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Abstract
Line drawing techniques are important methods to illustrate shapes. Existing feature line methods, e.g., suggestive
contours, apparent ridges, or photic extremum lines, solely determine salient regions and illustrate them with sepa-
rate lines. Hatching methods convey the shape by drawing a wealth of lines on the whole surface. Both approaches
are often not sufficient for a faithful visualization of organic surface models, e.g., in biology or medicine. In this
paper, we present a novel object-space line drawing algorithm that conveys the shape of such surface models
in real-time. Our approach employs contour- and feature-based illustrative streamlines to convey surface shape
(ConFIS). For every triangle, precise streamlines are calculated on the surface with a given curvature vector field.
Salient regions are detected by determining maxima and minima of a scalar field. Compared with existing feature
lines and hatching methods, ConFIS uses the advantages of both categories in an effective and flexible manner. We
demonstrate this with different anatomical and artificial surface models. In addition, we conducted a qualitative
evaluation of our technique to compare our results with exemplary feature line and hatching methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

The aim of an illustrative visualization method is to pro-
vide a simplified representation of a complex scene or ob-
ject. Concave and convex regions are emphasized and the
surface complexity is reduced by omitting unnecessary in-
formation. This abstraction is often preferred over fully illu-
minated scenes in a multitude of applications. Most anatomy
atlases use non-photorealistic (NPR) techniques to illustrate
anatomical structures. Repair manuals and pictograms em-
ploy NPR techniques as well. Common illustration tech-
niques are feature lines and hatching. Feature lines at-
tempt to depict only relevant surface features with sepa-
rate lines. They are often used in scientific visualization
[CSD∗09, INC∗06]. In contrast, hatching techniques convey
a spatial impression on the surface. Illustrative visualization
may also be applied to volume rendering [Vio05]. In this pa-
per, however, we concentrate on surface meshes only.
The contribution of this paper is to present ConFIS, which
stands for the keywords: Contours, Features, Illustration,
Streamlines (see Fig. 1). ConFIS combines the advantages
of feature lines and hatching methods. Our methods are mo-
tivated by the peculiarities in medicine, but our concept is
not restricted to that domain. We show that common fea-

ture line techniques can not convey the specific shape of
several patient-specific anatomical surfaces, e.g., endoscopic
views. On the one hand, hatching techniques allow for a bet-
ter spatial perception in such endoscopic views. On the other
hand, they usually draw hatching patterns allover the surface
and miss to depict salient regions well. ConFIS is designed
to remedy these issues. We evaluated our approach quali-
tatively with two physicians and three medical researchers.
The goal of the evaluation was to assess, with which illus-
trative visualization technique the domain experts can better
infer the surface shape. They had to compare the ConFIS-
based illustrations to surface shading and the most com-
monly used feature line and hatching methods. We make the
following contributions:

• A novel view-dependent illustrative visualization method.
• Explicit streamlines on the triangular surface mesh are

employed and drawn in real-time.
• Feature regions are determined by resolving the minima

and maxima of the mean curvature scalar field.
• Well illustrations on endoscopic anatomical surfaces.
• A qualitative evaluation with medical experts has been

conducted to compare ConFIS with existing illustration
techniques.
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2. Related Work

For feature lines, image and object space methods have to be
considered.
Image space methods use the image as an input. All cal-
culations are performed on the rendered image where every
pixel contains an RGB- or grey value. The image is usu-
ally convolved with different kernels, e.g., Roberts and So-
bel edge detection. A comprehensive overview is given by
Muthukrishnan et al. [MR11], Nadernejad et al. [NSH08],
and Senthilkumaran et al. [SR09]. The resulting feature lines
are not frame-coherent and are represented by pixels in the
image space. Thus, there is only limited control over the re-
sulting line attributes, e.g., rendering style.
Object-based methods use the connectivity and the 3D ver-
tex position of the surface model as input. Additional infor-
mation (camera, light position, curvature) may be used to
detect features. The extracted lines are located on the sur-
face and are represented as explicit 3D lines. Thus, they are
usually frame-coherent and any stylistic rendering technique
can be applied. For an extensive list of line drawings and
their applications we refer to Rusinkiewicz et al. [RCDF08].
The most important object-space line are contours, which
depict the strongest shape cues of the model. Unfortunately,
contours can not express all features being relevant for shape
perception. Interrante et al. [IFP95] proposed ridges and val-
leys as additional lines to convey the features. Ridges and
valleys are defined as the loci of points at which the prin-
ciple curvature reaches an extremum in the principle direc-
tion. DeCarlo et al. [DFRS03] introduced suggestive con-
tours, which convey shape by extending the contours of the
surface mesh. These lines are defined as the set of minima
of the dot product between the surface normal and the tan-
gential view vector. Unfortunately, objects without concave
regions, e.g., most human organs have no suggestive con-
tours. To resolve this problem, Judd et al. [JDA07] presented
apparent ridges, which extend the definition of ridges by us-
ing view-dependent curvature and a view-dependent princi-
ple curvature direction. Thus, these lines occur where the
derivative of the maximum view-dependent curvature in di-
rection of the associated principle view-dependent curva-
ture direction equals zero. Besides the depiction of lines,
Ni et al. [NJLM06] proposed view-dependent feature lines.
They reduce the details in distant regions where the per-
ception of fine details would be difficult. Kolomenkin et
al. [KST08] provide demarcating curves as the zero cross-
ing of the normal curvature in the curvature gradient direc-
tion. Xie et al. [XHT∗07] introduced photic extremum lines
(PELs). These feature lines are as well view-dependent and
light-dependent. PELs are defined as the set of points where
the variation of illumination in its gradient direction reaches
a local maximum. PELs generation has been optimized by
Zhang et al. [ZHX∗11] to reach real-time performance. They
generalize the Laplacian of Gaussian edge detector to 3D
surfaces. The Laplacian lines are defined as a set of points
where the Laplacian of the illumination passes through zero.

(a)

(b)

Figure 1: ConFIS applied to two sample models: (a) cow
and (b) the portal vein with three liver segments

Furthermore, the gradient magnitude must be greater than a
user-specified threshold.
Hatching is another category of common illustrative vi-
sualization techniques. They emphasize regions with high
curvature by drawing lines along principal curvature di-
rections. The lines drawn on different regions are ori-
ented depending on the shading of the model. Hertzmann
et al. [HZ00] describe a method to illustrate smooth sur-
faces. First, they extract the silhouette curves and sepa-
rate two images of the area. These areas and the shad-
ing are used to define the hatching styles. Praun et al.
[PHWF01] introduced a real-time hatching method which
builds a lapped texture parametrization over the mesh which
are aligned to a curvature-based direction field Gasteiger
et al. [GTBP08] presented a texture-based method to hatch
anatomical structures. Hummel et al. [HGH∗10] examined

c© 2013 The Author(s)
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the use of transparancy and texturing techniques to illus-
trate vector fields. Buchin et al. [BW03] present a hatching
scheme which can interactively change the stroke style. Zan-
der et al. [ZISS04] use streamlines instead of textures to gen-
erate hatching lines based on curvature information. Gerl et
al. [GI13] present a way to intuitively interact with the hatch-
ing illustration based on hand-drawn examples. They used a
scanned-in hatching picture as input and machine learning
methods to learn a model of the drawing style. A combina-
tion of different rendering techniques for medical applica-
tions was presented by Tietjen et al. [TIP05].
In summary, the available feature line methods are not suf-
ficient to depict arbitrary shapes, especially in the domain
of anatomical structures. They highlight features, but local
shape properties, which relate to curvature changes, are of-
ten not satisfyingly represented. The latter is resolved by
hatching methods, which have the drawbacks of being de-
pendent on texturing or drawing too many hatching patterns.
Thus, real-time performance can not always be guaranteed
in combination with high visual quality.

3. Method

ConFIS is based on streamlines to illustrate the surface
model. For this reason, we will first describe the regions
where we want to seed the streamlines. Second, we explain
how to calculate streamlines. For this, we divide this section
in three parts:

1. Contour margin: We offer a definition for the contour.
Furthermore, we explain the term contour margin.

2. Feature regions: We provide a curvature-based defini-
tion for a feature region.

3. Streamlines: We explain how to determine explicit
streamlines.

3.1. Contour Margin

Definition 3.1 (Contour) The contour is defined as the loci
of points where the surface normal and the view vector are
mutually perpendicular (ϑ = 90◦).

For an extended overview about contours we refer to Isen-
berg et al. [IFH∗03]. We highlight the common edge of two
adjacent triangles if the signs of the dot products between the
oriented face normals and the view vector change. Besides
the contour line, we also draw streamlines at contour trian-
gles. As we want to provide frame-coherent interaction, we
seed streamlines at triangles which lie inside a contour mar-
gin. The contour margin is defined by the curvature-based
method of Kindlmann et al. [KWTM03]. Triangles are in-
cluded in the contour margin if the dot product of the nor-
mal and the view vector is less than

√
Tκv(2−Tκv). Here, κv

denotes the normal curvature in direction of the view vector
and T denotes the thickness. This method provides a hom-
geneous contour margin in image space. Additionally, the
opacity of the streamlines changes depending on the length
to provide a convenient fade-off during the interaction.

3.2. Feature Regions

Definition 3.2 (Maxima and minima on a scalar field)

• Continuous Case: Maxima and minima can occur where
the gradient of the scalar field vanishes.

• Discrete Case: We determine the gradient of the scalar
field for each vertex of a triangle. The three dot prod-
ucts between the gradients are calculated. A maximum
or a minimum occurs if two dot products are negative to
identify zero-crossings.

We seed a feature streamline at a triangle t if the following
properties for the mean curvature field (MCF) are fulfilled:

i. The MCF has a maximum or a minimum at t.
ii. The MCF at t exceeds a user-specified threshold.

3.3. Streamlines

Streamlines are seeded at every contour triangle and within
a defined margin around the contour. Thus, the following is-
sues have to be solved:

• Choose a suitable vector field.
• Select an appropriate starting point.
• Estimate the maximum streamline length.
• Calculate the streamline.
• Use an adaptive step size for the streamlines.

The vector field for streamline calculation: We choose a
suitable curvature-based vector field for streamline calcu-
lation. In order to compute curvatures on a discrete trian-
gle mesh, the algorithm from Rusinkiewicz [Rus04] is used,
since it yields accurate and robust results even on irregu-
larly tessellated surfaces. The curvature tensor of each tri-
angle is determined by using finite differences of the vertex
normals in direction of the edges. The vertex normals are ob-
tained by averaging the area-weighted normals over adjacent
faces. Afterwards, we compute the curvature tensor for ev-
ery vertex by averaging the curvature tensors of the triangles
adjacent to each vertex. The eigenvectors and eigenvalues
provide the principal curvatures (PCs) and curvature direc-
tions (PCDs). At umbilic vertices, we set the PCDs to the
zero vector and exclude the streamlines from seeding. We
assign four vectors at the vertices and the triangle – namely
two PCDs, each with two possible signs. For each triangle,
only t1 is used where t1 is the PCD which corresponds to
the maximum PC. We compare t1 of each triangle with the
four vectors of their adjacent vertices. We determine the dot
product between t1 and the four vectors of the first vertex.
We select the vector which corresponds to the largest dot
product. The resulting vector belongs to the final vector field
to ensure that is smooth. We repeat this with the other two
vertices, determine the dot products and use the vector which
maximizes them. By doing so, we obtain a triple (e1,e2,e3)
of vectors for each triangle. We use the triple (e1,e2,e3) and
(−e1,−e2,−e3) to get two vector fields for each triangle by
barycentric interpolation. With these two final vector fields,

c© 2013 The Author(s)
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Figure 2: Every point p in the triangle can be represented
by the basis (u,v) with coefficients (α,β), α,β ≥ 0 and α+β ≤

1. The corresponding resulting vector e(p) can be obtained
with the point p = (α,β) by: e(p) = (e2 − e1 e3 − e1) · p + e1.

we can generate two different streamlines for each triangle.
Streamline starting points: Every streamline starts at the
barycenter of the contour triangle. Furthermore, we are also
seeding streamlines at the barycenter of adjacent triangles
within the contour margin. As we want to achieve frame co-
herence, we have to start the streamlines at consistent start
positions. We also generated streamlines at different ran-
domly chosen start positions, but we could not see any visual
difference. Thus, we stay at the choice of the barycenter as
the start position for the streamlines.
Streamline length: We employ the principal curvatures to
determine the length of the streamline. Every triangle ob-
tains a minimum and maximum curvature κ1, κ2. The length
L of a streamline is calculated by:

L =
π

3 ·max{|κ1|, |κ2|}
. (1)

We want the streamline to have a length of one third of the
the half perimeter of the osculating circle: 1

3πr. If the stream-
line length L exceeds a user-defined threshold Lmax, we set
L = Lmax. We suggest the median value of all calculated
lengths per vertex for the streamline length threshold Lmax.
Calculation of the streamline: Some authors use implicit or
explicit iterative methods for the approximation of ordinary
differential equations, e.g., [ZISS04]. Nielson et al. [NJ99]
determined explicit streamlines over tetrahedral domains.
Furthermore, they gave the solution for streamlines over tri-
angle domains. We derive the explicit streamline solution for
each triangle and describe this process in detail. Given a tri-
angle t = (p1, p2, p3) with associated PCDs (e1,e2,e3), the
associated (non-normalized and non-orthogonal) basis (u,v)
is built by: u = p2− p1 and v = p3− p1. Every position p and
the associated vector e(p) in the interior of the triangle can be
calculated by the basis (u,v), see Figure 2. The parametrized

streamline c(t) fulfills the following condition:

∂c(t)
∂t

=
(
e2 − e1 e3 − e1

)︸                 ︷︷                 ︸
CA

c(t) + e1. (2)

Such an inhomogeneous ODE (iODE) c′ = Ac + e1 is solved
by the method of separation of constants [Pag97, Har64].
First, we solve the homogeneous ODE (hODE) c̃′ = Ac̃. Af-
terwards, we determine the missing factor for the inhomoge-
neous part e1. The solution of c̃′ = Ac̃ is a linear combina-
tion of a fundamental solution: c̃(t) = exp(A · t) =

∑∞
k=0

Ak ·tk

k! .

In practice, we decompose the Matrix A in a Jordan-form:
A = DJD−1. Then we obtain c̃(t) = D · exp(J · t) ·D−1. As
the inverse is not necessary for a fundamental solution sys-
tem, we get c̃(t) = D · exp(J · t) as a fundamental system.
The solution leads us to the general solution of the ODE:
c(t) = cp(t) + c̃(t). We claim cp(t) = c̃(t) · f (t) with an arbi-
trary 2D differentiable function f (t) to determine a particular
solution cp(t) for the iODE. The derivative of cp(t) yields:

∂cp(t)
∂t

= A · c(t) + c̃(t) · f ′(t). (3)

Comparing Equation 2 with Equation 3 leads to: c̃(t) · f ′(t) =

e1. Finally, the particular solution has the form:

cp(t) = D · exp(J · t) ·
[∫ t

t0
exp(−J · x)dx

]
·D−1 · e1 +C. (4)

For simplicity, we write cp(t) as an indefinite integral and
leave out the constant C. Furthermore, we write

A(t)B D · exp(J · t) ·
[∫

exp(−J · t)dt
]
·D−1. (5)

We have got the final fundamental solution for the ODE. For
the specific solution we need the parameters x1, x2 ∈ R for
the hODE. With the restriction c(0) = p, we obtain the con-
dition: p =A(0) · e1 + D ·

(
x1
x2

)
. Solving this equation with re-

spect to x1, x2 yields:(
x1

x2

)
= D−1 · (p−A(0) · e1) . (6)

Again, we refer to the appendix for a comprehensive form of
x1, x2. Finally, we get the explicit streamline representation
starting at position p with 4 and 6:

c(t) = cp(t) + c̃(t) ·
(
x1

x2

)
(7)

=A(t) · e1 + D · exp(J · t) ·D−1 · (p−A(0) · e1) . (8)

The streamline representation depends on the terms exp(J · t)
and A(t), which can be simplified, see Sec. 8. Within the
triangle, streamlines have the following properties: c(t)x ≥

0,c(t)y ≥ 0, and c(t)x + c(t)y ≤ 1. Violating one condition
leads to an intersection point of the streamline with one of
the edges. Thus, we get the adjacent triangle of the edge. We
can determine the underlying vector field of the new trian-
gle according to Section 3 (The vector field for streamline
calculation). Instead of using the triangle PCD as reference

c© 2013 The Author(s)
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Figure 3: The scheme of ConFIS which is divided in two parts: the preprocessing and the rendering part.

direction, we employ the streamline direction vector.
Adaptive step size: For streamline propagation we use an
adaptive step size. Whenever the length of a streamline seg-
ment exceeds the inradius of the triangle, we halve the step
size. This ensures that the streamline will not immediately
leave the triangle in most cases. Furthermore, the visual re-
sults of the streamlines seem to be smooth, although we do
not have to calculate too much line segments in a triangle.

3.4. Advantage of explicit streamline calculation

First of all, determining the explicit streamline exhibits a
lower error than iterative methods for the approximation of
ODEs. Explicit streamlines do only produce an error when
approximating the intersection point of one edge of the tri-
angle with the streamline. Another advantage of explicit
streamlines is the converging propagation behavior towards
singularities. The explicit streamline will converge into this
point. An iterative streamline can oscillate around the singu-
larity. Moreover, iterative methods are based on a sequence
of points. Thus, one point can only be approximated by using
the previously calculated ones. In contrast, explicit stream-
lines can be calculated in parallel without knowing the pre-
vious points.

4. Algorithm and GPU Implementation

The algorithm for ConFIS on the mesh M is as follows:

1. (Optional) Subdivide and smooth M.
2. Compute the PCDs and the corresponding PCs.
3. Determine feature regions of M.
4. Compute two streamlines for all triangles.
5. Compute the contour and contour margin.
6. Draw the contour and feature streamlines.

The algorithm is divided in two different parts. The first part
(1.-4.) consists of the preprocessing steps and the second part
(5.-6.) is executed during runtime (see Fig. 3). As shown ear-
lier, the generation of a streamline for an arbitrary triangle
requires to traverse M iteratively from one triangle to the
next. For achieving a fast rendering, several APIs, such as
CUDA, OpenCL, or DirectCompute are available. We chose
to perform all computations with the OpenGL shader frame-
work to be independent of graphics card vendors and to

reduce any overhead by additional APIs. The shader con-
cept is ideally suited for per-vertex and per-triangle opera-
tions, which are required by our streamline method. OpenGL
shaders do natively not provide neighborhood information,
such as the 1-ring of each vertex. Thus, we employ a data
structure similar to the one which has been presented in
[MKL∗12]. Topological information, such as the location
of neighboring vertices, is made available via vertex (VBO)
and texture buffer objects (TBO). With this, we can seed and
continue tracking a streamline at each triangle for an arbi-
trary number of triangles.

4.1. Preprocessing

First, we generate two streamlines at the barycenter
for each triangle with given length (recall Sec. 3).
These processing steps are entirely executed on the
GPU via OpenGL shaders. Such a streamline buffer
contains #Triangles × #LineSegments × 2 elements. For
writing the streamline vertices to this buffer, we use
shader storage buffer objects. Thus, the OpenGL extension
ARB_SHADER_STORAGE_BUFFER_OBJECT, which is
part of the OpenGL core since version 4.3, is required. With
this, each triangle is able to write the vertices belonging to
each of its two streamlines into the streamline buffer. Ad-
ditionally, the preprocessing step allows for a detection of
those triangles which shall later generate a feature stream-
line based on the curvature criterion (see Sec. 3.2). Until this
point, nothing has been drawn – but all the streamlines have
been precomputed for later rendering.

4.2. Rendering loop

During runtime, the steps 5 and 6 are executed. Using ge-
ometry shaders, we can determine the object contour and
a defined contour margin. Thus, we could access the pre-
viously generated streamline buffer and start drawing con-
tour and feature streamlines. Unfortunately, this yields a bad
load balancing, since we seed streamlines only at compara-
bly few triangles. Most geometry shader invocations would
not perform any streamline processing. In the worst case, all
threads in one thread group have to wait until all streamline-
generation-threads finish – even if only one thread is gener-
ating a streamline.

c© 2013 The Author(s)
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(a) Ribs (b) Inside view of the pulmonary artery

Figure 4: The ConFIS method with two anatomical surface models.

Thus, we split the rendering stage into two render passes.
At first, all triangles, which shall draw a contour stream-
line (recall Sec. 3.3), are identified and marked. For each
of these triangles and those which have been marked during
preprocessing for seeding feature streamlines, we store tri-
angle information (e.g., vertex IDs) using OpenGL’s trans-
form feedback mechanism. In the seconds pass, rendering
is performed only for the marked triangles. As a result, the
GPU processes only triangles which contribute to streamline
rendering. Each of these triangles can access the complete
streamline buffer via TBOs. The opacity of each streamline
is reduced with increasing length.

5. Evaluation

We performed a qualitative evaluation for the five line draw-
ing techniques: suggestive contour (SC), apparent ridges
(AR), photic extremum lines (PEL, according to Zhang et
al. [ZHX∗11]), high quality hatching (HQ), and ConFIS. The
goal was to assess their capabilities for expressing relevant
surface characteristics. We wanted to figure out which of
the line drawing methods yields the most expressive result
for the participants. The evaluation was conducted with two
physicians and three researchers with background in medical
visualization. Four representative surface models were cho-
sen: ribs (Fig. 4(a)), aneurysm 1 (Fig. 5, middle row), tra-
chea (Fig. 5, bottom row), and femur (Fig. 6(d)). The mod-
els are derived from segmenting medical image data and pre-
processed to ensure an appropriate and homogeneous degree
of tessellation. For all compared methods, we employed the
original implementations by the corresponding authors. The
evaluation was conducted in three steps:

1. Each participant was shown the shaded surface models

in different order. They had the possibility to explore the
model interactively and gain a 3D impression.

2. The second task was to adjust the specific parameters of
the illustration methods to obtain a subjectively satisfying
and informative result. During this, we noted the partici-
pants’ spoken comments and the parameter sets they were
satisfied with.

3. The third part of the evaluation consisted of a visual com-
parison and a qualitative assessment between the fea-
ture line methods. Based on the recorded parameter sets,
each participant should assess which method is consid-
ered more appropriate to express surface features and
which limitations have been observed.

Aneurysm 1 model: The participants mentioned that the
generated lines by the feature line methods were not appro-
priate to gain a comprehensive spatial impression. Most of
the generated lines were considered distracting. On the other
hand, these methods depicted parts of the bifurcation well.
All participants agreed that the hatching method generates a
reasonable 3D impression. For HQ, the evenly spread lines
can not depict important features, e.g., the border between
the vessel and aneurysm sac. Furthermore, several partici-
pants criticized the low performance of the HQ implemen-
tation (~13 fps). ConFIS fulfilled the demands to illustrate
relevant features and to convey an appropriate 3D impres-
sion. All participants chose ConFIS as their preferred line
drawing technique.

Trachea model: The inner view of the trachea has two
features: the elongated structure and the bifurcation, where
the carina tracheae splits into both branches. The partici-
pants confirmed that the feature line methods can depict the
elongated structures but fail to enhance the carina tracheae.
Apart from that, they explained that the hatching method as

c© 2013 The Author(s)
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PELAR HQ ConFISSC

Figure 5: Different surface models displayed with suggestive contour (SC), apparent ridges (AR), photic extremum lines (PEL),
high quality hatching (HQ), and ConFIS. The models are from top to bottom: hyperthing, aneurysm 1, and endoscopic view of
a trachea

well as ConFIS depict both properties well. One participant
found some streamlines slightly disturbing and unnecessary
to gain a spatial impression. The hatching method could not
highlight the bifurcation features. In contrast, it looked like
a planar transition from one bronchus to the other. Finally,
all participants preferred the ConFIS method.

Ribs model: The ribs model was chosen to evaluate the
3D feeling of the mesh even if the surface has a lot of struc-
tures. The participants get a reasonable 3D impression by
all line drawing methods. Some participants mentioned that
there are only small differences between the feature line
methods. One participant explained that the impression of
the model is appropriate during the interaction but seeing
only a screenshot would confuse. The participant could not
set the ribs apart from the gaps. Furthermore, some lines
which are produced by feature line methods are distracting
and the hatching method can not illustrate the dents. ConFIS
illustrates all ribs well and the participants can distinguish
the ribs from the gaps and all dents are depicted as well.

Femur model: Some of the participants found fault with
the view-dependent feature illustrations. The feature line
methods only show some dents first if the camera position is
chosen well. Again, two participants criticized the missing
details using the hatching method. Some dents are missing

and without interactive exploration some important regions
are missed. Those regions have been highlighted with Con-
FIS, which was again preferred.

The results of our evaluation can be summarized as fol-
lows:

• Current line drawing techniques achieve satisfying results
only if the models exhibit a smooth and regularly tessel-
lated surface.

• The clutter of surfaces derived from measured image data,
such as noise and staircase artifacts, are usually empha-
sized.

• For some cases, line drawing methods are not able to de-
pict relevant features.

• The ConFIS method was the most expressive technique in
our comparison.

However, the informal study does not allow a definitive
statement and requires further evaluation. ConFIS is able to
provide a sparse representation of a model’s surface, since
illustrative patterns are drawn along characteristic contours
and only sparsely within the surface. Thus, ConFIS might
also serve to depict the anatomical context as spatial refer-
ence in medical illustrations, e.g., flow visualization. Our
method provides such spatial information and gives also
hints on local shape properties. However, the discussion with

c© 2013 The Author(s)
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(a) Elephant (b) Max Planck (c) Hand (d) Femur

Figure 6: The ConFIS method with different surface models.

the physicians showed that such illustrations are not suitable
for diagnostic purposes. In therapy planning, illustrative pic-
tures are used for discussions. Especially in neck surgery
physicians use abstract 3D illustrations as a printout to draw
resection lines and access path planning.

6. Results

We performed different experiments in order to assess the
performance of our approach. The experiments consider the
frame rate achieved with ConFIS for different artificial and
anatomical surface meshes (see also Fig. 6 and Tab. 1). Our
approach is implemented on a mid-class desktop computer
with an Intel Core i7 CPU (2.8GHz), 4GB RAM, and an
NVidia GeForce GTX 660 Ti. For all employed surface mod-
els, rendering could be performed in real-time. Surface mod-
els with given curvature vector field with the correspond-
ing number of triangles, averaged generated streamlines, ini-
tialization time, and average frame rates are summarized in
Table 1. Streamline calculation and feature region detec-
tion is performed only once during the preprocessing step.
The latter requires a lot of memory for storing the vertices
of the precomputed streamlines. For a sample model with
about 100k faces and, e.g., 50 vertices per streamline, such
buffer may comprise ∼153 MB. However, with recent graph-
ics cards, at least 1024 MB are usually available.
During runtime, only the contour is determined and stream-
lines at contours and features are drawn. Our approach de-
pends on two user-defined values, which our evaluation par-
ticipants confirmed to be intuitive. We used different mod-
els and compared the results of different line drawing tech-
niques, see Figure 5. In most experiments our approach
could express the relevant surface features (see Fig. 6). Since
our illustration technique seeds streamlines at the barycen-
ter of triangles, it is tessellation-dependent. Thus, for low
resolution meshes, the overall visual impression will be dis-

Table 1: Performance test of ConFIS for all shown models.

Model #∆ # SL Init per s FPS
Aneurysm 2 16,778 5,134 2,735 440

Cow 23,216 7,788 0,559 260
Femur 40,978 11,734 0,697 160

Trachea 69,964 25,501 1,617 127
Portal Vein 80,062 23,067 2,849 155

Ribs 85,736 26,780 3,071 87
Hyperthing 88,756 41,023 2,270 57
Max Planck 98,260 30,407 1,992 90
Aneurysm 1 98,970 32,659 2,002 78

Pulmonary Artery 100,000 30,680 2,735 104
Hand 105,860 25,915 2,298 72

Elephant 157,160 48,875 2,665 57

turbed by only sparsely drawn lines. However, the user could
always get an impression of the surface characteristics. Dur-
ing our tests with other feature line and hatching methods,
we noticed that this seems to be a general problem.

7. Conclusion and Future Work

In this paper, we have presented ConFIS, a novel illustrative
visualization technique for surface models based on stream-
lines. The streamlines have the advantage that the user gets
a natural impression of the curvature of the model. Further-
more, the user gains an enhanced 3D impression. We made
different comparisons to other feature line methods. Our ex-
periments showed that ConFIS depicts most of the surface
models well. ConFIS illustrates only salient regions which
fulfills the conditions mentioned in Sec. 3.2. Obviously, con-
vex regions will not be illustrated. We can modify the pa-
rameters in a way to emphasize sharp features of models.

c© 2013 The Author(s)
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Figure 7: Fresnel alternative with white streamlines
(aneurysm 2).

However, more parameters are required to define a lower and
upper bound. We think about to determine the Hessian ma-
trix of the mean curvature scalar field to obtain the minima
and maxima of the surface mesh. We used the concept of the
contour margin to provide a frame-coherent illustration.
An aspect of our future work is to parametrize the contour
of the surface model in object space. First, the advantage is
to uniformly distribute the seed points for the streamlines
equidistant to each other. This provides the possibility to ap-
ply ConFIS even on low-tessellated surfaces. On the other
hand, the streamlines are consistently drawn during the run-
time. This would result in a frame-coherent approach which
does not depend on the tessellation of the surface model.
Another approach we would like to focus on is the sim-
ulation of light. As ConFIS seeds streamlines at the con-
tour and at the contour margin, this conveys the feeling of a
headlight. Therefore, the middle parts of cylindrical shapes
are illuminated. Following the conclusions of Šoltészová et
al. [vPV11], we think about a displacement of the view vec-
tor to simulate different illumination styles.
As an outlook, we consider to use ConFIS as an alternative
rendering technique. ConFIS could be used in a similar man-
ner as Fresnel shading to convey the impression of bend-
ing anatomical structures with streamlines, see Figure 7. We
used Fresnel shading and ConFIS in combination to analyze
the blood flow inside the vessel and to perceive the bend-
ing of the vessel. Furthermore, we consider extending our
evaluation according to Kim et al. [KHSI04] and Blair et
al. [BH07]. In their experiments, participants had to orient
vectors on the model surface manually to fit the perceived
surface normal. However, with respect to our current study
we consider that ConFIS provides a good approach on filling
the gap between feature line and hatching methods.

8. Appendix

The Jordan-matrix J can be represented by different forms.
We have to consider all cases in order to simplify exp(J · t)
and

∫
exp(−J · t)dt:

i. J =

(
κ 1
0 κ

)
, κ ∈ R.

ii. J =

(
κ1 0
0 κ2

)
, κ1, κ2 ∈ C.

Lemma 8.1 For one of the cases i. or ii. we have different
simplified representations for exp(J · t):

a) i. & κ , 0 : exp(J · t) = exp(κt)
(
1 t
0 1

)
,

b) i. & κ = 0 : exp(J · t) =

(
1 t
0 1

)
,

c) ii. : exp(J · t) =

(
exp(t · κ1) 0

0 exp(t · κ2)

)
.

Proof a) First, using the definition of the matrix exponen-
tial: exp(J · t) =

∑∞
k=0

Jk tk

k! . Applying induction leads to Jn =(
κn n · κn−1

0 κn

)
. So we get exp(J · t) = exp(κt)

(
1 t
0 1

)
.

b) J is a nilpotent matrix and we get J0 = Id, J1 = J, and

J2 = 0. So we get exp(J · t) =

(
1 t
0 1

)
.

c) This case can be verified by knowing Jn =

(
κn

1 0
0 κn

2

)
and

this leads to exp(J · t) =

(
exp(t · κ1) 0

0 exp(t · κ2)

)
.

Lemma 8.2 For the cases i. and ii. we get the following sim-

plifications forA = D
(
x y
0 z

)
D−1:

a) κ1, κ2 , 0: x = −κ−1
1 , z = −κ−1

2 . Further, if κ1 = κ2 then
y = κ−2

1 else y = 0.
b) κ2 = 0: z = t. Further, if κ1 = κ2 then x = t, y = 0.5t2 else

x = −κ−1
1 , y = 0.

c) κ1, κ2 ∈ C:

A(t) =<(κ−1)
(
1 0
0 1

)
+
=(κ−1)
bc−ad

(
ac + bd −a2 −b2

c2 + d2 −ac−bd

)
,

with D =

(
a + bi a−bi
c + di c−di

)
.

Proof Using the property (exp(A))−1 = exp(−A) and inte-
grating the result, we get the simplification. If the eigenval-
ues κ1, κ2 of J are complex, then it follows: κ1 = κ̄2, so we
write κ B κ1. Additionally, if v is an eigenvector, then its
conjugate is also an eigenvector.
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