and
emphasis of elongated vessel-like structures (Sect. 3.3) are frequently performed
to display the vessels. These methods can strongly improve the visual quality,
since vessels are relative small structures inside the volume and thus can be easily
obstructed.

3.1 Bone Removal

In most regions of the human body, (contrast-enhanced) vascular structures and
skeletal structures cannot be discriminated reliably [4]. Bone removal is part of
almost all modern radiology workstations. In most cases, it is sufficient if the user
marks a connected skeletal component with one click of a pointing device to initiate
a (more or less advanced) region growing method to roughly segment this structure
(see Fig. 1).

3.2 Vessel Segmentation

Another common task is the segmentation of the vessel voxels. The segmentation of
vascular structures allows to adjust a TF to the image intensities, in particular to the
histogram of vessel voxels. This is essential since they occupy only a small fraction
of the entire dataset (�2-5% in the coronary datasets used in Sect. 6.2) and thus
are hardly recognizable in the global histogram. There exist various segmentation
techniques. The conceptually most simple method is region growing [5]. From an
initial set of seed points, more and more neighboring image voxels are included as
long as they can be classified as vessels. Typically, this inclusion is bound to a global
intensity threshold. The progressing boundary of the segmentation process can also
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Fig. 1 DVR of vascular structures. Original scene (left), bones to be removed (middle) and
resulting visualization restricted to the heart, the kidney and vascular structures (right). Compared
to the initial scene, bone removal significantly improves the display of vascular structures. (Image
courtesy of Johann Drexl, Florian Link and Horst Hahn, Fraunhofer MEVIS)

be interpreted as wave front that propagates through the segmented object. This
interpretation forms the basis of the level set and fast marching methods [6]. Local
image features, such as intensities, gradients, and textures, control this propagation
adaptively. Therefore, the front is rapidly moved towards those regions, which are
likely part of the vascular system, and is hindered from others.

After segmentation, the centerlines of vessels and the whole vessel tree can be
extracted through skeletonization. This can be achieved by basic operations, which
commonly use thinning to create a single voxel wide representation of the vessel
tree. Thinning can be implemented by the morphological operator erosion, which
has to consider the anisotropic character of medical image data (slice distances
are usually larger than in-plane resolution). The centerline can be used for vessel
specific rendering techniques (see Sect. 5.2) or for the analysis of vessel attributes,
such as the diameter.

A variation of segmentation is vessel tracking, in which a path along the vessel
is extracted from a given starting point. Various methods exist, some extract
single paths, others can locate the entire vessel tree and correctly handle vessel
branching. At the Rotterdam Coronary Artery Algorithm Evaluation Framework
[7] many methods have been compared and analyzed with respect to accuracy,
speed, and level of user interaction. For more details on vessel segmentation and
skeletonization, we refer to Boskamp et al. [8].

3.2.1 Centerline Correction

An initial vessel path can be refined, so that it reflects the centerline more accurately.
For each pathpoint M , a tangential plane T is generated, in which the point is moved
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Fig. 2 The original center M

is corrected by a weighted
sum of the radial hitpoints Pi

and the distances di between
them

towards the center [9]. The center is approximated by casting radial rays within the
plane, which generate a series of hitpoints Pi with the vessel wall (see Fig. 2). The
hitpoint generation requires pre-defined thresholds for the vessel’s inner and outer
intensities. The distances di between adjacent hitpoints are used to approximate a
new center point N :

N �

nP

iD1

Pi � .di�1 C d.i/modn/

2 �
n�1P

iD0

di

(1)

As vessels typically exhibit smooth curvature and no abrupt changes in flow,
spline-interpolated pathpoints and tangents can be used. This is particularly useful
when the segmentation yields a path with discrete voxel coordinates.

3.3 Filtering

Similar to segmentation, it is also possible to find voxels that are usually part of
vessels with filtering, since they exhibit certain geometric features in their neigh-
borhood. Whilst segmentation classifies voxels in a binary fashion, filtering assigns
real probability values to each voxel, the vesselness factor. This factor is mostly
related to finding elongated round structures. Filtering uses the local neighborhood
of each voxel and treats all voxels in the same manner. Detection of the vesselness
is challenging, because especially at branchings, the local neighborhood does not
reveal elongated structures.

To compute the vesselness, Frangi et al. [10] used the Hessian matrix H to detect
tubular structures. A common approach to analyze the local behavior of an image L

is to consider its Taylor expansion in the neighborhood of a point xo:

L.xo C ıxo; s/ � L.xo; s/ C ıxT
o ro;s C ıxT

o Ho;sıxo (2)

This expansion approximates the structure of the image up to the second order.
ro;s and Ho;s are the gradient vector and the Hessian matrix of the image computed
in xo at scale s. Varying s will represent different vessel diameters, and the results
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of each filter run are combined using the maximum in the end. To calculate these
differential operators of L, convolution with derivatives of Gaussians are used.
Analysis of the second order derivatives information (Hessian) has an intuitive
justification in the context of vessel detection. The second derivative of a Gaussian
kernel at scale s generates a probe kernel that measures the contrast between the
regions inside and outside the range .�s; s/ in the direction of the derivative.

At the core of the vessel filter lies an eigenvector decomposition of the Hessian
matrix, which describes the local principal directions of the curvature. Given the 3D
volume space, this yields three orthonormal vectors (�1; �2; �3) due to the matrix’s
symmetry. The eigenvector with the smallest absolute eigenvalue corresponds to the
direction that represents the least curvature, i.e. along the vessel direction. If the
vectors are sorted by their magnitude (j�1j < j�2j < j�3j), an ideal tubular structure
in a 3D image would have the following attributes:

j�1j � 0 (3)

j�1j � j�2j (4)

j�2j � j�3j (5)

These attributes only describe cylindrical structures, which means they are
inappropriate at vessel branchings. The final vesselness is a product of different
parameters that represent geometric details such as blob-like structures or plane-
and line-like patterns. To refine the result, the user can control these parameters,
which are based on the � vectors, by custom weights. One of the parameters takes
the intensity values into account to lower the impact of noisy background values.
For further details on the entire filter construction, we refer to [10].

Because the vesselness is only defined for a single diameter, a multi-scale
approach is employed. Since only tubular structures are determined by this filter,
the detection of vessels in branching areas leaves room for improvement. The multi-
scale approach is also limited in dealing with varying vessel diameters, due to its
limitation to fixed diameters. These issues were dealt with by Joshi et al. [11],
who used a mix of Hessian- and entropy-based filtering. Their entropy factor was
generated from analyzing the polar profiles of each voxel. Figure 3 depicts such a
profile in the 3D case. For each direction, the variance in intensities and average
intensity are computed within the neighborhood. The likelihood of clusters within
such profiles is used to calculate the vesselness.

Compared to the hessian-based technique, the profiles do not require multiple
runs for different vessel diameters and especially the quality around branching
points has been improved (see Fig. 4). However, the method’s implementation in
Matlab on a 3.2 GHz Pentium IV is very time-consuming, i.e. it resulted in a four
hour computation, which is unfavorable in the clinical routine. With the use of
per-voxel factors, either probability-based or binary from segmentation, the later
rendering of volumetric vessel data is reduced or highlighted to the important
vascular structures.
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Fig. 3 A spherical profile (right) for branching vessels (left). The profile shows a phantom
distribution of the intensities on the spherical map for a single radius. By using multiple radii
the mean value intensities and variance of intensities along each solid angle can be derived. A
cluster analysis on this data is used to contribute to the vesselness factor

Fig. 4 Comparison of the Hessian-based (left) and entropy-based (middle), polar profile, vessel
filters. The green arrows mark benefits of the earlier method, and the yellow arrows show
improvements of the latter. The final (right) image shows a combination of both techniques. Image
from [11]

4 Classification with Transfer Functions

Segmented data provides additional information, that can aid analysis of the volume
data for classification. DVR requires a classification C of the measured intensity
value i , which maps intensity values to colors and opacities:
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Fig. 5 TF specification with a piecewise linear function to emphasize two tissue types. The
histogram is shown as context. The supporting points of the 1D transfer function can be arranged
(left) to highlight only focus structures (right), in this case calcified plaques within the segmented
coronary vessels

C.i/ ! .r; g; b; ˛/ (6)

This can be used to color-code anatomical structures differently and make
them invisible or transparent. For faster processing, the classification is often pre-
computed and encoded into lookup-textures. It can be applied to each voxel before
rendering (pre-classifaction), or during runtime sampling (post-classification). The
latter yields much higher quality, because the interpolated intensity values between
voxels are classified on their own.

A piecewise linear function can be defined through multiple supporting points
that highlight certain intensity ranges and hide others (see Fig. 5). If the objects
lie within certain intensity ranges, the histogram information aids the manual
specification process.

The classification may not only depend on the intensity values. Kindlmann
and Durkin [12] have shown how multi-dimensional TFs (MDTF) can be semi-
automatically generated in order to emphasize transitions between materials. To
discriminate values with the same intensity, additional attributes are taken into
account. One typical attribute is the gradient magnitude: homogenous regions have a
small gradient and larger gradients can be found at tissue transitions. With a higher-
dimensional domain, the TF design process itself becomes harder, as arbitrary
shapes and color gradients can now be used to classify the regions of interest in the
multi-dimensional space. Several ways to deal with this complexity exist, either by
automatizing the process, or by supporting the manual process through appropriate
user interfaces [13].

In principle, MDTF allows to display vascular and skeletal structures simultane-
ously, as well as to discriminate them e.g. by using different colors, which was not
possible with 1D TFs. Thus, expressive visualizations of complex spatial relations
may be achieved, e.g. blood vessels close to the cranium [14] (see Fig. 6, where
image intensity and gradient magnitude are employed).
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Fig. 6 Application of 2D TFs. Additionally to the intensity values in the 1D TF (left) the gradients
are used for classification and therefore improve the image quality (right). The arrow shows the
aneurysm, while the arrowheads point to the parent arteries, which were obstructed by skull tissue.
Image from [14]

4.1 Histogram Analysis for Transfer Functions

A histogram analysis can automatize the TF specification for emphasizing dataset
specific boundaries. Rezk-Salama et al. [15] used this approach for their implicit
segmentation, in which anatomic structures appear as being (explicitly) segmented.
A histogram-based method was also chosen by Vega Higuera et al. [16] to
emphasize cerebral vasculature with specification of a 2D TF. The histogram is
analyzed for gradient magnitudes and intensity values to only highlight blood vessel
walls in datasets for diagnosing intracranial aneurysms (more detail in Sect. 6.1).
This automatic method strongly speeds up the process, which otherwise requires a
trained expert, due to the small size if the selected region in the 2D histogram. Based
on a reference dataset and a reference classification, a non-rigid registration between
examined and reference datasets’ 2D histograms is performed. The reference TF is
then smoothly deformed using bicubic B-Splines to the new dataset. The result of
this method works very well and is presented in Fig. 6.

To detect peaks of smaller objects, local histograms can be determined in sub-
regions, or along lines, also known as intensity profiles. Lundström et al. [17] par-
tition the volume into regional neighborhoods for which they compute histograms.
Because a clear visual segmentation is not always possible, animation techniques
were introduced to represent the probability of the individual classification [18].
Instead of mixing the overlapping colors for each structure’s intensity region, the
pure colors are presented in an animated series proportional to their probability.
Therefore, the information about the ambiguity is not lost and helps medical doctors
becoming aware of uncertainties.
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Fig. 7 Distance-based transfer function applied to abdominal CT data. In the left image the
vessels within the security margin around the tumor (red) have higher opacity. In the right image
different distance ranges are color-coded. The security margins around tumors are essential to
assess operability. Image Courtesy of Andreas Tappenbeck, University of Magdeburg

4.2 Spatial Transfer Functions

The distance to focus structures can also be used as input to MDTFs [19] (see
Fig. 7). Prior to the application, a distance field for the given key structure needs
to be computed, which requires segmentation of that structure. The sign of the
voxel in the distance field is used to discriminate between interior and exterior
volume.

The local size of regions was used as secondary input to MDTFs by Correa
et al. [20]. They did not use a segmentation, but based their relative size metric
on a continuous scale-space analysis and a set of detection filters. Their algorithm
works in three steps:

1. Scale-space computation. The user defines a set of interesting scales (similar to
the vessel diameters in Hessian-based filtering in Sect. 3.3). Through forward
Euler integration, this scale-field is generated based on diffusion using a custom
conductivity function. The result of this process are various scale fields.

2. Scale detection. Within the scale fields a point set is created by running detection
filters. The points are maxima in space and scale, referred to as Laplacians
of Gaussians. In the authors’ application, the point set defined spheres, which
represent blob structures of various radii.

3. Backprojection. The relative size volume is created from the point set by scattered
data interpolation. This was accomplished with Shepard’s interpolation that uses
a fourth-degree Wendland polynomial as common basis function.

In the end, the relative size is used for the classification. The authors have mapped
size to color values and a combination of size and intensity to opacity and generated
appealing illustrations of the vessels in the visible human’s hand dataset.
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5 Rendering

In the rendering stage the classification is finally applied. In medical workstations a
combination of 3D and 2D views is used to provide the viewer with different spatial
information about the vessels. We will mention some of the principle methods used
in this stage. For the spatial context the 3D views, typically generated through ray-
casting, are frequently used (Sect. 5.1), whilst reformation (Sect. 5.2) and unfolding
techniques (Sect. 5.3) create 2D images for detailed vessel inspection. Kanitsar
et al. [21] have performed extensive research on various 2D visualization techniques
for diagnostic relevance.

5.1 3D View

The 3D view gives an overview of the basic branching pattern of the vascular tree,
and – depending on the TF design – it gives clues to context structures surrounding
the vessels. A wide-spread DVR option is the Maximum-Intensity Projection (MIP),
a rendering mode, where the brightest voxel along each viewing ray is displayed
independent from its position in 3D space. Thus, a single MIP image does not
convey any depth cues. Therefore, it is essential to rotate such visualizations or to
use predefined videos of such rotations in order to benefit from depth-cues resulting
from the motion parallax. The image intensity of the selected voxels is usually
linearly mapped to the brightness of a gray value. Given the intensities I along
the viewing ray from sstart to s, the MIP is simply the maximum of all sampled
intensities.

MIP.s/ D s
max
sstart

.I.Qs// (7)

For clinical users, the simplicity of MIP images is a great advantage: No param-
eter needs to be adjusted and the relation between image intensity in the final image
and the underlying data is quite direct. The partial volume effect is often strongly
disturbing, because it hides small vascular structures in front of larger vascular struc-
tures. As a remedy, the closest vessel projection (CVP) [22], also called Local MIP,
has been introduced [23]. With this variant, instead of the global maximum along
a viewing ray, the first local maximum above a certain threshold t is selected. CVP
images thus provide correct depth information. However, the user has to specify t

appropriately. As a rule of thumb, a certain percentage of the global maximum inten-
sity of the whole dataset is usually appropriate and “suggested” as default value.

5.1.1 GPU-Ray-Casting

With the advancement of programmable graphics hardware GPU-ray-casting has
become the state-of-the art technique also for the visualization of vascular structures.
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Fig. 8 GPU-ray-casting with position buffers applied to coronary vessels in CT data. An approx-
imated mesh hull of the volume is rasterized into ray-start- (left) and ray-end-postion (middle)
buffer. Both are used for the final volume rendering (right) through a viewport-spanning quad mesh

The approximated calculation of the volume rendering integral (I radiance, D end
position, the radiance I0 at the background position s0, � being the absorption and
q being the emission of light):

I.D/ D I0e
�

Z D

s0

�.t/dt
C

Z D

s0

q.s/e
�

Z D

s

�.t/dt
ds: (8)

can be performed with custom loops in the pixel processing stage of the hardware,
substantial flexibility and performance was gained. Scharsach et al. [24] provide
a robust setup for perspective and orthogonal ray-casting. It uses acceleration
strategies, such as empty space skipping and early ray termination. The key idea
is to create two image space buffers for ray start and end positions (see Fig. 8 left
and middle), which are used as input for the final pixel processing program. To
accelerate empty space skipping, a hull mesh can be created at a coarser resolution
than the actual volume. Its positions are rasterized into the ray position buffers.
Special care must be taken to avoid artifacts resulting from clipping the hull mesh
with the near plane. Empty space skipping is particularly useful, as the vascular
structures typically cover only a small subset of the data.

When using volume splatting, such as presented by Vega Higuera et al. [25]
for displaying neuro-vascular data, empty space skipping can be performed more
accurately. As the ray position buffers only store entry and exit positions, the empty
area inbetween cannot be encoded. Volume splatting, however, uses particles to
approximate the filled parts of the volume. Compared to ray-casting, the splatting
comes at the cost of rasterizing many small primitives on their own, creating many
context switches for the hardware. Ray-casting does not suffer from these switches
and its load can be spread over the GPU threads effectively,

The ray-casting approach also provides previous sample data in a more accessible
fashion, which has lead to a technique called opacity peeling [26]. In opacity
peeling, the ray sampling can skip regions along the view ray (assuming front-to-
back traversal). These layers are created when the post-classified opacity O changes
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Fig. 9 Maximum intensity difference accumulation applied to coronary vessels in CT data. From
left to right the MIDA control value � is changed from �1 (left) to 0 (center) to 1 (right). This is
equivalent to blending from DVR to MIDA to MIP. Compared to the original MIDA implementa-
tion, the opacity values for MIDA blending were different than for DVR to achieve a higher contrast

(c D O.siC1/ � O.si /) from one sampling point si to another siC1. Global or
local thresholds can be used to define conditions that represent a layer toggle. For
example, in a head CT data the skull can be peeled quickly: The ray will first start
out in air, then hit skin and skull both giving c � 0, and finally reach the less dense
inner tissue c � 0 again. Given this setup, it is easy to completely refine the visual
results without segmentation, by specifying which layers shall be made invisible or
rendered in a different style.

Bruckner and Gröller [27] introduced the maximum intensity difference accumu-
lation (MIDA) to highlight possibly occluded structures. They altered the blending
to favor classified samples that have a higher opacity than previous samples. Thus,
similar to MIP, high opacity structures are not covered by the accumulation of many
low opacity structures. Their � control value allows a seamless transition from
regular DVR to MIDA to MIP (see Fig. 9).

When 1D TFs are used, DVR greatly benefits from pre-integration tables. The
quality of the approximation of the volume integral greatly depends on the step
width that is used for ray traversal. This especially applies to small vessels when the
classification of the vessel wall has other opacities than vessel interior and exterior.
Increasing the amount of steps, and therefore lowering the distance between sample
points, has a negative impact on the performance of ray-casting. Decreasing the
steps, on the other hand, yields aliasing artifacts. However, the pre-integration tables
store the integrals between two intensities using a finer sampling. Later at runtime,
this pre-computed table T based on the classification C only needs to be sampled
with front intensity sf and back intensity sb . The computation of T is as follows:

T .sf ; sb/ D 1

sb � sf

��Z sb

0

C.s/ds

�

�
�Z sf

0

C.s/ds

��

: (9)

5.2 Planar Reformation

In addition to the 3D view, 2D views are crucial in vessel diagnosis. The profile
of the vessel wall can give information about narrowings, which can hint at an
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Fig. 10 Mulitplanar reformation of vessels. The vessel viewer shows the oppositing longitudinal
sections on the left and a planar cross section on the right. Different rendering styles have been used
to depict the stent placed inside the arteries. Far left shows isosurface style rendering, whilst far
right a classic windowing transfer function. The middle section overlays colored TF with greyscale
windowing TF

Fig. 11 Curved Planar Reformation. The unaltered projection perpendicular to the main direction
of the vessel may cause overlaps (a). Stretched CPR (b) keeps true lengths between vessel path
points. Straight CPR keeps true lengths and centers path points (c). Image from [30]

undersupply of tissues. Analyzing the vessel’s diameter may also reveal signs of
calcifications, also known as plaques inside the vessel, which also lower blood
flow in this area. Wesarg et al. [28] determined vessel diameter changes during the
segmentation and also used longitudinal cut views along the vessel’s centerline.
The cuts were defined by creating a virtual cylinder made of circles perpendicular
to the vessel path. When all circles are stacked on top of each other, the vessel is
effectively straightened and can be presented in 2D as longitudinal cut through the
virtual stacked cylinder (see Fig. 10). To highlight the plaques, arrows are placed in
the 3D and 2D views [28].

A similar strategy to depict the vessel along its path is called curved planar
reformation (CPR). Next to the straightened reformation in 2D, a stretched version
has been presented by Kanitsar et al. [29]. The path points are projected perpendic-
ular to the vessel’s main direction. When the projection is unaltered, the path can
overlap itself and will not be isometric (Fig. 11 A). However, isometry is important
for diagnosis, and therefore the following methods are able to provide it. Stretched
CPR shifts the projected points along the longitudinal axis to account for original
lengths between path points. Straight CPR eliminates cross-sectional movement, so
that the diameter changes of the vessel are easier to read on the longitudinal axis.

Instead of generating a single CPR, the entire vessel tree can be spread into
the image plane as well [30]. Iterative relaxation of the outgoing directions at
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joint points can assure that vessels do not overlap at branchings. Rotation around
the projection plane is still possible, but will mean changes to the position of all
subbranches from the root path.

Due to the focus on the vessels in the 2D views, the surrounding context is
typically lost. Straka et al. [31] introduced the vessel glyph as a set of methods
to combine advantages of both 3D and 2D views into a single visualization. They
emphasize the vessels, e.g. by fading out or darkening adjacent structures. However,
this only works well if the vessels do not exhibit high curvature. Otherwise, they
would overlap themselves and create ambiguous images.

5.3 Vessel Unfolding

With the increasing resolution of MR and CT scanners, the interior of the vessel
may be investigated. Due to the similarity of the geometry to much larger structures
such as the colon, some techniques developed for the colon wall visualization can be
adapted to the smaller vessels. One such technique is virtual colon unfolding [32].
It creates a 2D image of the entire colon wall. In a recent work, Ropinski et al. [33]
used vessel unfolding and flattening to reveal measured data within the vessels. They
have also aligned the unfolded structures to simplify comparison between different
datasets.

Due to the aforementioned progress in scanning quality, it is expected that
other visualization methods make this transition, e.g. virtual endoscopy turning into
virtual angioscopy. Further reduction in noise and improved image resolution with
more voxels shall also improve the output of histogram-based visualization methods
(see Sect. 6.2, Fig. 17).

6 Case Studies

We have presented several basic and advanced DVR techniques to display vessel
structures. In the following case studies, we will present two techniques that were
customized to specific diagnostic tasks. The first is a simplified filtering technique
for implicit segmentation of the main cerebral vessels, which provide context
to simulation meshes. The second provides a refined local histogram analysis to
create TFs, which highlight pathologies for diagnosis of the coronary artery disease
(CAD).
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6.1 Case Study 1: DVR of Cerebral Vasculature in MRA Data

Cerebral aneurysms develop from a congenital or acquired weakness of stabilizing
parts of the cerebral arterial vessel wall. They bear a higher tendency of rupture, with
often fatal consequences for the patient. To gain insight into the cause and evolution
of cerebral aneurysms and to reduce the risk of surgical or endovascular treatment
[34], a detailed characterization of morphology (size, shape), morphodynamic
(pulsatile change of morphology), and hemodynamics (blood flow pattern) is
important [35]. Neugebauer et al. [36] focus on the evaluation of the morphology
with focus-and-context rendering. They propose a hybrid rendering: a polygonal
representation of the mesh containing the flow data and a volume rendering of
the contextual vasculature. A filtering is necessary to ensure that only relevant
information are included into the volume rendering. In contrast to the complex
filtering kernels mentioned in Sect. 3.3, they suggested a simpler series of image
processing operations to detect vessels surrounding a cerebral aneurysm. As input,
MR-Time of Flight (TOF) data is used. Due to a special setup, the TOF sequences
yield a high signal from blood moving into the direction of the slice plane’s normal
(see Fig. 12c). By exploring ten datasets with varying intensity values and from
different scanner devices, they have empirically created the following workflow
(Fig. 13):

1. Binary threshold. Due to the high intensity values of vessels in MRA-TOF data,
a simple threshold operation removes most of the disturbing data. The intensity
histograms of the datasets are analyzed for common characteristics to determine a
proper threshold. Because of individual varyings between datasets, the threshold
is based on the equalized histogram, which compensates for image intensities
and overall contrast between vessels and tissue. The mean value position p in the
equalized image histogram is used to define the refined threshold as T D p � 0:5,
which is found to be close to Imax � 0:25. After applying the threshold, the image
contains all the arteries of interest, but also parts of high intensity brain tissue
and skin, as well as some noise (see Fig. 13b).

2. Connected component analysis. Voxels belonging to arteries form large groups,
whereas skin and tissue-related voxels split up into several small groups (see
Fig. 13b). This observation motivated the use of a connected component analysis
to distinguish between relevant (arteries) and irrelevant (skin, tissue) structures.
In the following, the voxel-groups are referred to as components. The noise is
removed by discarding all components smaller than 0.01% (empiric threshold)
of the overall dataset volume. The components left are the main cerebral arteries
and parts of the skin. Removal of the skin components is achieved by taking
into account that the arteries are located along the center medial axis of the
head (see Fig. 13c). The bounding boxes of all components are projected into
the transverse plane (medical term). Since the arteries are close to the center and
run mostly vertically, their bounding box centers c are clustered in this plane.
In contrast, the skin components exhibit a lower clustering rate. The closest
center to the heads vertical axis becomes the reference origin o. The distances
di D jci � oj of all bounding box centers are calculated relative to o and sorted
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Fig. 12 Analysis of the dataset’s intensity values: slice view (a), volume view (b), histogram (c),
equalized histogram (d). The vessel and skin intensity values are within the upper half of the
equalized histogram

Fig. 13 The different stages of the filtering processes: original data (a), threshold applied (b),
connected component analysis discarding small structures (c), removal of outer skin structures (d)

in ascending order. By sorting the distances, the aforementioned axial-center
distance is included in all following calculations. Based on the ordered distance
list, the mean m value of the distance intervals Di D diC1 �di is calculated. This
mean value is a simplified measure to identify a spatial clustering, the second of
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the aforementioned characteristics are utilized to distinguish between skin and
arteries. All components that belong to an interval Di < m � b, are defined as
components that represent arteries. Experiments on several datasets have shown
that b D 1:2 is an adequate choice to describe the common cluster density
of components belonging to cerebral arteries (see Fig. 13d). The parameter b

describes the relative rate of distance-change and is therefore invariant with
respect to resolution and size of the dataset.

3. Proximity-based preservation of details. Whereas the large arteries can be
filtered in a robust manner by the connected component analysis, small vessels
that potentially emanate from the aneurysm body, cannot be filtered explicitly.
They have a small diameter (�2–3 voxels), are often fragmented because of
insufficient spatial resolution of the MR scan and exhibit low contrast differences
with respect to the surrounding tissue due to the high relative impact of the
partial volume effect. Thus, those vessels exhibit characteristics similar to noise,
tissue and skin artifacts, and are consequently removed during the connected
component analysis. Despite the vague representation, these small vessels are
diagnostically important and should be included in the context visualization. An
experienced radiologist is able to visually distinguish between noise and small
vessels, if the view at the region containing the small vessels is not occluded.
Hence, the region near the aneurysm is included in the context visualization.
This region is chosen by proximity without any filtering. A smooth reduction of
intensity with increasing distance to the aneurysm surface is applied to reduce
the rate of occlusion. This is possible since the opacity of the rendered voxels
will be linked to their intensity when the transfer function is applied within the
final visualization.

A weighted volume mask is created with an Euclidian distance transform
(EDT) to show possible vessels near the voxelized aneurysm. It is crucial that the
polygonal simulation mesh is registered properly with the volume data, so that its
voxelisation matches the volume dataset. This should be taken into account when
generating the original mesh. The distance field F is the result of the EDT and
encodes scalar values between 0 and 1, where 0 describes the minimal distance
to the aneurysm surface, and 1 is the maximum distance found at the border of
the dataset. To create a smooth ramp mask covering the local surrounding of the
aneurysm, first, F is inverted and then a rescaled distance field F 0 generated
with:

F 0 D max.0; .inv.F /1 C .1=c// � c/; (10)

whereas c is a constant. For all datasets, c D 10 led to a well-sized ramp mask
for the local aneurysm surrounding.

4. Final Mask Creation. The result of the connected component analysis is a binary
volume, on which a morphological dilation filter with a 3 � 3 � 3 kernel is
applied. Thus, it is ensured that the vessel surface is represented completely when
masking the original data, as partial volume effect mainly affects the intensities
of border voxels between vessel and surrounding tissue. This mask is combined
with the EDT mask by applying the arithmetic image operation max. The result
is a mask that will preserve the main arteries and low contrast information near
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Fig. 14 To show small vessels surrounding the aneurysm, a weighted distance field (a) is
generated from its voxelization. The mask is a combination of the main vessels (b) and the distance
field using a maximum operator (c). Finally, it is weighted by volumes original intensity values (d)
and used in the 3D view (e)

Fig. 15 The focus-and-context visualization shows both the polygonal simulation mesh and
surrounding vessels via hybrid rendering. (a) and (b) show different 1D-transfer functions. The
last image series illustrates the benefits of additional context information, and makes use of a grow
distance field to reveal small vessels coming from the aneurysm

to the aneurysm surface, when multiplied with the original dataset (see Fig. 14d).
In order to create this mask automatically, two defined constants are utilized: b

and c. Both are independent variables and exhibit robust characteristics (for the
tested datasets: stable results when altered C/�20%).

With the use of 1D TFs the final visualization is presented in Fig. 15. Hybrid
rendering was used to integrate the polygonal simulation mesh into the final scene.
To avoid artifacts around the mesh, its voxelized version was subtracted from the
original volume data to avoid double representation of the same structure.

6.2 Case Study 2: Emphasis of Plaques in Coronary Arteries

In the second example, we present a local histogram-based approach to highlight
atherosclerotic CAD. Atherosclerotic CAD is the result of accumulations in the
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coronary artery wall, so-called plaques. Plaque deposits are small structures with
inhomogeneous densities inside the vessel wall and cannot be segmented directly
in CT angiography (CTA) datasets. Therefore, a DVR visualization of the coronary
artery tree should highlight the vessel wall and emphasize coronary artery plaques
in CTA datasets by employing special TFs. Glasser et al. [37] developed a TF
specification for DVR visualizations of the coronary arteries in CTA datasets. The
TFs are automatically adapted to each dataset to account for varying CT values
of the blood pool, due to the non-uniform spatial diffusion of the contrast agent.
The presented workflow for TF specification is based on a coarse segmentation
of the coronary artery tree including the segmentation’s skeleton and contains the
following steps:

1. Approximation of the blood density values. The segmented coronary artery tree
primarily consists of voxels representing the contrast medium-enhanced blood
and is analyzed for the approximation of the blood density distribution. The
blood density is assumed to be a Gaussian distribution with parameters �blood

and �blood . Because of other densities originating from surrounding tissue or
interpolation issues, i.e. the partial volume effect, �blood and �blood could not
be directly derived from the segmentation. Therefore, the approximation is
carried out by means of an iterative reduction of a cost function. Costs are
defined as differences between the approximated normal distribution and the
distribution of all segmented voxels. The mean density of the blood (i.e. �blood

and �blood) strongly differs for each dataset [37]. Therefore, a static threshold for
a separation of hard plaques from blood was not applicable. Instead, a threshold
t , similar to the threshold of the Agatston score [38], was introduced. To avoid
overestimation, t is defined as

t D �blood C 3�blood: (11)

2. Approximation of the vessel wall density values. The approximation of the vessel
wall density values is based on the evaluation of a coronary artery segment and
its skeleton. The vessel wall of this segment is analyzed by means of intensity
profile volumes (IPV), as described in [37]. The IPV calculation is carried out
in four steps (see Fig. 16, left):

a. Selection of a long, non-branching segment of the coronary artery tree. The
selection is carried out by traversing the skeleton of the segmentation.

b. The real vessel centerline is approximated by the segment skeleton.
c. For each skeleton voxel, n rays perpendicular to the skeleton are casted.
d. Along the rays, intensities are sampled and saved in a slice of the IPV.

After the IPV extraction, the vessel wall densities can be approximated. For
each skeleton voxel, the sampled intensities representing the vessel wall will
appear as vertical structures in a slice of the IPV (see Fig. 16, right). The IPV
is slicewise convoluted with a Gaussian and a Sobel filter by applying a 2D filter
to each slice. The convolutions are followed by a search for vertical structures
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Fig. 16 Extraction of a slice of the intensity profile volume (IPV). For each voxel v of the skeleton
of a vessel segment, n (e.g. 5) rays perpendicular to the centerline are casted (left). Along the
rays, intensities are sampled and saved in a slice of the IPV (right). A cross-section of an ideal
vessel (white) and the vessel wall (light gray) with surrounding tissue (dark gray) leads to vertical
structures in the IPV slice for v. The IPV has as many slices as the number of centerline voxels

to obtain a sample set of vessel wall intensities. This sample comprises a set of
intensities di , where a weight wi is assigned to each di , see also [37]. Based
on this sample, �wall and �wall are computed as weighted arithmetic mean and
weighted arithmetic standard deviation, respectively:

�wall D
P

wi � di
P

wi

(12)

�wall D
r

X
w2

i � �2
i ; (13)

where �i is the standard deviation for each density di .
3. TF specification and DVR visualizations. For the visualizations of the CTA

datasets, TF2D and TF3D were determined for 2D and 3D visualizations. They
solely depend on �blood, �blood, �wall and �wall and differ only in the interval
size of the vessel wall densities. An interval of �wall ˙ �wall is employed for the
TF3D , and an interval �wall ˙ 2�wall for the TF2D . This choice is motivated by a
possible occlusion of inner structures within the vessel wall in 3D visualizations.
Therefore, also smaller opacity values for the vessel wall are assigned for the
TF3D than for the TF2D . In comparison, the vessel wall and hard plaques are
mapped to higher opacity values, whereas absolute transparency is assigned to
the surrounding tissue and the contrast medium-enhanced blood.

A color scale from blue over red to green provides high contrasts for the
visualization of different plaque deposits and thus different densities in the vessel
wall. For hard plaques, the assigned colors range from beige to white, since these
structures usually appear white or light gray in conventional CT displays. For
a more intuitive view, the TF2D is combined with the windowing TF. The user
can choose interesting HU value intervals by manipulating the parameters of the
windowing TF. The CPR and MPR view as well as the 3D spatial variation of
the coronary artery tree are linked with each other. On the one hand, the user can
traverse the CPR view with the corresponding MPR view being updated. On the
other hand, it is possible to pick an interesting vessel part in the 3D view with
the other views being updated accordingly.
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Fig. 17 Visualizations of coronary arteries with adapted TFs. (a) DVR visualization provides an
overview about the spatial variation and of hard plaques (arrows). (b) MRP views provide cross-
sectional views of the coronary artery walls. The type of plaque (arrowheads) may be inferred
from the color coding: MPR view without plaques (top), greenish colors indicate fibrous plaques
(middle) and pinkish colors indicate soft plaques, which are prone to rupture (bottom). (c) shows
the combined CPR-MPR view. The transparent white bar indicates the current position in the CPR
view (top) of the cross-sectional MPR view (bottom)

Discussions with two experienced radiologist indicate that the presented TFs
highlight stenotic plaque deposits, and display smaller plaques without a significant
stenosis. The 3D visualizations show the spatial variation of the coronary artery
tree and indicate the patient’s whole plaque burden by highlighting all hard plaques
(see Fig. 17a). In the combined CPR-MPR view, the plaques are highlighted with
different colors depending on the plaque type (see Fig. 17b). Comparisons between
conventional views and the TF2D and TF3D color-coded visualizations indicate that
the clinical expert can better detect hard plaques in the colored view. Especially
smaller hard plaques, even with a size of one voxel, could be detected in the
colored view. Furthermore, the color coding of the vessel wall with different colors
for fibrous and soft plaque deposits indicates the plaque type, where an absolute
identification is impossible due to overlapping density intervals of these types [39].
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7 Concluding Remarks

The visualization of vascular structures is challenging due to their small size and
complex topology. Various DVR techniques have been successfully employed to
deal with these demands. The quality of vessel visualization benefits from pre-
processing and filtering, which highlight elongated circular structures (vesselness).
A histogram-based TF specification is particularly useful, when applied to local
histograms, e.g. of segmented vessels. For a vessel disease diagnosis system (e.g.
Vascu Vision by Boskamp et al. [40]) the combination of 2D and 3D views is
essential, as only their combination can reveal the adequate detail (e.g. cross-
sectional and longitudinal views to access the vessel’s diameter and wall) and
overview information (e.g. the patient individual spatial variation). In principle,
automatically generated visualizations and an analysis of changes in the local
vessel diameter might be used to emphasize potentially portions (see [28] for
such attempts in cardiology). Compared to surface-based techniques, DVR may
also display important changes of the vessel wall and not only its general shape.
Preprocessing and detailed analysis of the data can help to create a customized
workflow. To support diagnostic tasks, fast, reliable, and easy to setup techniques
are favorable for clinical routine, but accuracy or visualization of uncertainty must
not be compromised.

7.1 Future Work

The rising availability of memory and performance in consumer hardware, e.g. in
many-core systems such as GPUs and future computing devices, will continue to
aid volume analysis to enhance vessel exploration with DVR. However, not only
analysis but also the rendering itself leaves room for improvements, especially when
it comes to simulating advanced optical effects. Advanced illumination techniques,
such as ambient occlusion (see Fig. 18 left), can improve the depth perception.
Especially when many small vessels and many branchings exist, the structures may
overlap each other extensively in a 2D image. Therefore, custom shading methods
can give more clues about the spatial relationship among vessels and/or context
structures. Other optical effects, like more sophisticated scattering and shadowing
models, also raise the possibilities for visualizations (see Fig. 18 right, [41]). The
major problem of these techniques remains complexity in time or resources, which
limits them to high-end graphics cards or sacrificing interactivity. However, both
technical and algorithmic advances continue to improve the situation in visual
computing and future technology trends, such as cloud computing, will enhance
the end-user experience.
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Fig. 18 Advanced illumination techniques. The left images shows parts of cerebral vessels.
Through the use of self-shadowing, the geometric relationship between vessels is enhanced and
fine-dotted lines show the occluded silhouettes. The flat planes at various branching points are the
result of a limited region-of-interest. In the right advanced soft shadowing techniques were used
on coronary vessels. (Right image taken from [41])
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